Topological SYZ fibrations with discriminant in codimension 2

Ilia Zharkov, Kansas State University
(Joint project with Helge Ruddat)

Kyoto, December 7, 2020.

Strominger-Yau-Zaslow conjecture (1996):
X is an n-dimensional Calabi-Yau manifold, and \bar{X} is its mirror. Then there are two special Lagrangian "dual" torus fibrations

Big question: What about the singularities?

Kontsevich-Soibelman (2000):
X_{t} is a maximally degenerate CY family. Pick a Kähler class and let w_{t} be the CY metric in it.
$\left(X_{t}, w_{t} /(\operatorname{diam} X)^{2}\right) \rightarrow(B, g)$ is the Gromov-Hausdorff limit.
Conjecture:
$B_{0}:=B\left(\cong S^{n}\right) \backslash D$ is a \mathbb{Z}-affine manifold, i.e $T B_{0}$ has a flat connection with holonomy in $\mathrm{SL}_{n}(\mathbb{Z})$. D has codimension ≥ 2. g is a Monge-Ampère metric: in affine coordinates $g_{i j}=\frac{\partial^{2} K}{\partial y_{i} \partial y_{j}}$ with $\operatorname{det} g_{i j}=1$.
$\Lambda \subset T B_{0}, \check{\wedge} \subset T^{*} B_{0}$, integral lattices of flat sections.
The mirror pair: X, \bar{X} compactifications of $T B_{0} / \wedge, T^{*} B_{0} \bar{\Lambda}$.

Gross-Siebert: starting with (B, D) reconstruct X, \breve{X}.

Input:

- B is a PL manifold and a regular CW-complex.
- $D \subset \operatorname{bsd} B \backslash$ (stars of vertices \cup facets of B) a codimension 2 subcomplex in bsd B.
- Monodromy assumptions (semi-simple polytopal singularities) at $y \in B_{0}$ a point near a face σ of D.
$L_{\sigma} \subset \Lambda_{y}, \breve{L}_{\sigma} \subset \check{\Lambda}_{y}$ are invariant sublattices.

1. $\Delta_{1}, \ldots, \Delta_{r}$ convex lattice polytopes, they spans $L_{i}:=\left\langle\Delta_{i}\right\rangle$ linearly independent sublatiices in L_{σ}.
$\triangle_{1}, \ldots, \triangle_{r}$ convex lattice polytopes, they spans $\check{L}_{i}:=\left\langle\check{\Delta}_{i}\right\rangle$ linearly independent sublattices in \breve{L}_{σ} orthogonal to all L_{i} 's. Compatible: $\tau \prec \sigma, r_{\sigma} \leq r_{\tau}$, and under $L_{\sigma} \hookrightarrow L_{\tau}, \breve{L}_{\sigma} \hookrightarrow \breve{L}_{\tau}$ $\Delta_{i}^{\sigma} \preceq \Delta_{i}^{\tau}$ and $\breve{\Delta}_{i}^{\sigma} \preceq \triangle_{i}^{\tau}$.
2. Y_{i} is the codimension one skeleton of the normal fan to Δ_{i} (AKA tropical hyperplane). Then D locally is homeomorphic to the union of $\mathbb{R}^{s} \times Y_{i} \times \widetilde{Y}_{i} \times \mathbb{R}^{\ell-k_{i}+\widetilde{\ell}-\breve{k}_{i}}$.
3. The local monodromy along the loop around a facet $(e, f) \subset$ D, e edge in \triangle_{i} and f edge in \triangle_{i}, some i is given by id $+e \otimes f$.

Local monodromy in a suitable basis (up to finite index):

$$
\left(\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & \text { 固 } & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & \cdots & \cdots & \vdots \\
\vdots & 0 & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & 1 & 0 & \cdots & 0 & \text { 娄 } \\
0 & \cdots & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & 1 & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & \vdots & \cdots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

A non-polytopal semi-simple affine structure:

Another non-polytopal semi-simple affine structure:

Theorem: Under the semi-simple simplicial assumptions both

$$
X_{0}=T B_{0} / \wedge, \quad \check{X}_{0}=T^{*} B_{0} / \Lambda
$$

compactify to topological orbifolds $X, \bar{X} \rightarrow B$ which are halfdimensional fibrations. X is a manifold if all simplices Δ 's are unimodular, and similar for \bar{X}.

Bonus: explicit description of the singular fibers.

2-dimensional case with focus-focus singularities $\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$: easy. Gross-Wilson (2000) did the CY metric version for K3.

Gross (2001): the quintic threefold.

Gross-Siebert program:

Let (B, \mathcal{P}, ϕ) be a \mathbb{Z}-affine manifold with semi-simple (elementary simplices) singularities. Then one can construct an algebraic scheme X_{c} with log-structure on it.

Sometimes (?) there is an analytic family \mathcal{X} with X_{c} as a central fiber.

Theorem: The Kato-Nakayama space $X_{K N}$ is homeomorphic to \bar{X}.

The main problem: the natural map $X_{K N} \rightarrow B$ has discriminant in codimension 1.

The local model near $\sigma \subset D$:

Each Δ_{i} defines $f_{i}=\sum_{v \in \text { vert } \Delta_{i}} c_{v} z^{v}:\left(\mathbb{C}^{*}\right)^{l_{i}} \rightarrow \mathbb{C}$.
Σ is the cone over the convex hull $\operatorname{Conv}\left\{\left(\triangle_{i}, e_{i}\right)\right\} \subset \breve{L}_{\mathbb{R}} \oplus \mathbb{R}^{r}$. Σ^{\vee} the dual cone and $U_{\Sigma}=\operatorname{Spec} \mathbb{C}\left[\Sigma_{\mathbb{Z}}^{\vee}\right]$ the associated affine toric variety. $w_{i}\left(\breve{\triangle}_{i}\right)=1, \quad w_{i}\left(\triangle_{j}\right)=0, j \neq i$, define the map $U_{\Sigma} \rightarrow \mathbb{C}^{r}$.

