Computations and Locality in Relative Symplectic Cohomology

Umut Varolgunes

December 13, 2021

Umut Varolgunes Relative symplectic cohomology

Floer equation

- (M, ω) symplectic manifold, a compatible almost complex structure is a fiberwise linear map $J : TM \to TM$, which satisfies $J^2 = -Id$ and so that $\omega(\cdot, J \cdot)$ is a Riemannian metric.
- Take a smooth map $\mathcal{H}: S_t^1 \times \mathbb{R}_s \to C^\infty(M, \mathbb{R})$, which is s independent near the ends.
- Floer equation for $u:S^1_t imes\mathbb{R}_s o M$,

$$J\frac{\partial u}{\partial s} = \frac{\partial u}{\partial t} - X_{\mathcal{H}(s,t)}$$

- $\bullet\,$ For $\mathcal{H}=0,$ we get pseudo-holomorphic curve equation
- If H only depends on s (resp. t), t-invariant (resp. s-invariant) solutions are continuation maps for Morse theory (resp. 1-periodic orbits)
- We will be counting solutions of the Floer equation which are asymptotic to 1-periodic orbits of the Hamiltonians at the ends

Novikov field

• More honestly, we will have to count Floer solutions with certain weights, which encode their topological energy

$$topE(u) := \int u^* \omega + \int_{S^1} \gamma^*_{out} H_{out} dt - \int_{S^1} \gamma^*_{in} H_{in} dt$$

• As a result, we define our invariants over the non-archimedean valued field (called the Novikov field)

$$\Lambda = \{\sum_{i \in \mathbb{N}} a_i T^{\alpha_i} \mid a_i \in \mathbb{Q}, \alpha_i \in \mathbb{R}, \text{ and for any } R \in \mathbb{R},$$

there are only finitely many $a_i \neq 0$ with $\alpha_i < R$

- Can work over $\Lambda_{\geq 0}$ but I want to simplify
- Except in certain cases using Novikov parameters is forced on us for technical reasons, but it is also a feature!

- (M, ω) geometrically bounded symplectic manifold such that $c_1(M) = 0$ with grading datum
- Given non-degenerate Hamiltonian H and time-dependent J such that (H, J) is dissipative and regular, we obtain a chain complex over Λ : $CF(H, J, \Lambda)$
 - complete vector space over Λ generated by the 1-periodic orbits of X_H
 - grading by Maslov type index
 - **3** self-map d by counting Floer solutions with weights $T^{topE(u)}$
 - (Floer's theorem) $d^2 = 0$
- OK to omit J for what follows
- Can define chain maps CF(H, Λ) → CF(H', Λ) using the same idea of counting, which are isomorphisms on homology if M is closed! (continuation maps)

伺 ト イヨ ト イヨト

Acceleration data for compact sets

- Want to define an invariant of $K \subset M$ using Hamiltonian FT
- Acceleration data for compact $K \subset M$ is a family of S^1 -dependent Hamiltonians $H_{\tau}, \tau \in [1, \infty)$ such that:

•
$$H_{\tau}(t,x) < 0$$
, for every t, τ and $x \in K$.
• $H_{\tau}(t,x) \xrightarrow[\tau \to +\infty]{} \begin{cases} 0, & x \in K, \\ +\infty, & x \notin K, \end{cases}$ for every t
• $H_{\tau}(t,x) \ge H_{\tau'}(t,x)$, whenever $\tau \ge \tau'$
• For $n \in \mathbb{N}$, the flow of H_n satisfies non-degeneracy

•
$$\mathcal{C}(H_{\tau}) := CF(H_1, \Lambda) \to CF^*(H_2, \Lambda) \to \dots$$

• The maps are given by continuation maps. Monotonicity requirement (3) implies that topological energies are all non-negative.

