Gamma integral structure for an invertible polynomial of chain type

Takumi Otani

Osaka university

December 11, 2020
joint work with Atsushi Takahashi.

Review : Gamma integral structure for \mathbb{P}^{n}

\mathbb{P}^{n} : n-dimensional projective space
\downarrow the Gromov-Witten theory of \mathbb{P}^{n}
${ }^{\exists}$ Frobenius structure ($=$ the quantum cohomology of \mathbb{P}^{n}) on the complex manifold

$$
M_{\mathbb{P}^{n}}:=\bigoplus_{q \in \mathbb{Z}} H^{q, q}\left(\mathbb{P}^{n}\right)
$$

The Gamma integral structure for an algebraic variety was introduced by Iritani and Katzarkov-Kontsevich-Pantev.

Define a morphism $\mathrm{ch}_{\Gamma}: K_{0}\left(\mathcal{D}^{b}\left(\mathbb{P}^{n}\right)\right) \longrightarrow H^{*}\left(\mathbb{P}^{n}\right)$ by

$$
\operatorname{ch}_{\Gamma}([E]):=\widehat{\Gamma}_{\mathbb{P}^{n}} \operatorname{Ch}(E), \quad E \in \mathcal{D}^{b}\left(\mathbb{P}^{n}\right)
$$

- $\widehat{\Gamma}_{\mathbb{P}^{n}}:=\prod_{i=1}^{n} \Gamma\left(1+\delta_{i}\right):$ the Gamma class of \mathbb{P}^{n},
$\left(\delta_{1}, \ldots, \delta_{n}\right.$: the Chern roots of the tangent bundle of $\left.\mathbb{P}^{n}\right)$.
- $\operatorname{Ch}(E):=\sum_{i=1}^{\text {rank } E} \mathbf{e}\left[\delta_{i}^{E}\right]:($ modefied $)$ Chern roots of $E \in \mathcal{D}^{b}\left(\mathbb{P}^{n}\right)$,
$\left(\delta_{1}^{E}, \ldots, \delta_{\operatorname{rank} E}^{E}\right.$: the Chern roots of E).
Here $\mathbf{e}[-]=\exp (2 \pi \sqrt{-1} \cdot-)$.

Definition 1.1 (Iritani).

The Gamma integral structure of the total Hodge cohomology space $H^{*}\left(\mathbb{P}^{n}\right)$ is defined to be a K-framing given by

$$
\frac{1}{(2 \pi \sqrt{-1})^{n}} \operatorname{ch}_{\Gamma}\left(K_{0}\left(\mathcal{D}^{b}\left(\mathbb{P}^{n}\right)\right)\right) .
$$

$(\mathcal{O}(0), \mathcal{O}(1), \ldots, \mathcal{O}(n))$: Beilinson's full exceptional collection on $\mathcal{D}^{b}\left(\mathbb{P}^{n}\right)$.
$\left\{\mathbf{b}_{i}\right\}_{i=0}^{n}$: homogeneous basis of $H^{*}\left(\mathbb{P}^{n}\right)$ such that $\mathbf{b}_{i} \in H^{i, i}(X)$.

- \mathbf{S} : matrix representation of the automorphism on $K_{0}\left(\mathcal{D}^{b}(X)\right)$ induced by the Serre functor $\mathcal{S}:=-\otimes \omega_{\mathbb{P}^{n}}[n]$ w.r.t. $\{[\mathcal{O}(i)]\}$.
- χ : the Euler matrix w.r.t. $\{\mathcal{O}(i)\}$.
- $\operatorname{ch}_{\Gamma}:=\left(\operatorname{ch}_{\Gamma, 1}, \ldots, \operatorname{ch}_{\Gamma, n+1}\right)$ is the matrix such that i-th column $\operatorname{ch}_{\Gamma, i}$ is given by

$$
\operatorname{ch}_{\Gamma, i}:=\operatorname{ch}_{\Gamma}(\mathcal{O}(i)) \in H^{*}(X)
$$

- \widetilde{Q} : the grading (diagonal) matrix on $H^{*}(X)$. That is,

$$
\widetilde{Q}_{i i}:=\left(i-\frac{n}{2}\right) .
$$

- η : the matrix representation of the Poincaré pairing w.r.t. $\left\{\mathbf{b}_{i}\right\}$.

Proposition 1.2 (Iritani).

The following equality holds:

$$
\begin{gathered}
\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}\right)^{-1} \mathbf{e}[\widetilde{Q}]\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}\right)=\mathbf{S} \\
\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}\right)^{T} \mathbf{e}\left[\frac{1}{2} \widetilde{Q}\right] \eta\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}\right)=\chi
\end{gathered}
$$

$\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}=$ the central connection matrix of the Frobenius manifold $\chi \quad=\quad$ the Stokes matrix of the Frobenius manifold

The mirror object of \mathbb{P}^{n} is the Landau-Ginzburg model with a primitive form

$$
\text { - } f_{q}:\left(\mathbb{C}^{*}\right)^{n} \longrightarrow \mathbb{C}, \quad f_{q}\left(x_{1}, \ldots, x_{n}\right):=x_{1}+\cdots+x_{n}+\frac{q}{x_{1} \ldots x_{n}}
$$

$$
\zeta=\left[\frac{d x_{1} \wedge \cdots \wedge d x_{n}}{x_{1} \ldots x_{n}}\right]
$$

for $q \in \mathbb{C}^{*}$.
In the mirror side, there is a "natural" integral structure on $\Omega_{f_{q}} \cong H^{n}\left(\left(\mathbb{C}^{*}\right)^{n}, \operatorname{Re}\left(f_{q}\right) \gg 0 ; \mathbb{C}\right)$ induced by $H_{n}\left(\left(\mathbb{C}^{*}\right)^{n}, \operatorname{Re}\left(f_{q}\right) \gg 0 ; \mathbb{Z}\right)$.

