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Overview

Joint work with Jinwon Choi, Michel van Garrel, Sheldon Katz.

[1] Local BPS invariants: enumerative aspects and wall-crossing,
Int. Math. Res. Not. IMRN 2020, no. 17, 5450–5475.

[2] Log BPS numbers of log Calabi-Yau surfaces, Trans. Amer.
Math. Soc. 374 (2021), no. 1, 687–732.

[3] Sheaves of maximal intersection and multiplicities of stable log
maps, Selecta Math. (N.S.) 27 (2021), no. 4, Paper No. 61.

Today:

Topics related to log BPS numbers of log Calabi-Yau surfaces

Contribution of degenerate maps, in particular A1-curves
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A1-curves

X: a projective algebraic variety, D ⊂ X: a normal crossing divisor.

Definition
An A1-curve on (X,D) is an integral curve C in X such that
the normalization of C \D is isomorphic to A1.

Another characterization: An A1-curve is an integral rational curve C
which is maximally contact to D:

If ν : P1 → C denotes the normalization, then #ν−1(D) = 1.
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A1-curves and relative/log GW invariants

Enumeration of A1-curves (and other curves with conditions on the
contact with D) is related to —

Enumeration of curves on proj. var., via degeneration formula.

Local GW invariants of the total space of OX(−D).

Moduli theoretic approaches to the enumeration:

Relative Gromov-Witten invariants: Based on the moduli space
of “relative stable maps”, where the target space is allowed to
degenerate (expand).

Log Gromov-Witten invariants: Based on the moduli space of
“stable log maps”, formulated in terms of “log geometry.”
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A1-curves and relative/log GW invariants (2)

There are also “orbifold” and “hybrid” approaches.
In the situation of this talk, all these invariants coincide.
(So I will refer to them as “log GW invariants”)

As with usual GW invariants, log GW invariants are rational numbers:
maps that are not generically one-to-one (e.g. multiple covers) give
fractional contributions.

In dimension 2, reducible curves are also inevitable.

Problem
How can we relate the concrete enumeration of A1-curves
and log GW invariants?
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A1-curves on (P2, E)

Let E ⊂ P2 be a smooth cubic.

Take an inflection point O ∈ E as the zero element of addition on E.

C: A1-curve of degree d on (P2, E)
⇒ C ∩ E = {P}, where P is a 3d-torsion.

We say a 3d-torsion P is primitive (with respect to d) if

3|d, and P is of order 3d,

3 ̸ |d, and P is of order d or 3d (depends on the choice of O).
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A1-curves on (P2, E), (2)

For a fixed P , how many A1-curves C of degree d
with C ∩ E = {P}?

d = 1: 1 for each inflection point P : Inflectional tangent line.

d = 2: 1, if P is primitive,
0, if P is an inflection point.

d = 3: 3 nodal cubics, if P is primitive,
2 nodal cubics or 1 cuspical cubic, if P is an infl. point.

d = 4: Assuming that all A1-curves are nodal,
16 if P is primitive,
14 if P is of order 2 or 6,
8 if P is an inflection point.

d = 5, 6, 7, 8: Under certain technical assumptions,
113, 948, 8974, 92840 if P is primitive.
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Local/log correspondence

Observation
The numbers 1, 1, 3, 16, 113, ... for primitive P coincide with the
BPS numbers of OP2(−E) divided by ±3d.

This suggests a certain “local/log correspondence.”

In the setting of total local/log(/orbifold) GW invariants, this was
proven and generalized by Gathmann, van Garrel-Graber-Ruddat,
Tseng-You, Nabijou-Ranganathan, Bousseau-Brini-van Garrel, ...

Taking the multiple cover formula for Gromov-Witten invariants into
account, we define the log BPS numbers as follows:

Nobuyoshi Takahashi (Hiroshima University) Log BPS and contrib. of degenerate maps 2021.12.15 8 / 22



Log BPS numbers

X: smooth rational surface, D: smooth anticanonical curve,
β: a curve class

Mβ(X,D): the moduli stack of genus 0, maximal contact
(basic) stable log maps

Nβ(X,D) = deg [Mβ(X,D)]vir

“genus 0, maximal contact log GW invariant”

We define log BPS numbers mβ by

Nβ(X,D) =
∑
k|β

(−1)(k−1)β·D/k

k2
mβ/k.