Definition of the invariant

- We will need to process C(H_τ) to get a chain complex whose homology only depends on K: perhaps take homotopy colimit?
- Does not depend on K at all when M is closed!
- This is an infinite dimensional vector space equipped with a basis v_1, v_2, \ldots , (up to ± 1) in each degree. We complete it degreewise by taking all sums

$$\sum_{i=1}^{\infty} a_i v_i$$

such that $a_i \in \Lambda$ so that $val(a_i) \to \infty$ as $i \to \infty$.

- Differential extends to the completion
- Resulting homology is independent of choices:

 $SH^*_M(K,\Lambda)$

Automatically get restriction maps for K ⊂ K' with the presheaf property

- $SH^*_M(K, \Lambda)$ can be equipped with a unital BV algebra structure.
- Restriction maps are unital BV algebra homomorphisms.
- Vanishing is equivalent to 1 = 0.

Dependence on K

- SH_M(∅, Λ) = 0
- $SH^*_M(M, \Lambda) = H^*(M, \Lambda)$ if M is closed
- If K ⊂ M is displaceable from itself by a Hamiltonian diffeomorphism, then SH_M(K, Λ) = 0.
- If $K \times (S^1 \times \{0\}) \subset M \times (T^*S^1)$ is displaceable from itself by a Hamiltonian diffeomorphism, then $SH_M(K, \Lambda) = 0$.
- Invariance under symplectomorphisms
- It can be infinite dimensional and quite hard to compute.

A sample computation

- \mathbb{R}^2 has symplectic structure $dx \wedge dy$, which descends to $T^2 = \mathbb{R}^2/(2\pi\mathbb{Z})^2$
- Consider map $\pi: T^2 \to S^1 := \mathbb{R}/2\pi\mathbb{Z}$ which projects to x coordinate and consider translation invariant grading data
- We can compute the 1-periodic orbits of function H = H(x), they occur whenever H'(x) is an integer multiple of 2π.
- If $I \subset S^1$ is an interval of length $r < 2\pi$, we get

$$SH^0_M(\pi^{-1}(I),\Lambda) \simeq \Lambda < x, y > /(xy - T^{2\pi r})$$

 The RHS isomorphic to formal series ∑_{n∈ℤ} a_nxⁿ with coefficients in Λ which converge on *I* in the following sense:

$$val(a_n) + nb \to \infty \text{ as } |n| \to \infty,$$

for any $b \in \tilde{I} \subset \mathbb{R}$

Polytopal domains

- \mathbb{R}^{2n} has symplectic structure $\sum dp_i \wedge dq_i$, which descends to $M = \mathbb{R}^n \times T^n$
- Consider the projection $\pi: M \to \mathbb{R}^n$ and standard grading datum
- Let P ⊂ ℝⁿ be a compact polytope with rational slope faces. Define KS(P) as the completion of Λ[(ℤⁿ)[∨]] with respect to the valuation

$$val(\sum a_{\alpha}z^{n_{\alpha}}) = \min_{\alpha,p\in P}(val(a_{\alpha}) + n_{\alpha}(p)).$$

- Isomorphic to Kontsevich-Soibelman's convergent functions on *P* and can be defined independently of coordinates
- Theorem: $SH^0_M(\pi^{-1}(P), \Lambda)$ is canonically isomorphic to KS(P) compatibly with restriction maps.

伺 ト イヨト イヨト

- By the Mayer-Vietoris property below suffices to consider convex *P*
- $SH^0_M(\pi^{-1}(P), \Lambda)$ is isomorphic to the completion of the Viterbo symplectic cohomology $SH^0(M, \Lambda)$ with respect to the action filtration defined by $\pi^{-1}(P)$ and primitive $\sum p_i dq_i$
- This method of computation should generalize to interiors of positive log CY varieties and allow us to import results from Viterbo symplectic cohomology
- In these cases one shows that $H^0(\widehat{tel}(\mathcal{C}(H_s), \Lambda_{\geq 0}))$ and $H^1(tel(\mathcal{C}(H_s), \Lambda_{\geq 0}))$ has finite torsion, which is special (n = 2 covered by Pascaleff)

Theorem (V.)

