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Floer equation

(M, ω) symplectic manifold, a compatible almost complex
structure is a fiberwise linear map J : TM → TM, which
satisfies J2 = −Id and so that ω(·, J·) is a Riemannian metric.

Take a smooth map H : S1
t × Rs → C∞(M,R), which is s

independent near the ends.

Floer equation for u : S1
t × Rs → M,

J
∂u

∂s
=
∂u

∂t
− XH(s,t)

For H = 0, we get pseudo-holomorphic curve equation

If H only depends on s (resp. t), t-invariant (resp.
s-invariant) solutions are continuation maps for Morse theory
(resp. 1-periodic orbits)

We will be counting solutions of the Floer equation which are
asymptotic to 1-periodic orbits of the Hamiltonians at the
ends
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Novikov field

More honestly, we will have to count Floer solutions with
certain weights, which encode their topological energy

topE (u) :=

∫
u∗ω +

∫
S1

γ∗outHoutdt −
∫
S1

γ∗inHindt

As a result, we define our invariants over the non-archimedean
valued field (called the Novikov field)

Λ = {
∑
i∈N

aiT
αi | ai ∈ Q, αi ∈ R, and for any R ∈ R,

there are only finitely many ai ̸= 0 with αi < R}

Can work over Λ≥0 but I want to simplify

Except in certain cases using Novikov parameters is forced on
us for technical reasons, but it is also a feature!
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Hamiltonian Floer theory

(M, ω) geometrically bounded symplectic manifold such that
c1(M) = 0 with grading datum

Given non-degenerate Hamiltonian H and time-dependent J
such that (H, J) is dissipative and regular, we obtain a chain
complex over Λ: CF (H, J,Λ)

1 complete vector space over Λ generated by the 1-periodic
orbits of XH

2 grading by Maslov type index
3 self-map d by counting Floer solutions with weights T topE(u)

4 (Floer’s theorem) d2 = 0

OK to omit J for what follows

Can define chain maps CF (H,Λ) → CF (H ′,Λ) using the same
idea of counting, which are isomorphisms on homology if M is
closed! (continuation maps)
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Acceleration data for compact sets

Want to define an invariant of K ⊂ M using Hamiltonian FT

Acceleration data for compact K ⊂ M is a family of
S1-dependent Hamiltonians Hτ , τ ∈ [1,∞) such that:

1 Hτ (t, x) < 0, for every t, τ and x ∈ K .

2 Hτ (t, x) −−−−−→
τ→+∞

{
0, x ∈ K ,

+∞, x /∈ K ,
for every t

3 Hτ (t, x) ≥ Hτ ′(t, x), whenever τ ≥ τ ′

4 For n ∈ N, the flow of Hn satisfies non-degeneracy

C(Hτ ) := CF (H1,Λ) → CF ∗(H2,Λ) → . . .

The maps are given by continuation maps. Monotonicity
requirement (3) implies that topological energies are all
non-negative.
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Definition of the invariant

We will need to process C(Hτ ) to get a chain complex whose
homology only depends on K : perhaps take homotopy
colimit?

Does not depend on K at all when M is closed!

This is an infinite dimensional vector space equipped with a
basis v1, v2, . . . , (up to ±1) in each degree. We complete it
degreewise by taking all sums

∞∑
i=1

aivi

such that ai ∈ Λ so that val(ai ) → ∞ as i → ∞.

Differential extends to the completion

Resulting homology is independent of choices:

SH∗
M(K ,Λ)

Automatically get restriction maps for K ⊂ K ′ with the
presheaf property
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Products and unit

SH∗
M(K ,Λ) can be equipped with a unital BV algebra

structure.

Restriction maps are unital BV algebra homomorphisms.

Vanishing is equivalent to 1 = 0.
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Dependence on K

SHM(∅,Λ) = 0

SH∗
M(M,Λ) = H∗(M,Λ) if M is closed

If K ⊂ M is displaceable from itself by a Hamiltonian
diffeomorphism, then SHM(K ,Λ) = 0.

If K × (S1 × {0}) ⊂ M × (T ∗S1) is displaceable from itself by
a Hamiltonian diffeomorphism, then SHM(K ,Λ) = 0.

Invariance under symplectomorphisms

It can be infinite dimensional and quite hard to compute.
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A sample computation

R2 has symplectic structure dx ∧ dy , which descends to
T 2 = R2/(2πZ)2

Consider map π : T 2 → S1 := R/2πZ which projects to x
coordinate and consider translation invariant grading data

We can compute the 1-periodic orbits of function H = H(x),
they occur whenever H ′(x) is an integer multiple of 2π.