Theorem 1.3 (Galkin-Golyshev-Iritani, Iritani).

The Gamma integral structure on $H^{*}(X)$ is isomorphic to the natural one on $\Omega_{f_{q}}$.

It is known by Coates-Corti-Iritani-Tseng and Iritani that for a weak Fano toric orbifold X the same statement of Theorem 1.3 is true.

Invertible polynomial

$f \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$: weighted homogeneous polynomial.
$\Leftrightarrow{ }^{\exists} w_{1}, \ldots, w_{n}, d \in \mathbb{Z}_{\geq 1}$ such that

$$
f\left(\lambda^{w_{1}} z_{1}, \ldots, \lambda^{w_{n}} z_{n}\right)=\lambda^{d} f\left(z_{1}, \ldots, z_{n}\right), \quad \lambda \in \mathbb{C}^{*} .
$$

Definition 2.1.

A weighted homogeneous polynomial $f=f(\mathbf{z})$ is invertible if

- f is non-degenerate. That is, f has at most an isolated critical point at the origin $\mathbf{z}=0$.
- f is of the form

$$
f\left(z_{1}, \ldots, z_{n}\right)=\sum_{i=1}^{n} \prod_{j=1}^{n} z_{j}^{\mathbb{E}_{i j}}
$$

for $\mathbb{E}_{i j} \in \mathbb{Z}_{\geq 0}, i, j=1, \ldots, n$.

- The matrix $\mathbb{E}:=\left(\mathbb{E}_{i j}\right)$ of size n is invertible over \mathbb{Q}.
- Jacobian algebra: $\operatorname{Jac}(f):=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] /\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)$.
- Milnor number: $\mu_{f}:=\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f)$.
- \mathbb{C}-vector space $\Omega_{f}: \quad \Omega_{f}:=\Omega^{n}\left(\mathbb{C}^{n}\right) / d f \wedge \Omega^{n-1}\left(\mathbb{C}^{n}\right)$. By choosing a nowhere vanishing n-form $d \mathbf{z}:=d z_{1} \wedge \cdots \wedge d z_{n}$ we have the following isomorphism

$$
\operatorname{Jac}(f) \xrightarrow{\cong} \Omega_{f}, \quad[\phi(\mathbf{z})] \mapsto[\phi(\mathbf{z}) d \mathbf{z}] .
$$

Ω_{f} is an analogue of the total Hodge cohomology for an algenraic variety.

- non-degenerate symmetric \mathbb{C}-bilinear form $J_{f}: \Omega_{f} \times \Omega_{f} \longrightarrow \mathbb{C}$:

$$
J_{f}\left(\left[\phi_{1}(\mathbf{z}) d \mathbf{z}\right],\left[\phi_{2}(\mathbf{z}) d \mathbf{z}\right]\right):=\operatorname{Res}_{\mathbb{C}^{n}}\left[\begin{array}{c}
\phi_{1}(\mathbf{z}) \phi_{2}(\mathbf{z}) d z_{1} \wedge \cdots \wedge d z_{n} \\
\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}
\end{array}\right]
$$

Let $f_{1} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ and $f_{2} \in \mathbb{C}\left[z_{1}^{\prime}, \ldots, z_{m}^{\prime}\right]$ be invertible polynomials.
The Thom-Sebastiani sum $f_{1} \oplus f_{2}$ is defined by

$$
f_{1} \oplus f_{2}:=f_{1} \otimes 1+1 \otimes f_{2} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \otimes_{\mathbb{C}} \mathbb{C}\left[z_{1}^{\prime}, \ldots, z_{m}^{\prime}\right]
$$

Proposition 2.2 (Kreuzer-Skarke).

Any invertible polynomial f can be written as a Thom-Sebastiani sum $f=f_{1} \oplus \cdots \oplus f_{p}$ of invertible ones $f_{\nu}, \nu=1, \ldots, p$ of the following types:

- (chain type) $z_{1}^{a_{1}} z_{2}+z_{2}^{a_{2}} z_{3}+\cdots+z_{m-1}^{a_{m-1}} z_{m}+z_{m}^{a_{m}}, \quad m \geq 1$;
- (loop type) $z_{1}^{a_{1}} z_{2}+z_{2}^{a_{2}} z_{3}+\cdots+z_{m-1}^{a_{m-1}} z_{m}+z_{m}^{a_{m}} z_{1}, \quad m \geq 2$.

We have

- $\operatorname{Jac}\left(f_{1} \oplus f_{2}\right) \cong \operatorname{Jac}\left(f_{1}\right) \otimes_{\mathbb{C}} \operatorname{Jac}\left(f_{2}\right)$,
- $\Omega_{f_{1} \oplus f_{2}} \cong \Omega_{f_{1}} \otimes \mathbb{C} \Omega_{f_{2}}$,
- $\mu_{f_{1} \oplus f_{2}}=\mu_{f_{1}} \cdot \mu_{f_{2}}, \ldots$

Invertible polynomial with Group

Definition 2.3.