By local/log correspondence, we have

mβ = (−1)β·D−1(β ·D) · nβ(KX),

where nβ(KX) is the BPS number of the total space of OX(KX).
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Log BPS numbers (2)

For P ∈ D s.t. β|D ∼ (β ·D)P , let N P
β (X,D) denote the

contribution of maps with contact at P to Nβ(X,D),
and define mP

β by

N P
β (X,D) =

∑
k|β

(β/k)|D∼((β/k)·D)P

(−1)(k−1)β·D/k

k2
mP

β/k.

For X = P2, D = E: smooth cubic, H = [line],
mP

dH for primitive P is the number of A1-curves
(with appropriate multiplicities): 1, 1, 3, 16, 113, · · · .
In this case (i.e. d ≤ 8, P : primitive), we observe that

mdH = (3d)2mP
dH .

This looks natural, since the number of 3d-torsions is (3d)2 —
but why should all points contribute the same number?
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Log BPS numbers (3)

In general, we conjecture:

Conjecture

Log BPS number mP
β is independent of P such that β|D ∼ (β ·D)P .

In other words,

mP
β = mβ/(β ·D)2 (= (−1)β·D−1nβ(KX)/(β ·D)).

For (X,D) = (P2, (smooth cubic)), this was proven by Bousseau,
using “tropical correspondence” by Gräfnitz.

We proved this for X: del Pezzo, D: smooth anticanonical,
P : “primitive” and pa(β) ≤ 2.

Method: Explicit calculation of local/log side ([1]: local, [2]: log).
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Quartics in P2

Let E ⊂ P2 be a general cubic, and β = 4H.
Let Z be the image cycle of a genus 0 stable log map of class β
with maximal contact with E, and let (Supp Z) ∩ E = {P}.

P : primitive — Z is an (irreducible, reduced) A1-curve, and there are
16 such curves (counted with multiplicities).

P : of order 6 or 2
Z = 2C, where C is an A1-curve. Contribution to log GW: 9/4,
to log BPS: 2 (by Gross-Pandharipande-Siebert).
14 A1-curves (counted with multiplicities).

Total: 16.

Nobuyoshi Takahashi (Hiroshima University) Log BPS and contrib. of degenerate maps 2021.12.15 12 / 22



P : an inflection point,
Z = 4L: Multiple cover contribution

to log GW: 35/16, to log BPS: 2.
Z = L+ C (2 C’s): Each contributes 3 ... 3× 2 = 6.
8 A1-curves (counted with multiplicities).

Total: 16.

Reducible curves are unavoidable on a surface.

Theorem ([3])

For immersed A1-curves C1, C2 meeting D at P in a “general” way,
C1 + C2 contributes min{C1 ·D,C2 ·D}.

The case (# of components) ≥ 3: Unknown.
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Non-immersed A1-curves

Cubic A1-curves C on (P2, E) at an inflection point P :

1 cuspidal cubic, if E is isomorphic to y2 = x3 + 1.

2 nodal cubics, otherwise.

If an A1-curve C is nodal, or more generally immersed, it is easily
seen to have multiplicity 1 (infinitesimally rigid).

So, a cuspidal A1-curve should have multiplicity 2.

How can we calculate the multiplicity?

For a general E, it is not unreasonable to expect that all A1-curves
are nodal, but the method is also interesting (analogy with K3 case).

Nobuyoshi Takahashi (Hiroshima University) Log BPS and contrib. of degenerate maps 2021.12.15 14 / 22



Fantechi-Göttsche-van Straten’s theorem (1)

Let C be a rational (integral) curve,
M0(C, [C]): moduli space of genus 0 stable maps to C of class [C].

Set theoretically, M0(C, [C]) = {ν}, where ν : P1 → C is the
normalization map, but it is not necessarily reduced.

Let
l(C) := lengthM0(C, [C]),

m(C) :=

(
the multiplicity of the genus 0 locus
in the versal deformation space of C

)
.