3D example: Δ is the standard 2 -simplex, $\triangle=[0,1]$. $\left\{x y=1+w_{1}+w_{2}\right\} \subset \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{2}$

Hopf-type S^{1}-fibration over $\mathbb{R} \times\left(\mathbb{C}^{*}\right)^{2}$.
The fibers collapse over the surface $\{0\} \times\left\{1+w_{1}+w_{2}=0\right\}$.

Want: A \mathbb{T}^{n}-fibration $\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{R}^{n}$ such that the image of $P:=$ $\left\{1+w_{1}+\cdots+w_{n}=0\right\}$ is the tropical hyperplane $Y \subset \mathbb{R}^{n}$.

Instead we will introduce two new tropical objects, both fiber over Y :

- Phase tropical pair-of-pants $\mathcal{T P}$.
- Ober-tropical pair-of-pants $\mathcal{O P}$.

Theorem: All three subspaces $P, \mathcal{T P}, \mathcal{O P} \subset\left(\mathbb{C}^{*}\right)^{n}$ are (ambient) isotopic.

The ($n-1$)-dimensional pair-of-pants P is the complement of $n+1$ generic hyperplanes in \mathbb{P}^{n-1}.
In homogeneous coordinates: $z_{0}+z_{1}+\cdots+z_{n}=0$ in $\left(\mathbb{C}^{*}\right)^{n+1} / \mathbb{C}^{*}$.
The amoeba \mathcal{A} is the image of the Log map. It's convenient to compactify \mathbb{R}^{n} to Δ, then $\mathcal{A} \subset \Delta$ is the hypersimplex.
The coamoeba is the image of the argument map: $\mathcal{C}:=\overline{\operatorname{Arg}(P)} \subset$ \mathbb{T}^{n}.

Y is the spine (the skeleton) of the amoeba \mathcal{A}.
The cones in Y are labeled by subsets $J \subseteq\{0,1, \ldots, n\},|J| \geq 2$.
Partial coamoebas: $\mathcal{C}_{J}:=\overline{\operatorname{Arg}\left(\left\{\sum_{j \in J} z_{j}=0\right\}\right)}$.
The phase tropical pair-of pants: $\mathcal{T P}:=\bigcup_{J} Y_{J} \times \mathcal{C}_{J} \subset \Delta \times \mathbb{T}^{n}$.

The coamoeba for $n=3$: the zonotope (its complement) and the permutahedron (its skeleton S)

The faces of S are labeled by cyclically ordered partitions $\sigma=\left\langle I_{1}, \ldots, I_{k}\right\rangle$ of $\{0,1, \ldots, n\}$.

The ober-tropical pair-of pants:
$\mathcal{T P}:=\cup_{J} Y_{J} \times S_{\sigma}$ such that J is not in a single part of σ.

The $n=2$ ober-tropical pair-of-pants:

Symplectic geometer's Dream:
Fibers over generic points of S are homeomorphic to \mathbb{R}^{n-1}. Fibers over generic points of Y are homeomorphic to \mathbb{T}^{n-1}.

Proof of the Isotopy Theorem:

Break \mathbb{T}^{n} into n ! simplices by ordering the arguments of z_{i}.

Each ($\Delta_{J} \times \mathbb{T}_{\sigma}^{n}, \mathcal{P}_{J, \sigma}$) is the standard ball pair.

Equal rights: Both amoeba and coamoeba are hypersimplices in Δ and they have very similar skeleta.

Example: the three balls in $\Delta^{2} \times \Delta^{2}$:

Advantages and disadvantages: phase vs. ober

- Fading off the wiggling of red circles along $Y \subset \Delta$ for the ober-tropical model.

- No wiggling in the phase tropical model.

Singular fibers:

- Ober-tropical: fibers are equi-dimensional.
- Phase tropical: fibers are not equi-dimensional.

Example: The most degenerate fiber for the local model $x y=$ $1+w_{1}+w_{2}$ is the S^{1} fibration over \mathbb{T}^{2} where the circle collapses over the coamoeba (in the phase tropical case) or over its skeleton (in the ober-tropical case)

An application to mirror symmetry: lifting tropical cycles C in B to holomorphic cycles in X and to Langrangians in \bar{X}.

Matessi [2018], Mikhalkin [2019], Abouzaid-Ganatra-Iritani-Sheridan [2018], Ruddat-Siebert [2019], Wang [2020].

Two main issues:
(1) local lifts over the smooth part $B_{0} \subset B$ (no problem in codimension ≤ 1): geometry of C;
(2) analyzing the behavior at the discriminant (no problem in dimension ≤ 1): geometry of X, \bar{X}.
$-\operatorname{dim} C=0$ or n is easy.

- C is (locally) a hyperplane.

Matessi's cocoamoeba and its skeleton: over the vertex and a ray in tropical hyperplane in \mathbb{R}^{3}.

Question: what happens at the discriminant?
$-C$ is a curve. 3 -valent vertices $=$ hyperplane case.
Lifting the 4 -valent vertex (the 4-punctured \mathbb{P}^{1}):

" Holomorphic" side is ok.
But "Lagrangian" is not a manifold : Link at each vertex is $\mathbb{R P}^{2}$! Mikhalkin: The topology is different for each of the 3 resolutions.

Question: Is it possible to lift the 2 -skeleton of the tropical hyperplane in \mathbb{R}^{4} to a manifold in either X or \bar{X} ? Holomorphic lift $=$ the complement of 5 generic lines in \mathbb{P}^{2}. Lagrangian $=$?

THANK YOU!

