On graded modules associated with permissible C^{∞} -divisors on tropical manifolds

Yuki Tsutsui

Graduate School of Mathematical Sciences

University of Tokyo

Mirror Symmetry and Related Topics, Kyoto 2023, 2023-12-18

Tropical Geometry = "Geometry over tropical semifield $\mathbb{T}"$

$$\mathbb{T} := (\mathbb{R} \cup \{-\infty\}, \max, +) \simeq (\mathbb{R}_{\geq 0}, \max, \cdot)$$
$$\mathbb{T}^n = (\mathbb{R} \sqcup \{-\infty\})^n = \bigsqcup_{I \subset \{1, \dots, n\}} \mathbb{R}_I$$

where $\mathbb{R}_I := \{(x_1, \ldots, x_n) \in \mathbb{T}^n \mid x_i = -\infty \text{ iff } i \in I\} \simeq \mathbb{R}^{n-\sharp I}$

Definition 1 (Gross-Shokrieh'23, Mikhalkin-Zharkov'14) A rational polyhedral set in \mathbb{T}^n is a finite union of the closures of rational conv. polyhedra in some \mathbb{R}_I . V: an open subset of a rational polyhedral set in \mathbb{T}^n . \mathcal{O}_V^{\times} : the sheaf of continuous fcns f s.t.

 $f(x) = m_1 x_1 + \dots + m_n x_n + a, \quad (m_i \in \mathbb{Z}, a \in \mathbb{R}) \quad (1)$ $= \langle m, x \rangle + a \qquad (2)$

for some open nbd of x under the convention $0 \cdot (-\infty) \coloneqq 0$.

Definition 2 (Gross-Shokrieh'23, (cf. Mikhalkin-Zharkov'14)) A rational polyhedral space is a pair $(S, \mathcal{O}_S^{\times})$ where (i) S is a 2nd-countable loc. cpt T_2 -space (ii) \mathcal{O}_S^{\times} is a sheaf of abelian groups on S s.t. for any $x \in S$, there exists an open nbd U of x and an isomorphism $(U, \mathcal{O}_S^{\times}|_U) \simeq (V, \mathcal{O}_V^{\times})$ for some open subset V of a rational polyhedral set.

Example 3

- (i) Every metric finite graph with no 1-valent vertex has a canonical model of a rational polyhedral space.
- (ii) Integral affine manifolds (e.g. real tori \mathbb{R}^n/Λ).

Definition 4

A *n*-dimensional integral affine manifold is a pair of *n*-dimensional real manifold *B* and an altas $\{(U_i, \psi_i : U_i \to \mathbb{R}^n)\}_{i \in I}$ s.t. $\psi_j \circ \psi_i^{-1} \in GL_n(\mathbb{Z}) \ltimes \mathbb{R}^n$ locally.

Each example is a *tropical manifold*, i.e., a rational polyhedral space S which is locally isomorphic to a direct product of the Bergman fan Σ_M for some loopless matroid M and \mathbb{T}^n for some n.

D: a divisor on a cpt tropical curve C, r(D): the (Baker–Norine) rank of D, K_C : the canonical divisor of C, $\chi_{top}(C)$: the topological Euler characteristic of C.

Theorem 5 (Tropical Riemann–Roch theorem)

Under the setting above,

$$r(D) - r(K_C - D) = \deg(D) + \chi_{top}(C).$$
(3)

Theorem 6 (Hirzebruch–Riemann–Roch–theorem) Let \mathcal{L} be a line bundle on a cpt complex mfd X. Then, $\chi(H^{\bullet}(X; \mathcal{L})) = \int_{X} ch(\mathcal{L}) td(X).$ (4)

How about for cpt tropical mfds ?

