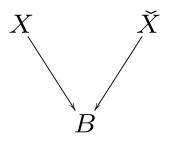
Topological SYZ fibrations with discriminant in codimension 2

Ilia Zharkov, Kansas State University (Joint project with Helge Ruddat)

Kyoto, December 7, 2020.

Strominger-Yau-Zaslow conjecture (1996):

X is an *n*-dimensional Calabi-Yau manifold, and \check{X} is its mirror. Then there are two special Lagrangian "dual" torus fibrations



Big question: What about the singularities?

Kontsevich-Soibelman (2000):

 X_t is a maximally degenerate CY family. Pick a Kähler class and let w_t be the CY metric in it.

 $(X_t, w_t/(\text{diam X})^2) \rightarrow (B, g)$ is the Gromov-Hausdorff limit.

Conjecture:

 $B_0 := B(\cong S^n) \setminus D$ is a \mathbb{Z} -affine manifold, i.e TB_0 has a flat connection with holonomy in $SL_n(\mathbb{Z})$. D has codimension ≥ 2 . g is a Monge-Ampère metric: in affine coordinates $g_{ij} = \frac{\partial^2 K}{\partial y_i \partial y_j}$ with det $g_{ij} = 1$.

 $\Lambda \subset TB_0$, $\check{\Lambda} \subset T^*B_0$, integral lattices of flat sections. The mirror pair: X, \check{X} compactifications of $TB_0/\Lambda, T^*B_0\check{\Lambda}$. Gross-Siebert: starting with (B, D) reconstruct X, \check{X} .

Input:

- *B* is a PL manifold and a regular CW-complex.
- D ⊂ bsd B \ (stars of vertices ∪ facets of B) a codimension
 2 subcomplex in bsd B.
- Monodromy assumptions (semi-simple polytopal singularities) at y ∈ B₀ a point near a face σ of D.

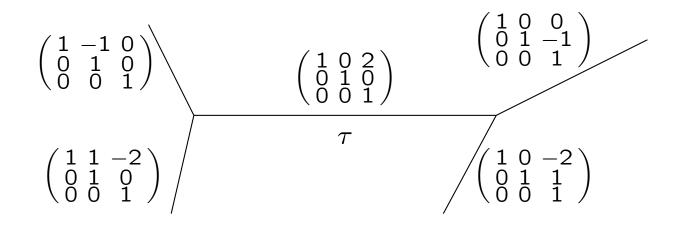
 $L_{\sigma} \subset \Lambda_y, \check{L}_{\sigma} \subset \check{\Lambda}_y$ are invariant sublattices.

- 1. $\Delta_1, \ldots, \Delta_r$ convex lattice polytopes, they spans $L_i := \langle \Delta_i \rangle$ linearly independent sublatilices in L_{σ} . $\check{\Delta}_1, \ldots, \check{\Delta}_r$ convex lattice polytopes, they spans $\check{L}_i := \langle \check{\Delta}_i \rangle$ linearly independent sublattices in \check{L}_{σ} orthogonal to all L_i 's. Compatible: $\tau \prec \sigma, r_{\sigma} \leq r_{\tau}$, and under $L_{\sigma} \hookrightarrow L_{\tau}, \check{L}_{\sigma} \hookrightarrow \check{L}_{\tau}$ $\Delta_i^{\sigma} \preceq \Delta_i^{\tau}$ and $\check{\Delta}_i^{\sigma} \preceq \check{\Delta}_i^{\tau}$.
- 2. Y_i is the codimension one skeleton of the normal fan to Δ_i (AKA tropical hyperplane). Then *D* locally is homeomorphic to the union of $\mathbb{R}^s \times Y_i \times \check{Y}_i \times \mathbb{R}^{\ell-k_i+\check{\ell}-\check{k}_i}$.
- 3. The local monodromy along the loop around a facet $(e, f) \subset D$, e edge in Δ_i and f edge in $\check{\Delta}_i$, some i is given by id $+e \otimes f$.