The group of maximal diagonal symmetries G_{f} of f is defined as

$$
G_{f}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n} \mid f\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right)=f\left(z_{1}, \ldots, z_{n}\right)\right\}
$$

- Each element $g \in G_{f}$ has a unique expression of the form

$$
g=\left(\mathbf{e}\left[\alpha_{1}\right], \ldots, \mathbf{e}\left[\alpha_{n}\right]\right), \quad 0 \leq \alpha_{i}<1
$$

- The age of $g \in G_{f}$ is defined to be the rational number

$$
\operatorname{age}(g):=\sum_{i=1}^{n} \alpha_{i} .
$$

For each $g \in G_{f}$, set

- $\operatorname{Fix}(g):=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid g \cdot \mathbf{z}=\mathbf{z}\right\}$,
- $f^{g}:=\left.f\right|_{\operatorname{Fix}(g)}: \operatorname{Fix}(g) \longrightarrow \mathbb{C}$,
- $n_{g}:=\operatorname{dim}_{\mathbb{C}} \operatorname{Fix}(g)$.

Definition 2.4.
Define a \mathbb{Q}-graded complex vector space $\Omega_{f, G_{f}}$ by

$$
\Omega_{f, G_{f}}:=\bigoplus_{g \in G_{f}} \Omega_{f, g}, \quad \Omega_{f, g}:=\left(\Omega_{f^{g}}\right)^{G_{f}}(-\operatorname{age}(g))
$$

For the pair $\left(f, G_{f}\right)$ a non-degenerate symmetric \mathbb{C}-bilinear form $J_{f, G_{f}}: \Omega_{f, G_{f}} \times \Omega_{f, G_{f}} \longrightarrow \mathbb{C}$ is defined.

Mirror symmetry for invertible polynomials

$f \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$: invertible polynomial.
$\tilde{f} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$: the Berglund-Hübsch transpose of the polynomial f,

$$
\widetilde{f}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} \prod_{j=1}^{n} x_{j}^{\mathbb{E}_{j i}}
$$

It is expected by Berglund-Hübsch that the polynomial \tilde{f} is a mirror dual object corresponding to the pair $\left(f, G_{f}\right)$.

Proposition 2.5 (Kreuzer).

There exists an isomorphism of \mathbb{Q}-graded \mathbb{C}-vector spaces

$$
\operatorname{mir}: \Omega_{\tilde{f}} \cong \Omega_{f, G_{f}}
$$

Invertible polynomial of chain type

From now on, we only consider invertible polynomials of chain type:

$$
f_{n}:=z_{1}^{a_{1}} z_{2}+\cdots+z_{n-1}^{a_{n-1}} z_{n}+z_{n}^{a_{n}}, \quad n \geq 1
$$

Then the Berglund-Hübsch transpose is given by

$$
\widetilde{f}_{n}:=x_{1}^{a_{1}}+x_{1} x_{2}^{a_{2}}+\cdots+x_{n-1} x_{n}^{a_{n}}
$$

For simplicity, we assume that $a_{i} \geq 2$ for all $i=1, \ldots, n$.

$$
\begin{aligned}
& f_{n}(\mathbf{z})=z_{1}^{a_{1}} z_{2}+z_{2}^{a_{2}} z_{3}+f_{n-2}\left(z_{3}, \ldots, z_{n}\right) \\
& \widetilde{f}_{n}(\mathbf{x})=\widetilde{f}_{n-2}\left(x_{1}, \ldots, x_{n-2}\right)+x_{n-2} x_{n-1}^{a_{n-1}}+x_{n-1} x_{n}^{a_{n}}
\end{aligned}
$$

Proposition 2.6 (Kreuzer).

Define sets B_{n}^{\prime}, B_{n} of monomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ inductively as follows:
(1) $(n=0) \quad B_{0}:=B_{0}^{\prime}=\{1\}$.
(2) $(n=1) \quad B_{1}:=B_{1}^{\prime}=\left\{x_{1}^{k_{1}} \mid 0 \leq k_{1} \leq a_{1}-2\right\}$.
(3) ($n \geq 2$) $\quad B_{n}^{\prime}:=\left\{x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}} \left\lvert\, \begin{array}{c}0 \leq k_{i} \leq a_{i}-1(i=1, \ldots, n-1) \\ 0 \leq k_{n} \leq a_{n}-2\end{array}\right.\right\}$, and

$$
B_{n}:=B_{n}^{\prime} \cup\left\{\phi^{(n-2)}\left(x_{1}, \ldots, x_{n-2}\right) x_{n}^{a_{n}-1} \mid \phi^{(n-2)}\left(x_{1}, \ldots, x_{n-2}\right) \in B_{n-2}\right\} .
$$

The set B_{n} defines a \mathbb{C}-basis of the Jacobian algebra $\operatorname{Jac}\left(\tilde{f}_{n}\right)$. Namely, we have $\operatorname{Jac}\left(\tilde{f}_{n}\right)=\left\langle\left[\phi^{(n)}(\mathbf{x})\right] \mid \phi^{(n)}(\mathbf{x}) \in B_{n}\right\rangle_{\mathbb{C}}$.

For $i=1, \ldots, n$, set

$$
\begin{gathered}
d_{i}:=a_{1} a_{2} \cdots a_{i}, \quad d_{0}:=1 \\
\widetilde{\mu}_{n}:=\sum_{i=0}^{n}(-1)^{n-i} d_{i}
\end{gathered}
$$

Corollary 2.7.