RHS of HRR

S: a cpt tropical mfd of dimension *n*. $H^{p,q}(S;\mathbb{Z})$: the (p,q)-th tropical cohomology. The tropical exponential sequence

$$0 o \mathbb{R}_{S} o \mathcal{O}_{S}^{\times} o \Omega^{1}_{\mathbb{Z},S} o 0$$

defines the 1st Chern map $c_1 \colon H^1(S; \mathcal{O}_S^{\times}) \to H^1(S; \Omega^1_{\mathbb{Z},S})$ and

$$\mathsf{ch}(\mathcal{L}) \coloneqq \mathsf{exp}(c_1(\mathcal{L})) \in H^{ullet,ullet}(S;\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

 $\int_{S} : H^{n,n}(S;\mathbb{Z}) \to \mathbb{Z}: \text{ the trace map of } S.$ td(S): the Todd class of S defined by de Medrano-Rincón-Shaw (arXiv:2309.00229).

$$\mathsf{RR}(S;\mathcal{L}) \coloneqq \int_{S} \mathsf{ch}(\mathcal{L}) \, \mathsf{td}(S).$$
 (5)

It is difficult to define the Euler characteristic of line bundles on tropical manifolds:

Reason: \mathbb{T} is *not* an Abelian group.

 $\rightarrow\,$ We cannot apply homological algebra directly.

On the other hands, tropical geometers expect the following:

Conjecture 7 (de Medrano-Rincón-Shaw'23)

For any cpt tropical mfd S,

$$\chi_{top}(S) = \int_{S} td(S) = RR(S; 0).$$
(6)

In particular, $\chi_{top}(S)$ behaves like an analog of the Euler characteristic of the structure sheaf of a cpt complex mfd.

Our approach: Consider analogs of Floer complexes of Lagrangian submanifolds (without differentials).

S: a rational polyhedral space. exp: $\mathbb{T}^n \to \mathbb{R}^n_{\geq 0}$: $(x_1, \ldots, x_n) \mapsto (\exp(x_1), \ldots, \exp(x_n))$

Definition 8 (cf. Mikami(arXiv:2303.09809))

A continuous fcn $f: S \to \mathbb{R}$ is *weakly-smooth* if for any $x \in S$ there exists a chart $\psi: U_x \to \mathbb{T}^n$ and a positive C^{∞} -function h on an open subset of \mathbb{R}^n s.t.

$$f|_{U_x} = \log \circ h \circ \exp \circ \psi. \tag{7}$$

Remark 9

If S is an integral affine manifold, then f is weakly-smooth if and only if f is a C^{∞} -function on S.

 $\mathcal{A}_{S}^{\mathrm{weak}}$: the sheaf of weakly-smooth fcns. on S. The exact sequence

$$0 \to \mathcal{O}_{S}^{\times} \to \mathcal{A}_{S}^{\text{weak}} \to \mathcal{A}_{S}^{\text{weak}}/\mathcal{O}_{S}^{\times} \to 0$$
(8)
gives a surjection $H^{0}(S; \mathcal{A}_{S}^{\text{weak}}/\mathcal{O}_{S}^{\times}) \to H^{1}(S; \mathcal{O}_{S}^{\times}); s \mapsto [s].$
 $\text{Div}^{\infty}(S) \coloneqq H^{0}(S; \mathcal{A}_{S}^{\text{weak}}/\mathcal{O}_{S}^{\times}): \text{ the group of } C^{\infty}\text{-divisors.}$

Remark 10 (C^{∞} -divisors are analogs of Lagrangian sections) If B is an integral affine manifold, then every element $s \in \text{Div}^{\infty}(B)$ defines a Lagrangian section \check{s} of the standard Lagrangian torus fibration $\check{f}_B \colon T^*B/T^*_{\mathbb{Z}}B \to B$.

We will construct a graded module $LMD^{\bullet}(S; s)$ for a *permissible* C^{∞} -divisor s as an analog of Floer complexes (without differentials).