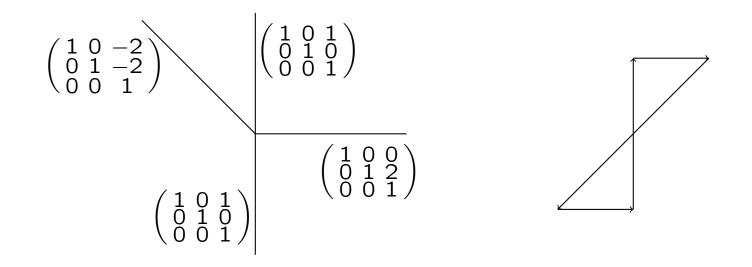
Local monodromy in a suitable basis (up to finite index):

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & * & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & 1 & 0 & \cdots & 0 & * \\ 0 & \cdots & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & 0 & 1 & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

A non-polytopal semi-simple affine structure:



Another non-polytopal semi-simple affine structure:



Theorem: Under the semi-simple simplicial assumptions both

$$X_0 = TB_0/\Lambda, \quad \check{X}_0 = T^*B_0/\check{\Lambda}$$

compactify to topological orbifolds $X, \check{X} \to B$ which are halfdimensional fibrations. X is a manifold if all simplices Δ 's are unimodular, and similar for \check{X} .

Bonus: explicit description of the singular fibers.

2-dimensional case with focus-focus singularities $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$: easy. Gross-Wilson (2000) did the CY metric version for K3.

Gross (2001): the quintic threefold.

Gross-Siebert program:

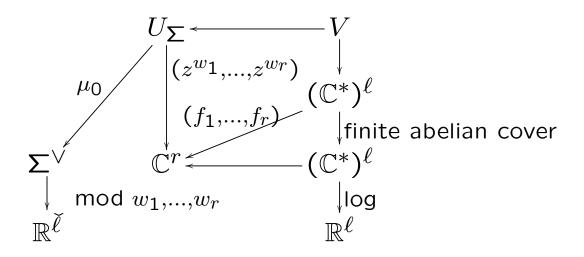
Let (B, \mathcal{P}, ϕ) be a \mathbb{Z} -affine manifold with semi-simple (elementary simplices) singularities. Then one can construct an algebraic scheme X_c with log-structure on it.

Sometimes (?) there is an analytic family \mathcal{X} with X_c as a central fiber.

Theorem: The Kato-Nakayama space X_{KN} is homeomorphic to \check{X} .

The main problem: the natural map $X_{KN} \rightarrow B$ has discriminant in codimension 1.

The local model near $\sigma \subset D$:

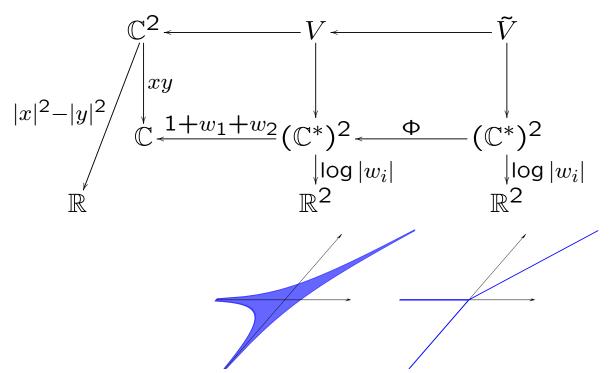


Each Δ_i defines $f_i = \sum_{v \in \text{vert } \Delta_i} c_v z^v : (\mathbb{C}^*)^{l_i} \to \mathbb{C}$.

 Σ is the cone over the convex hull $\text{Conv}\{(\check{\Delta}_i, e_i)\} \subset \check{L}_{\mathbb{R}} \oplus \mathbb{R}^r$. Σ^{\vee} the dual cone and $U_{\Sigma} = \text{Spec} \mathbb{C}[\Sigma_{\mathbb{Z}}^{\vee}]$ the associated affine toric variety.

 $w_i(\check{\Delta}_i) = 1, \quad w_i(\check{\Delta}_j) = 0, \ j \neq i, \text{ define the map } U_{\Sigma} \to \mathbb{C}^r.$

3D example: Δ is the standard 2-simplex, $\check{\Delta} = [0, 1]$. $\{xy = 1 + w_1 + w_2\} \subset \mathbb{C}^2 \times (\mathbb{C}^*)^2$



Hopf-type S^1 -fibration over $\mathbb{R} \times (\mathbb{C}^*)^2$. The fibers collapse over the surface $\{0\} \times \{1 + w_1 + w_2 = 0\}$. Want: A \mathbb{T}^n -fibration $(\mathbb{C}^*)^n \to \mathbb{R}^n$ such that the image of $P := \{1 + w_1 + \cdots + w_n = 0\}$ is the tropical hyperplane $Y \subset \mathbb{R}^n$.