The Milnor number $\mu_{\widetilde{f}_{n}}=\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(\widetilde{f}_{n}\right)$ is given by $\widetilde{\mu}_{n}$.
Note that $\# B_{\tilde{f}_{n}}^{\prime}=d_{n}-d_{n-1}$.
$\left\{\zeta^{(n)}\right\}$: the basis of $\Omega_{\tilde{f}_{n}}$ induced by the basis $\left\{\phi^{(n)}\right\}$.

$$
\Omega_{\tilde{f}_{n}} \cong\left(\bigoplus_{\mathbf{k}} \mathbb{C} \cdot \zeta_{\mathbf{k}}^{(n)}\right) \bigoplus \Omega_{\tilde{f}_{n-2}}(-1), n \geq 2
$$

where $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$ runs the set
$\left\{0 \leq k_{i} \leq a_{i}-1(i=1, \ldots, n-1), 0 \leq k_{n} \leq a_{n}-2\right\}$ and $\zeta_{\mathbf{k}}^{(n)}$ is the element corresponding to $\left[x_{1}^{k_{1}}, \ldots, x_{n}^{k_{n}}\right]$.

Define two sets I_{n}^{\prime} and I_{n} as follows:
(1) $(n=0) \quad I_{0}:=I_{0}^{\prime}:=\{1\}$.
(2) $(n=1) \quad I_{1}:=I_{1}^{\prime}:=\left\{1,2, \ldots, a_{1}-1\right\}$.
(3) $(n \geq 2) \quad I_{n}^{\prime}:=\left\{\kappa \in\left\{1, \ldots, d_{n}\right\} \mid a_{n} \nmid \kappa\right\}$ and $I_{n}:=I_{n}^{\prime} \cup I_{n-2}$.

Remark: $\# I_{n}^{\prime}=d_{n}-d_{n-1}$ and $\# I_{n}=\widetilde{\mu}_{n}$.

For every $\kappa \in I_{n}^{\prime}$,

$$
g_{\kappa}:=\left(\mathbf{e}\left[\frac{1}{d_{n}} \kappa\right], \ldots, \mathbf{e}\left[(-1)^{i-1} \frac{d_{i-1}}{d_{n}} \kappa\right], \ldots, \mathbf{e}\left[(-1)^{n-1} \frac{d_{n-1}}{d_{n}} \kappa\right]\right) \in G_{f_{n}}
$$

has order d_{n} and $\operatorname{Fix}\left(g_{\kappa}\right)=\{0\}$.
Define rational numbers $\omega_{\kappa, i}^{(n)}, i=1, \ldots, n$ by

$$
\omega_{\kappa, i}^{(n)}:=(-1)^{i-1} \frac{d_{i-1}}{d_{n}} \cdot \kappa-\left\lfloor(-1)^{i-1} \frac{d_{i-1}}{d_{n}} \cdot \kappa\right\rfloor
$$

so that

$$
g_{\kappa}=\left(\mathbf{e}\left[\omega_{\kappa, 1}^{(n)}\right], \ldots, \mathbf{e}\left[\omega_{\kappa, n}^{(n)}\right]\right) .
$$

\exists natural inclusion map

$$
G_{f_{n-2}} \hookrightarrow G_{f_{n}}, \quad\left(\mathbf{e}\left[\alpha_{1}\right], \ldots, \mathbf{e}\left[\alpha_{n-2}\right]\right) \mapsto\left(\mathbf{e}\left[\alpha_{1}\right], \ldots, \mathbf{e}\left[\alpha_{n-2}\right], 1,1\right) .
$$

We construct a basis $\left\{\xi_{\kappa}^{(n)}\right\}_{\kappa \in I_{n}}$ of the \mathbb{C}-vector space $\Omega_{f_{n}, G_{f_{n}}}$ satisfying

$$
\Omega_{f_{n}, G_{f_{n}}} \cong\left(\bigoplus_{\kappa \in I_{n}^{\prime}} \mathbb{C} \cdot \xi_{\kappa}^{(n)}\right) \bigoplus \Omega_{f_{n-2}, G_{f_{n-2}}}(-1), \quad n \geq 2
$$

as follows:
(1) $(n=0) \quad$ Set $\xi_{1}^{(0)}:=1 \quad\left(1 \in I_{0}=\{1\}\right)$.
(2) $(n=1) \quad$ Set $\xi_{\kappa}^{(1)}:=\mathbf{1}_{g_{\kappa}}, \quad \kappa \in I_{1}$.
(3) $(n \geq 2)$ Set

$$
\xi_{\kappa}^{(n)}:= \begin{cases}\mathbf{1}_{g_{\kappa}} & \kappa \in I_{n}^{\prime} \\ {\left[\bar{\xi}_{\kappa}^{(n-2)} \wedge d\left(z_{n-1}^{a_{n-1}}\right) \wedge d z_{n}\right],} & \kappa \in I_{n-2}\end{cases}
$$

where $\bar{\xi}_{\kappa}^{(n-2)}$ does a differential form representing $\xi_{\kappa}^{(n-2)}$.

For every \mathbf{k} satisfying $\mathbf{x}^{\mathbf{k}}:=x_{1}^{k_{1}} \cdots x_{n}^{k_{n}} \in B_{\tilde{f}_{n}}^{\prime}$, one can define a rational number $\omega_{\mathbf{k}, i}^{(n)}$ for $i=1, \ldots, n$.

Proposition 2.8.