S: a rational polyhedral space,

$$\Omega_{S}^{1} \coloneqq \Omega_{\mathbb{Z},S}^{1} \otimes_{\mathbb{Z}_{S}} \mathbb{R}_{S} = \mathcal{O}_{S}^{\times} / \mathbb{R}_{S} \otimes_{\mathbb{Z}_{S}} \mathbb{R}_{S},$$

$$T_{x}S \coloneqq \operatorname{Hom}_{\mathbb{Z}}((\Omega_{\mathbb{Z},S}^{1})_{x}, \mathbb{R}),$$

$$\operatorname{LC}_{x}S(\subset T_{x}S): \text{ the local cone of } S \text{ at } x,$$

$$\phi: \operatorname{LC}_{x}S \to T_{x}S: \text{ the canonical inclusion,}$$

$$\operatorname{Under the identification} (\Omega_{S}^{1})_{x} \simeq T_{0}^{*}(T_{x}S), \text{ we set}$$

$$\operatorname{SS}(S)_{x} \coloneqq \operatorname{SS}(\phi_{!}\phi^{-1}\mathbb{Z}_{T_{x}S}) \cap (\Omega_{S}^{1})_{x}, \qquad (9)$$

where SS($\phi_! \phi^{-1} \mathbb{Z}_{T_x S}$) is the micro-support of $\phi_! \phi^{-1} \mathbb{Z}_{T_x S}$.

Example 11

If C is a metric finite graph with no 1-valent vertex, then $\operatorname{span}_{\mathbb{R}}(\operatorname{SS}(C)_{x}) = \begin{cases} (\Omega_{S}^{1})_{x} \simeq \mathbb{R}^{\operatorname{val}(x)-1}, & \text{if } \operatorname{val}(x) \neq 2, \\ \{0\}, & \text{o.w.} \end{cases}$

Definition 12

A weakly-smooth fcn f on a rational polyhedral space S is *prepermissible* at $x \in S$ if

 $df(x) \notin \operatorname{span}_{\mathbb{R}}(\operatorname{SS}(S)_{x}) + (\Omega^{1}_{\mathbb{Z},S})_{x} \setminus (\Omega^{1}_{\mathbb{Z},S})_{x} (\subset (\Omega^{1}_{S})_{x}).$ (10) A C^{∞} -divisor $s = \{(U_{i}, f_{i})\}_{i \in I}$ on S is prepermissible if every f_{i} is prepermissible.

Example 13

(i) Every C[∞]-fcn on an integral affine mfd is prepermissible.
(ii) Let C be a metric finite graph with no 1-valent and x ∈ C_{sing}, then a weakly-smooth function f is prepermissible at x iff df(x) ∈ (Ω¹_{Z,S})_x ≃ Z^{val(x)-1}.

If S is compact, $\{x \in S \mid \text{span}_{\mathbb{R}}(SS(S)_x) = (\Omega_S^1)_x\}$ is finite.

For any
$$x \in S$$
, we set
 $\check{X}_0(S)_x := ((\Omega^1_{\mathbb{Z},S})_x / \operatorname{span}_{\mathbb{R}}(\operatorname{SS}_x(S)) \cap (\Omega^1_{\mathbb{Z},S})_x) \otimes_{\mathbb{Z}} \mathbb{R}/\mathbb{Z}$ (11)
 $\check{X}_0(S) := \bigcup_{x \in S} \check{X}_0(S)_x$

Figure: S and $\check{X}_0(S)$ (cf. Auroux–Efimov–Katzarkov'22)

Y. Tsutsui (UT) On graded modules associated with permissible C^{∞} -divisors

Every prepermissible C^{∞} -divisor $s = \{(U_i, f_i)\}_{i \in I}$ defines a section $\check{s} \colon S \to \check{X}_0(S)$ of $\check{f}_S \colon \check{X}_0(S) \to S$ and the intersection $s_0 \cap s := \check{f}_S(\operatorname{Im}(\check{s}_0) \cap \operatorname{Im}(\check{s}))$ with the zero divisor.

Figure: the zero section \check{s}_0 and a prepermissible section \check{s}

Definition 14

An *intersection data* of a prepermissible C^{∞} -divisor s is a family $\{f_p: U_p \to \mathbb{R}\}_{p \in s_0 \cap s}$ of weakly-smooth functions on an open nbd U_p of p s.t. $s|_{U_p} = (f_p)$ and $\operatorname{Crit}(f_p) = \{p\}$.