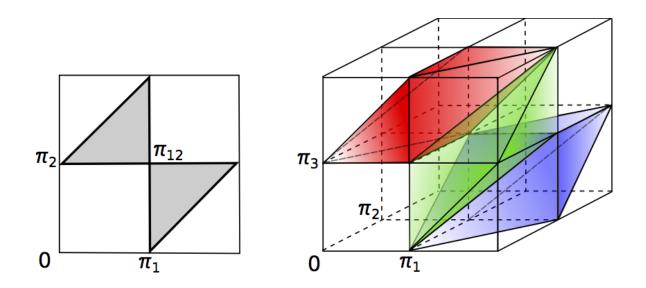
Instead we will introduce two new tropical objects, both fiber over Y:

- Phase tropical pair-of-pants \mathcal{TP} .
- Ober-tropical pair-of-pants \mathcal{OP} .

Theorem: All three subspaces $P, TP, OP \subset (\mathbb{C}^*)^n$ are (ambient) isotopic.

The (n-1)-dimensional pair-of-pants P is the complement of n+1 generic hyperplanes in \mathbb{P}^{n-1} . In homogeneous coordinates: $z_0+z_1+\cdots+z_n=0$ in $(\mathbb{C}^*)^{n+1}/\mathbb{C}^*$.

The amoeba \mathcal{A} is the image of the Log map. It's convenient to compactify \mathbb{R}^n to Δ , then $\mathcal{A} \subset \Delta$ is the hypersimplex. The coamoeba is the image of the argument map: $\mathcal{C} := \overline{\operatorname{Arg}(P)} \subset \mathbb{T}^n$.

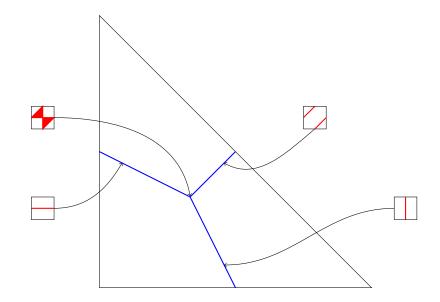


Y is the spine (the skeleton) of the amoeba \mathcal{A} .

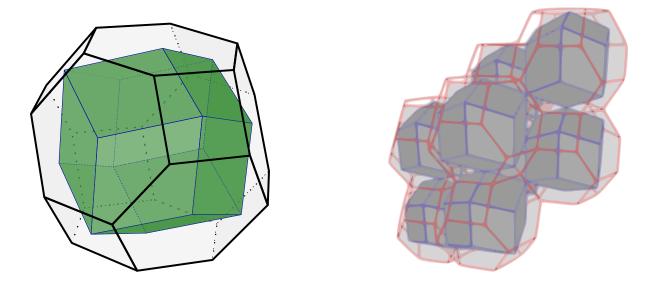
The cones in Y are labeled by subsets $J \subseteq \{0, 1, ..., n\}$, $|J| \ge 2$.

Partial coamoebas: $C_J := \overline{\operatorname{Arg}(\{\sum_{j \in J} z_j = 0\})}$.

The phase tropical pair-of pants: $TP := \bigcup_J Y_J \times C_J \subset \Delta \times \mathbb{T}^n$.

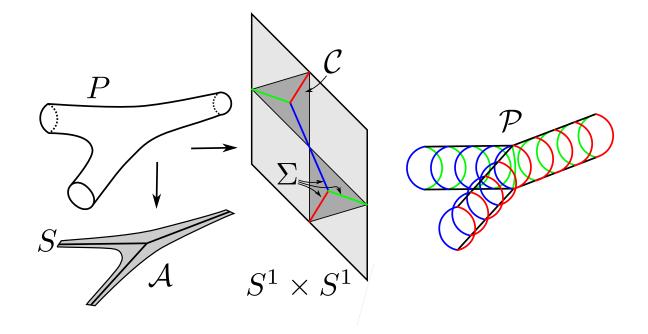


The coamoeba for n = 3: the zonotope (its complement) and the permutahedron (its skeleton S)



The faces of *S* are labeled by cyclically ordered partitions $\sigma = \langle I_1, \ldots, I_k \rangle$ of $\{0, 1, \ldots, n\}$.