There exists a bijection of sets of $d_{n}-d_{n-1}$ elements

$$
\psi:\left\{\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \left\lvert\, \begin{array}{c}
0 \leq k_{i} \leq a_{i}-1(i=1, \ldots, n-1) \\
0 \leq k_{n} \leq a_{n}-2
\end{array}\right.\right\} \stackrel{\cong}{\cong} I_{n}^{\prime}
$$

such that $\omega_{\mathbf{k}, i}^{(n)}=\omega_{\psi(\mathbf{k}), i}^{(n)}$ for each $i=1, \ldots, n$.

Proposition 2.9.

There exists an isomorphism

$$
\operatorname{mir}:\left(\Omega_{\widetilde{f}_{n}}, J_{\tilde{f}_{n}}\right) \cong\left(\Omega_{f_{n}, G_{f_{n}}}, J_{f_{n}, G_{f_{n}}}\right), \quad \zeta_{\mathbf{k}}^{(n)} \mapsto \xi_{\kappa}^{(n)}
$$

Moreover, the matrix representation $\eta^{(n)}$ of $J_{f_{n}, G_{f_{n}}}$ with respect to the basis $\left\{\xi_{\kappa}^{(n)}\right\}_{\kappa \in I_{n}}$ is given by
(1) $(n=0) \quad \eta^{(0)}=(1)$,
(2) $(n=1)$

$$
\eta^{(1)}=\left(\frac{1}{a_{1}} \delta_{\kappa+\lambda, a_{1}}\right),
$$

(3) $(n \geq 2)$

$$
\eta^{(n)}=\left(\begin{array}{cc}
\frac{1}{d_{n}} \delta_{\kappa+\lambda, d_{n}} & 0 \\
0 & -\frac{1}{a_{n}} \eta^{(n-2)}
\end{array}\right)
$$

where κ and λ run the set I_{n}^{\prime}.

Define a diagonal matrix $\widetilde{Q}^{(n)}$ of size $\widetilde{\mu}_{n}$ inductively as follows:
(1) $(n=0) \quad$ Set $\widetilde{Q}^{(0)}:=(0)$,
(2) $(n=1)$ Set $\widetilde{Q}^{(1)}:=\left(\left(\omega_{\kappa, 1}^{(1)}-\frac{1}{2}\right) \delta_{\kappa \lambda}\right)$,
(3) $(n \geq 2)$ Set

$$
\widetilde{Q}^{(n)}:=\left(\begin{array}{cc}
\widetilde{P}^{(n)} & 0 \\
0 & \widetilde{Q}^{(n-2)}
\end{array}\right)
$$

where $\widetilde{P}^{(n)}=\left(\widetilde{P}_{\kappa \lambda}^{(n)}\right)$ is a matrix of size $\left(d_{n}-d_{n-1}\right)$ given by

$$
\widetilde{P}_{\kappa \lambda}^{(n)}:=\left(\sum_{l=1}^{n}\left(\omega_{\kappa, l}^{(n)}-\frac{1}{2}\right)\right) \delta_{\kappa \lambda}, \quad \kappa, \lambda \in I_{n}^{\prime}
$$

Remark: The matrix $\widetilde{Q}^{(n)}$ corresponds to the exponents of \widetilde{f}_{n} shifted by $-\frac{n}{2}$.

Proposition 2.10.

For each $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$ such that $\mathbf{x}^{\mathbf{k}} \in B_{n}^{\prime}$, we have

$$
\int_{\left(\mathbb{R}_{\geq 0}\right)^{n}} e^{-\tilde{f}_{n}(\mathbf{x})} \mathbf{x}^{\mathbf{k}} d \mathbf{x}=\frac{1}{d_{n}} \prod_{l=1}^{n} \Gamma\left(1-\omega_{d_{n}-\psi(\mathbf{k}), l}^{(n)}\right),
$$

where $\Gamma(s)$ denotes the Gamma function.

Remark: We can consider the number such as $\omega_{\kappa, i}$ and $\omega_{\mathbf{k}, i}$ for any invertible polynomial. Hence, this formula can be generalize to any invertible polynomial.

Maximally graded matrix factorizations

$S_{n}:=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$,
$L_{f_{n}}:=\left(\bigoplus_{i=1}^{n} \mathbb{Z} \vec{z}_{i} \oplus \mathbb{Z} \vec{f}_{n}\right) /\left(\vec{f}_{n}-\sum_{j=1}^{n} \mathbb{E}_{i j} \vec{z}_{j} ; i=1, \ldots, n\right)$.
$\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)$: the homotopy category of $L_{f_{n}}$-graded matrix factorizations.

Proposition 3.1 (Aramaki-Takahashi).

There exists a full exceptional collection $\left(E_{1}, \ldots, E_{\widetilde{\mu}_{n}}\right)$ of $\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)$ such that $\chi\left(E_{i}, E_{j}\right)=\chi_{i j}^{(n)}$ where $\chi^{(n)}$ is a matrix defined by $\chi^{(n)}=1 / \varphi_{n}(N)$, $N=\left(\delta_{i+1, j}\right)$, and

$$
\varphi_{n}(t):=\prod_{i=0}^{n}\left(1-t^{d_{i}}\right)^{(-1)^{n-i}}(n \geq 1), \quad \varphi_{0}(t):=1-t
$$

$\mathbf{S}^{(n)}$: the matrix representation of the automorphism on $K_{0}\left(\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)\right)$ induced by the Serre functor with respect to the basis $\left\{\left[E_{i}\right]\right\}_{i=1}^{\widetilde{\mu}_{n}}$.

Definition 3.2.