 K_1, K_2 compact subsets of M. If K_1 and K_2 admit barriers, then there is an exact sequence

where the degree preserving maps are the restriction maps (up to sign)

For domains admitting barriers is a slightly weaker condition than the existence functions f_1 , f_2 such that $K_i = \{f_i \le 0\}$ and the Hamiltonian flows of f_i commute.

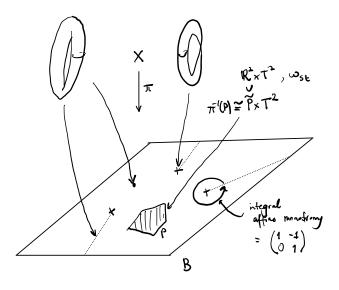
- $\pi: M^{2n} \to B^n$ a proper involutive map
- In many cases relevant to mirror symmetry SH^{*}_M(π⁻¹(P), Λ) is non-negatively graded (as above)
- MV property implies sheaf property for

$$\mathcal{F}(\cdot) := SH^0_M(\pi^{-1}(\cdot), \Lambda)$$

- \mathcal{F} behaves very much like a sheaf of functions (already seen this for $T^2 \to S^1$ and $T^*T^n \to \mathbb{R}^n$)
- Goal: Construct a Λ-analytic mirror space *Y*, which also fibers over *B* such that the push-forward of the structure sheaf is *F*.

Example: symplectic cluster manifolds

- Consider X := M \ D a Looijenga interior with symplectic form Im(Ω) - there are other symplectic forms (see Lin et. al.)
- Choosing toric models, one can construct multiple complete nodal Lagrangian torus fibrations π : X → B, where the singular integral affine structure on B can be explicitly computed as an eigenray diagram, which is how we think of (X, Im(Ω)) from now on
- In particular X is geometrically of finite type: there exists almost complex structure J and exhaustion function $f: X \to \mathbb{R}$ which has finitely many critical points and whose Hamiltonian vector field is C^1 bounded
- We have many symplectic embeddings X' → X of simpler Looijenga interiors (e.g. cluster charts) compatible with Lagrangian fibrations along large open subsets



・ロト ・回 ト ・ ヨト ・ ヨト …

æ

Locality

 We would like to be able to use our computations in simple Looijenga interiors (e.g. T*T²) for X

Theorem (Groman-V.)

Let M^{2n} be geometrically bounded, Y^{2n} be geometrically of finite type, and $\iota: Y \to M$ be a symplectic embedding. Then we can construct natural isomorphisms $SH^*_Y(K) \simeq SH^*_M(\iota(K))$ for each homologically finite torsion compact subset $K \subset Y$.

- This is good enough for our purposes but the torsion finite assumption can be lifted
- Proof uses dissipativity techniques developed by Groman in his thesis
- Different ideas needed for closed M

Locality for symplectic cluster manifolds

- Let \mathcal{R} be an eigenray diagram.
- Take a compact convex polygon *P̃* in ℝ² which is disjoint from all the rays of *R*.
- Then there is an induced isomorphism

$$\mathcal{F}_{\mathcal{R}}(\psi_{\mathcal{R}}(\tilde{P})=P) \to KS(\tilde{P}).$$

• The isomorphism in the statement is determined by an eigenray diagram representation. Representing symplectic cluster manifolds by different eigenray diagrams, we obtain distinct locality isomorphisms of the same form.

- Consider the completed Pascaleff manifold X₁ which has a nodal Lagrangian fibration with a single pinched torus fiber
- Choose a convex rational polygon in the base not intersecting the eigenline
- There are two non-Hamiltonian isotopic embeddings of T*T² giving rise to two locality isomorphisms with Kontsevich-Soibelman function spaces
- The comparison map is not monomial the simplest wall-crossing transformation
- This computation has not appeared anywhere yet