For a given intersection data of s, we set

$$\mathsf{LMD}^{\bullet}(S;s) \coloneqq \bigoplus_{p \in s_0 \cap s} H^{\bullet}(R\Gamma_{\{f_p \ge f_p(p)\}}(\mathbb{Z}_{U_p})_p)$$
(12)

The graded module $LMD^{\bullet}(S; s)$ is independent of the choice of intersection data.

Remark 15

If S is a cpt integral affine manifold and the Lagrangian section L_s associated with s intersects with the zero section transversely, then the corresponding Floer complex is isomorphic to LMD[•](S; s) $\otimes_{\mathbb{Z}} \Lambda_{nov}$ as graded modules.

Let f be a weakly-smooth function on S s.t. (f) is prepermissible and $s_0 \cap (f) = \{p\}$ for some $p \in S$. Then, $LMD^{\bullet}(S; (f)) = H^{\bullet}(R\Gamma_{\{f \geq f(p)\}}(\mathbb{Z}_S)_p)$ $\simeq \varinjlim_{p \in U \subset_{open} S} \tilde{H}^{\bullet-1}(U \cap \{f < f(p)\}; \mathbb{Z})$ (13)

Example 16 (Morse function)

Let $f_{n,m} \colon \mathbb{R}^{n+m} \to \mathbb{R}; (x_1, \ldots, x_{n+m}) \mapsto \sum_{j=1}^n x_j^2 - \sum_{k=1}^m x_{n+k}^2$. Then, for a sufficiently small open nbd U of 0 $LMD^{\bullet}(U; (f_{n,m})) \simeq \tilde{H}^{\bullet-1}(B^n \times S^{m-1}; \mathbb{Z}) \simeq \mathbb{Z}[-m]$ (14) under the convention $S^{-1} = \emptyset$.

Example 17 $\Gamma_n := \mathbb{R}_{>0}(1,\ldots,0) \cup \cdots \cup \mathbb{R}_{>0}(0,\ldots,1) \cup \mathbb{R}_{>0}(-1,\ldots,-1)$ $f_n: \Gamma_n \to \mathbb{R}$: a weakly-smooth fcn s.t. $s_0 \cap (f) = \{0\}$ $\chi(\text{LMD}^{\bullet}(\Gamma_n, (f_n))) = 1 - \sharp(\pi_0(\{f(v) < f(0)\}))$ (15)(16)=: 1 - q0 2 3 ind 0 2 ind O

0

3 ind

Definition 18

A prepermissible C^{∞} -divisor *s* on *S* is *permissible* if $\sharp(s_0 \cap s) < \infty$ and LMD[•](*S*; *s*) is finitely generated.

Conjecture 19 (T. (a modified version after [M–R–S'23])) For any permissible C^{∞} -divisor on a cpt tropical manifold S, the following equation holds

$$\chi(\mathsf{LMD}^{\bullet}(S;s)) = \int_{S} \mathsf{ch}([s]) \, \mathsf{td}(S). \tag{17}$$

Theorem 20 (T. (cf. Auroux–Efimov–Katzarkov'22)) Conjecture 19 is true when S is a cpt tropical curve or integral affine mfd admitting a Hessian metric. *P*: a *d*-dimensional Delzant lattice polytope in $(\mathbb{R}^d)^{\vee}$.

$$f_P(x_1,\ldots,x_d) \coloneqq \log\left(\sum_{m \in P \cap (\mathbb{Z}^d)^{\vee}} \exp(\langle m,x \rangle)\right)$$

Every f_P naturally defines a permissible C^{∞} -divisor s_P on the tropical toric manifold X_P^{trop} of P.

Proposition 21 (T.)

$$\chi(\mathsf{LMD}^{\bullet}(X_P^{\mathsf{trop}}; s_P) = \sharp(P \cap (\mathbb{Z}^d)^{\vee}), \tag{18}$$

$$\chi(\mathsf{LMD}^{\bullet}(X_{P}^{\mathsf{trop}}; -s_{P}) = (-1)^{d} \sharp(\mathsf{int}(P) \cap (\mathbb{Z}^{d})^{\vee}).$$
(19)