Define a matrix $\operatorname{ch}_{\Gamma}^{(n)}:=\left(\operatorname{ch}_{\Gamma, 1}^{(n)}, \cdots, \operatorname{ch}_{\Gamma, \tilde{\mu}_{n}}^{(n)}\right)$ of size $\tilde{\mu}_{n}$ as follows:
(1) $(n=0) \quad \operatorname{Set} \operatorname{ch}_{\Gamma}^{(0)}:=(1)$.
(2) $(n=1)$ Set

$$
\left(\operatorname{ch}_{\Gamma, j}^{(1)}\right)_{\kappa}:=\Gamma\left(1-\omega_{\kappa, 1}^{(1)}\right)\left(1-\mathbf{e}\left[\omega_{\kappa, 1}^{(1)}\right]\right) \mathbf{e}\left[\omega_{\kappa, 1}^{(1)}(j-1)\right], \kappa \in I_{1}=I_{1}^{\prime} .
$$

(3) $(n \geq 2)$ Set

$$
\left(\operatorname{ch}_{\Gamma, j}^{(n)}\right)_{\kappa}:= \begin{cases}c_{\kappa}^{(n)} \mathbf{e}\left[(-1)^{n-1} \omega_{\kappa, 1}^{(n)}(j-1)\right], & \text { if } \kappa \in I_{n}^{\prime} \\ 2 \pi \sqrt{-1}\left(\operatorname{ch}_{\Gamma, j}^{(n-2)}\right)_{\kappa}, & \text { if } \kappa \in I_{n-2}=I_{n} \backslash I_{n}^{\prime}\end{cases}
$$

where

$$
c_{\kappa}^{(n)}:= \begin{cases}\prod_{l=1}^{n} \Gamma\left(1-\omega_{\kappa, l}^{(n)}\right) \cdot \prod_{i=1}^{m}\left(1-\mathbf{e}\left[\omega_{\kappa, 2 i-1}^{(2 m-1)}\right]\right), & \text { if } n=2 m-1 \\ \prod_{l=1}^{n} \Gamma\left(1-\omega_{\kappa, l}^{(n)}\right) \cdot \prod_{i=1}^{m}\left(1-\mathbf{e}\left[\omega_{\kappa, 2 i}^{(2 m)}\right]\right), & \text { if } n=2 m\end{cases}
$$

- The first part $\prod_{l=1}^{n} \Gamma\left(1-\omega_{\kappa, l}^{(n)}\right)$ of $c_{\kappa}^{(n)}$ can be considered as $\widehat{\Gamma}_{f_{n}, G_{f_{n}}}$ on the κ-sector $\Omega_{f_{n}, g_{\kappa}}$ (cf. Chiodo-Iritani-Ruan).
- The last part of $c_{\kappa}^{(n)}$ can be considered as $\operatorname{Ch}\left(E_{1}\right)$ on the κ-sector (cf. Polishchuk-Vaintrob).
- The part $\mathbf{e}\left[(-1)^{n-1} \omega_{\kappa, 1}^{(n)}(j-1)\right]$ comes from the auto-equivalence $\left((-1)^{n} j \vec{z}_{1}\right)$ whose matrix representation is given by

$$
\left(\begin{array}{cc}
\left(\mathbf{e}\left[(-1)^{n-1} \omega_{\kappa, 1}^{(n)}(j-1)\right] \delta_{\kappa \lambda}\right) & 0 \\
0 & (1)
\end{array}\right)
$$

which acts on the vector $\mathrm{ch}_{\Gamma, 1}^{(n)}$ to get $\operatorname{ch}_{\Gamma, j}^{(n)}$.

Therefore, $\operatorname{ch}_{\Gamma, j}^{(n)}$ can be considered as the matrix representation of " $\widehat{\Gamma}_{f_{n}, G_{f_{n}}} \operatorname{Ch}\left(E_{j}\right)$ " with respect to the basis $\left\{\xi_{\kappa}^{(n)}\right\}_{\kappa \in I_{n}}$.

Main Theorem 1

Theorem 3.3 (O-Takahashi).

We have the following equality:

$$
\begin{gather*}
\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}^{(n)}\right)^{-1} \mathbf{e}\left[\widetilde{Q}^{(n)}\right]\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}^{(n)}\right)=\mathbf{S}^{(n)}, \tag{1}\\
\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}^{(n)}\right)^{T} \mathbf{e}\left[\frac{1}{2} \widetilde{Q}^{(n)}\right] \eta^{(n)}\left(\frac{1}{(2 \pi)^{\frac{n}{2}}} \operatorname{ch}_{\Gamma}^{(n)}\right)=\chi^{(n)} . \tag{2}
\end{gather*}
$$

This theorem is an analogue of Theorem 1.2

(Sketch of proof)

Induction on n. (1) follows from (2).
The following lemma implies (2).

Lemma 3.4.