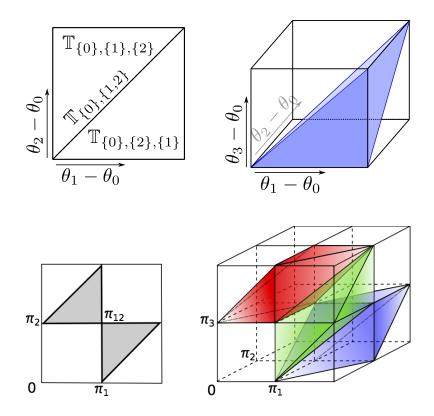
The ober-tropical pair-of pants: $\mathcal{TP} := \bigcup_J Y_J \times S_{\sigma}$ such that J is not in a single part of σ . The n = 2 ober-tropical pair-of-pants:



Symplectic geometer's Dream:

Fibers over generic points of S are homeomorphic to \mathbb{R}^{n-1} . Fibers over generic points of Y are homeomorphic to \mathbb{T}^{n-1} . Proof of the Isotopy Theorem:

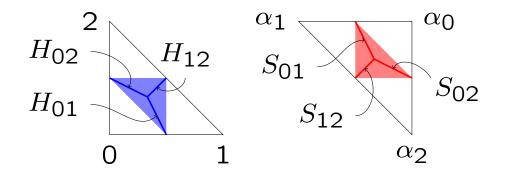
Break \mathbb{T}^n into n! simplices by ordering the arguments of z_i .



Each $(\Delta_J \times \mathbb{T}^n_{\sigma}, \mathcal{P}_{J,\sigma})$ is the standard ball pair.

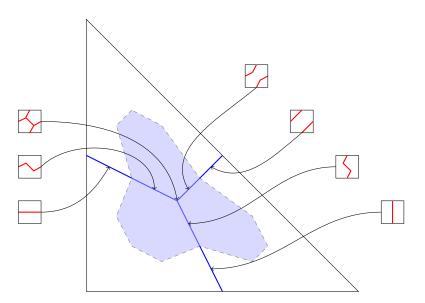
Equal rights: Both amoeba and coamoeba are hypersimplices in Δ and they have very similar skeleta.

Example: the three balls in $\Delta^2 \times \Delta^2$:



Advantages and disadvantages: phase vs. ober

– Fading off the wiggling of red circles along $Y \subset \Delta$ for the ober-tropical model.



- No wiggling in the phase tropical model.

Singular fibers:

- Ober-tropical: fibers are equi-dimensional.
- Phase tropical: fibers are not equi-dimensional.

Example: The most degenerate fiber for the local model $xy = 1 + w_1 + w_2$ is the S^1 fibration over \mathbb{T}^2 where the circle collapses over the coamoeba (in the phase tropical case) or over its skeleton (in the ober-tropical case)

An application to mirror symmetry: lifting tropical cycles C in B to holomorphic cycles in X and to Langrangians in \check{X} .

Matessi [2018], Mikhalkin [2019], Abouzaid-Ganatra-Iritani-Sheridan [2018], Ruddat-Siebert [2019], Wang [2020].

Two main issues:

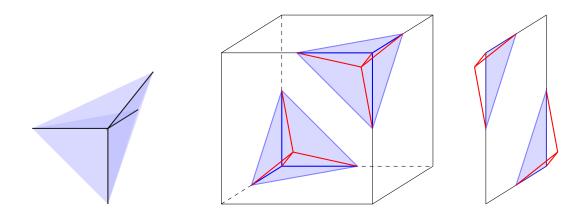
(1) local lifts over the smooth part $B_0 \subset B$ (no problem in codimension ≤ 1): geometry of C;

(2) analyzing the behavior at the discriminant (no problem in dimension ≤ 1): geometry of X, \check{X} .

 $-\dim C = 0$ or n is easy.

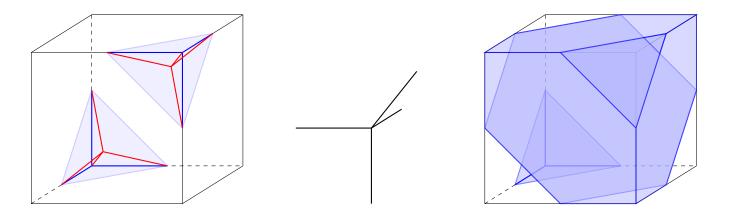
-C is (locally) a hyperplane.

Matessi's cocoamoeba and its skeleton: over the vertex and a ray in tropical hyperplane in \mathbb{R}^3 .



Question: what happens at the discriminant?

-C is a curve. 3-valent vertices = hyperplane case. Lifting the 4-valent vertex (the 4-punctured \mathbb{P}^1):



"Holomorphic" side is ok.

But "Lagrangian" is not a manifold : Link at each vertex is \mathbb{RP}^2 ! Mikhalkin: The topology is different for each of the 3 resolutions.

Question: Is it possible to lift the 2 -skeleton of the tropical hyperplane in \mathbb{R}^4 to a manifold in either X or \check{X} ? Holomorphic lift = the complement of 5 generic lines in \mathbb{P}^2 . Lagrangian = ?

THANK YOU!