If I ⊂ S1 is an interval of length r < 2π, we get

SH0
M(π−1(I ),Λ) ≃ Λ < x , y > /(xy − T 2πr )

The RHS isomorphic to formal series
∑

n∈Z anx
n with

coefficients in Λ which converge on I in the following sense:

val(an) + nb → ∞ as |n| → ∞,

for any b ∈ Ĩ ⊂ R
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Polytopal domains

R2n has symplectic structure
∑

dpi ∧ dqi , which descends to
M = Rn × T n

Consider the projection π : M → Rn and standard grading
datum

Let P ⊂ Rn be a compact polytope with rational slope faces.
Define KS(P) as the completion of Λ[(Zn)∨] with respect to
the valuation

val(
∑

aαz
nα) = min

α,p∈P
(val(aα) + nα(p)).

Isomorphic to Kontsevich-Soibelman’s convergent functions
on P and can be defined independently of coordinates

Theorem: SH0
M(π−1(P),Λ) is canonically isomorphic to

KS(P) compatibly with restriction maps.
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Sketch proof of theorem

By the Mayer-Vietoris property below suffices to consider
convex P

SH0
M(π−1(P),Λ) is isomorphic to the completion of the

Viterbo symplectic cohomology SH0(M,Λ) with respect to
the action filtration defined by π−1(P) and primitive

∑
pidqi

This method of computation should generalize to interiors of
positive log CY varieties and allow us to import results from
Viterbo symplectic cohomology

In these cases one shows that H0(t̂el(C(Hs),Λ≥0)) and
H1(tel(C(Hs),Λ≥0)) has finite torsion, which is special (n = 2
covered by Pascaleff)
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Mayer-Vietoris property

Theorem (V.)

K1,K2 compact subsets of M. If K1 and K2 admit barriers, then
there is an exact sequence

SH∗
M(K1 ∪ K2) // SH∗

M(K1)⊕ SH∗
M(K2)

uu
SH∗

M(K1 ∩ K2)

[1]

OO
, (1)

where the degree preserving maps are the restriction maps (up to
sign)

For domains admitting barriers is a slightly weaker condition than
the existence functions f1, f2 such that Ki = {fi ≤ 0} and the
Hamiltonian flows of fi commute.
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Sheaf property

π : M2n → Bn a proper involutive map

In many cases relevant to mirror symmetry SH∗
M(π−1(P),Λ)

is non-negatively graded (as above)

MV property implies sheaf property for

F(·) := SH0
M(π−1(·),Λ)

F behaves very much like a sheaf of functions (already seen
this for T 2 → S1 and T ∗T n → Rn)

Goal: Construct a Λ-analytic mirror space Y, which also fibers
over B such that the push-forward of the structure sheaf is F .
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Example: symplectic cluster manifolds

Consider X := M \ D a Looijenga interior with symplectic
form Im(Ω) - there are other symplectic forms (see Lin et. al.)

Choosing toric models, one can construct multiple complete
nodal Lagrangian torus fibrations π : X → B, where the
singular integral affine structure on B can be explicitly
computed as an eigenray diagram, which is how we think of
(X , Im(Ω)) from now on

In particular X is geometrically of finite type: there exists
almost complex structure J and exhaustion function
f : X → R which has finitely many critical points and whose
Hamiltonian vector field is C 1 bounded

We have many symplectic embeddings X ′ → X of simpler
Looijenga interiors (e.g. cluster charts) compatible with
Lagrangian fibrations along large open subsets
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Locality

We would like to be able to use our computations in simple
Looijenga interiors (e.g. T ∗T 2) for X

Theorem (Groman-V.)

Let M2n be geometrically bounded, Y 2n be geometrically of finite
type, and ι : Y → M be a symplectic embedding. Then we can
construct natural isomorphisms SH∗

Y (K ) ≃ SH∗
M(ι(K )) for each

homologically finite torsion compact subset K ⊂ Y .

This is good enough for our purposes but the torsion finite
assumption can be lifted

Proof uses dissipativity techniques developed by Groman in his
thesis

Different ideas needed for closed M
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Locality for symplectic cluster manifolds

Let R be an eigenray diagram.

Take a compact convex polygon P̃ in R2 which is disjoint
from all the rays of R.

Then there is an induced isomorphism

FR(ψR(P̃) = P) → KS(P̃).

The isomorphism in the statement is determined by an
eigenray diagram representation. Representing symplectic
cluster manifolds by different eigenray diagrams, we obtain
distinct locality isomorphisms of the same form.
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Wall-crossing

Consider the completed Pascaleff manifold X1 which has a
nodal Lagrangian fibration with a single pinched torus fiber

Choose a convex rational polygon in the base not intersecting
the eigenline

There are two non-Hamiltonian isotopic embeddings of T ∗T 2

giving rise to two locality isomorphisms with
Kontsevich-Soibelman function spaces

The comparison map is not monomial - the simplest
wall-crossing transformation

This computation has not appeared anywhere yet
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