Let

$$
p_{n}(t):=\frac{1}{\varphi_{n}(t)} \cdot\left(1-t^{d_{n}}\right)=\prod_{i=1}^{n}\left(1-t^{d_{i-1}}\right)^{(-1)^{n-i}}(n \geq 1), \quad p_{0}(t):=1
$$

We have

$$
\chi_{i, j}^{(n)}=\frac{1}{d_{n}} \sum_{a=1}^{d_{n}} p_{n}\left(\mathbf{e}\left[\frac{a}{d_{n}}\right]\right) \mathbf{e}\left[\frac{a}{d_{n}}(i-j)\right] .
$$

$p_{n}(t)$ is the Poincaré polynomial of the $L_{f_{n}}$-graded ring

$$
\bigoplus_{\vec{l} \in L_{f_{n}}} \operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)\left(E_{1}, E_{1}(\vec{l})\right)
$$

Integral structures

${ }^{\exists}$ two isomorphisms

$$
H_{n}\left(\mathbb{C}^{n}, \operatorname{Re}\left(\widetilde{f}_{n}\right) \gg 0 ; \mathbb{Z}\right) \cong H_{n}\left(\mathbb{C}^{n}, \widetilde{f}_{n}^{-1}(1) ; \mathbb{Z}\right) \cong H_{n-1}\left(\tilde{f}_{n}^{-1}(1) ; \mathbb{Z}\right)
$$

Define a "Poincaré Duality" map $\mathbb{D}: H_{n-1}\left(\widetilde{f}_{n}^{-1}(1) ; \mathbb{Z}\right) \rightarrow \Omega_{\widetilde{f}_{n}}$ by
$\mathbb{D}(L):=\frac{1}{(2 \pi \sqrt{-1})^{n}} \sum_{\kappa \in I_{n}}\left(\sum_{\lambda \in I_{n}} \eta^{\lambda \kappa} \int_{\Gamma} e^{-\tilde{f}_{n}} \zeta_{\lambda}^{(n)}\right) \zeta_{\kappa}^{(n)}, \quad L \in H_{n-1}\left(\tilde{f}_{n}^{-1}(1) ; \mathbb{Z}\right)$
where $\Gamma \in H_{n}\left(\mathbb{C}^{n}, \operatorname{Re}\left(\widetilde{f}_{n}\right) \gg 0 ; \mathbb{Z}\right)$ is corresponding to $L \in H_{n-1}\left(\tilde{f}_{n}^{-1}(1) ; \mathbb{Z}\right)$.

Define the integral structure $\Omega_{\tilde{f}_{n} ; \mathbb{Z}}$ of $\Omega_{\tilde{f}_{n}}$ by

$$
\Omega_{\tilde{f}_{n} ; \mathbb{Z}}:=\mathbb{D}\left(H_{n-1}\left(\widetilde{f}_{n}^{-1}(1) ; \mathbb{Z}\right)\right)
$$

Note that $H_{n-1}\left(\tilde{f}_{n}^{-1}(1) ; \mathbb{Z}\right) \cong K_{0}\left(\mathcal{D}^{b} \mathrm{Fuk}^{\rightarrow}\left(\widetilde{f}_{n}\right)\right)$.

Homological mirror symmetry conjectures

$$
\mathcal{D}^{b} \mathrm{Fuk}^{\rightarrow}\left(\widetilde{f}_{n}\right) \cong \operatorname{HMF}_{S}^{L_{f}}\left(f_{n}\right)
$$

Definition 3.5.

We define a K-group framing $\mathrm{ch}_{\Gamma}^{(n)}: K_{0}\left(\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)\right) \longrightarrow \Omega_{f_{n}, G_{f_{n}}}$ by

$$
\operatorname{ch}_{\Gamma}^{(n)}\left(\left[E_{j}\right]\right):=\sum_{\kappa \in I_{n}} \operatorname{ch}_{\Gamma, \kappa j}^{(n)} \xi_{\kappa}^{(n)}
$$

We call the image $\Omega_{f_{n}, G_{f_{n}} ; \mathbb{Z}}:=\frac{1}{(2 \pi \sqrt{-1})^{n}} \operatorname{ch}_{\Gamma}^{(n)}\left(K_{0}\left(\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)\right)\right)$ the
Gamma integral structure of $\Omega_{f_{n}, G_{f_{n}}}$.
$(2 \pi \sqrt{-1})^{-n}$ is due to the fact that $\Omega_{f_{n}, G_{f_{n}}}$ has the natural weight n from the view point of the Hodge theory.

Main Theorem 2

${ }^{\exists} \mathbb{Z} / d_{n} \mathbb{Z}$-action on $\Omega_{\tilde{f}_{n} ; \mathbb{Z}}$ and $\Omega_{f_{n}, G_{f_{n}} ; \mathbb{Z}}$.

- $\mathbb{Z} / d_{n} \mathbb{Z}$-action on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ given by

$$
\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \mapsto\left(\mathbf{e}\left[\frac{1}{d_{1}}\right] x_{1}, \ldots, \mathbf{e}\left[\frac{(-1)^{i-1}}{d_{i}}\right] x_{i}, \ldots, \mathbf{e}\left[\frac{(-1)^{n-1}}{d_{n}}\right] x_{n}\right)
$$ induces the one on $\Omega_{\tilde{f}_{n} ; \mathbb{Z}}$.

- The grading shift functor $\left(\vec{z}_{1}\right)$ on $\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)$ induces the action on $\Omega_{\tilde{f}_{n} ; \mathbb{Z}}$.

Theorem 3.6 (O-Takahashi).

The mirror isomorphism mir : $\Omega_{\tilde{f}_{n}} \cong \Omega_{f_{n}, G_{f_{n}}}$ induces an isomorphism of integral structures $\Omega_{\tilde{f}_{n} ; \mathbb{Z}} \cong \Omega_{f_{n}, G_{f_{n}} ; \mathbb{Z}}$ and the isomorphism is $\mathbb{Z} / d_{n} \mathbb{Z}$-equivariant.