Fantechi-Göttsche-van Straten proved the following:

Theorem (Fantechi-Göttsche-van Straten)

If C has only planar singularities,

l(C) = m(C) = e(Pic
0
(C)).
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Fantechi-Göttsche-van Straten’s theorem (2)

Theorem (Fantechi-Göttsche-van Straten)

Let S be a K3 surface, and C a rational (integral) curve on S.

Then M0(C, [C]) coincides with M0(S, [C]) in a neighborhood of
the normalization map ν : P1 → C ⊂ S.

The proof uses the relative compactified Jacobian:
Let C → |C| be the universal curve over the complete linear system,
and J̄C → |C| the associated relative compactified Jacobian.

A key fact is the following “unobstructedness”:

Theorem (Mukai)

The total space J̄C of the relative compactified Jacobian is
nonsingular.
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Logarithmic case: A moduli space MMI

Back to our log setting:

X: smooth projective surface,

D ⊂ X: a smooth curve,

β: a curve class. w := β ·D.

Definition
Let MMIβ(X,D) (modules with max. intersection) be the functor

(Sch/C) → (Set);T 7→ {coh. sh. F/X × T satisfying (a), (b)}/ ∼=

where

(a) F is flat over T , and for any geometric point t of T ,
Ft is a torsion-free sheaf of rank 1 on an integral curve Ct of
class β, not contained in D.

(b) There is a section σ : T → D × T such that F|D×T
∼= Ow·σ(T ).
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Logarithmic case: A moduli space MMI (2)

MMIβ(X,D) is represented by a (non-proper) scheme
(again denoted by MMIβ(X,D))

For a point P with β|D ∼ wP , let MMIP
β (X,D) be subscheme of

MMIβ(X,D) representing F s.t. F|D×T
∼= Ow·({P}×T ).

Let |OX(β, P )|◦◦ denote the set

{C ∈ |β| : Supp C ̸⊇ D,C|D = wP and C is integral}

regarded as an open subvariety of a projective space.
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Unobstructedness of MMI

Now let X be a smooth rational projective surface,
and D an anticanonical curve.

Theorem ([3])

MMIP
β (X,D) can be identified with an open subscheme of

the relative compactified Picard scheme over |OX(β, P )|◦◦.
MMIP

β (X,D) is an open and closed subscheme of
MMIβ(X,D).

MMIβ(X,D) and MMIP
β (X,D) are nonsingular

of dimension 2pa(β).

Thus, if C ∈ |OX(β, P )|◦◦ and F is a rank 1, torsion-free sheaf on C
invertible near P , the relative compactified Picard scheme
over |OX(β, P )|◦◦ is nonsingular at [F ].
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Multiplicity of an A1-curve

In particular, if C is nonsingular at P , the relative compactified
Picard scheme is nonsingular at any point over [C].

From the arguments of [FGS], this implies the following:

Theorem ([3])

Let C be an A1-curve on (X,D) which is nonsingular at P = C ∩D.

Then the natural map M0(C, [C]) → Mβ(X,D) is an isomorphism to
a 0-dimensional connected component.

Thus the contribution of C to the log GW invariant N P
β (X,D)

(and the log BPS number mP
β ) is equal to

l(C) = e(Pic
0
(C)).
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An ingredient of the proof: Deformation theory

C: integral curve on X with C|D = wP ,
F : rank 1, torsion-free on C, invertible at P .

Tangent space to MMIP
β (X,D) at [F ] is

Im(Ext1OX
(F, F (−D)) → Ext1OX

(F, F )).

Tangent space to MMIβ(X,D) at [F ] is

Im(Ext1OX
(F, F (−(w − 1)P )) → Ext1OX

(F, F )),

where
F (−(w − 1)P ) = Ker(F → (F |D)|(w−1)P ).

These spaces coincide.
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Compactification?

How can we compactify MMIβ(X,D)?

Use expansion of X:

Maulik-Pandharipande-Thomas, Curves in K3 surfaces and
modular forms

Li-Wu, Good degeneration of Quot-schemes and coherent
systems

Maulik-Ranganathan, Logarithmic Donaldson-Thomas theory

Logarithmic structure on a coherent sheaf?

Unobstructedness?
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