This theorem was proven for the ADE case by Milanov-Zha.
(Strategy of proof)
We show

$$
\operatorname{ch}_{\Gamma, \kappa 1}^{(n)}=\sum_{\lambda \in I_{n}} \eta^{\lambda \kappa} \int_{\Gamma_{1}} e^{-\tilde{f}_{n}} \zeta_{\lambda}^{(n)}
$$

and $\mathbb{Z} / d_{n} \mathbb{Z}$-equivariance.

- $(n=1)$: By direct calculation.
- $(n=2)$: By direct calculation based on Milanov-Zha.
- $(n \geq 3)$: By induction on n.
- (Step 1): If the case $n=2 m$ is true, then so is $n=2 m+1$.
- (Step 2) : If the case $n=2 m-1$ is true, then so is $n=2 m$.

The way of proof (Step 1) and (Step 2) are different.

Bridgeland stability condition

In the A-model side, it is expected that the oscillatory integral $\int e^{-\widetilde{f}_{n}(\mathbf{x})} d \mathbf{x}$ induces a stability condition on \mathcal{D}^{b} Fuk $\rightarrow\left(\widetilde{f}_{n}\right)$. By Theorem 3.6, the mirror object dual to $\int_{\Gamma_{j}} e^{-\widetilde{f}_{n}(\mathbf{x})} d \mathbf{x}$ is given by $\sum_{\lambda \in I_{n}} \eta_{\psi(\mathbf{0}) \lambda} \mathrm{ch}_{\Gamma, \lambda j}^{(n)}$.

Remark: $[d \mathbf{x}]$ is induced by the "canonical" primitive form for \tilde{f}_{n}. Here, "canonical" means that this primitive form is determined by exponents of \tilde{f}_{n}.

We expect the following conjecture:

Conjecture 3.7.

There exists a Bridgeland stability condition σ on $\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)$ such that its stability function $Z_{\sigma}: K_{0}\left(\operatorname{HMF}_{S_{n}}^{L_{f_{n}}}\left(f_{n}\right)\right) \longrightarrow \mathbb{C}$ is given as follows:
if $n=2 m-1$, then
$Z_{\sigma}\left(\left[E_{j}\right]\right):=\frac{1}{(2 \pi \sqrt{-1})^{n}} \mathbf{e}\left[-\frac{j-1}{d_{n}}\right] \prod_{i=1}^{m}\left(1-\mathbf{e}\left[-\omega_{2 i-1}^{(n)}\right]\right) \cdot \int_{\left(\mathbb{R}_{\geq 0}\right)^{n}} e^{-\tilde{f}_{n}(\mathbf{x})} d \mathbf{x}$,
and if $n=2 m$, then

$$
Z_{\sigma}\left(\left[E_{j}\right]\right):=\frac{1}{(2 \pi \sqrt{-1})^{n}} \mathbf{e}\left[\frac{j-1}{d_{n}}\right] \prod_{i=1}^{m}\left(1-\mathbf{e}\left[-\omega_{2 i}^{(n)}\right]\right) \cdot \int_{\left(\mathbb{R}_{\geq 0}\right)^{n}} e^{-\tilde{f}_{n}(\mathbf{x})} d \mathbf{x}
$$

where $\omega_{i}^{(n)}$ is the i-th rational weight of f_{n}.
Moreover, this stability condition σ is of Gepner type with respect to the auto-equivalence $\left(\vec{z}_{1}\right)$ and $\mathbf{e}\left[1 / d_{n}\right] \in \mathbb{C}:\left(\vec{z}_{1}\right) \cdot \sigma=\sigma \cdot \mathbf{e}\left[\frac{1}{d_{n}}\right]$.

This conjecture is true for some cases.
Based on the results by Takahashi and Kajiura-Saito-Takahashi, we obtain the following

Proposition 3.8.

Conjecture 3.7 holds for $n=1$ and for invertible polynomials of ADE type in two and three variables which is the Thom-Sebastiani sum of invertible polynomials of chain type.

Reference :

[1] D. Aramaki, A. Takahashi, Maximally-graded matrix factorizations for an invertible polynomial of chain type, Adv. Math. 373 (2020).
[2] P. Berglund, T. Hübsch, A generalized construction of mirror manifolds, Nuclear Physics B 393 (1993), 377-391.
[3] A. Chiodo, H. Iritani, Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127-216.
[4] T. Coates, A. Corti, H. Iritani, H. -H. Tseng, A mirror theorem for toric stacks. Compos. Math. 151 (2015), no. 10, 1878-1912.
[5] S. Galkin, V. Golyshev, H. Iritani, Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J. 165 (2016), no. 11, 2005-2077.
[6] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016-1079.
[7] H. Kajiura, K. Saito, A. Takahashi, Matrix factorization and representations of quivers. II. Type ADE case, Adv. Math. 211, no. 1, 327-362 (2007).
[8] L. Katzarkov, M. Kontsevich, T. Pantev, Hodge theoretic aspects of mirror symmetry. From Hodge theory to integrability and TQFT $t t^{*}$-geometry, 87-174, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008.
[9] M. Kreuzer, The mirror map for invertible LG models, Phys. Lett. B 328 (1994), no.3-4, 312-318.
[10] M. Kreuzer, H. Skarke, On the classification of quasihomogeneous functions, Commun. Math. Phys. 150 (1992), 137-147.
[11] T. Milanov, C. Zha, Integral structure for simple singularities. SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), 081.
[12] A. Polishchuk, A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations. Duke Math. J. 161 (2012), no. 10, 1863-1926.
[13] A. Takahashi, Matrix factorizations and representations of quivers I, arXiv:0506347.

Thank you for your attention!

