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Del Pezzo Surfaces

A compact complex surface Y is del Pezzo if −KY is ample.

Classification of surfaces ⇒
Y ∼= P1 × P1 or Bl(P2) at generic d points, d = 1, · · · , 8.

d = (−KY )2 is called the degree of the del Pezzo surface.
Denote d = 8′ for the case of P1 × P1.

Every del Pezzo surface Y admits a smooth anti-canonical
divisor D ∈ | − KY |.
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Rational Elliptic Surfaces

A rational elliptic surface (RES) Y̌ is a rational surface
with a minimal elliptic fibration.

Any RES can be realized blow up possibly (infinitely near) 9
points on P2.

KY̌
∼= OY̌ (−Ď), where Ď fibre. canonical bundle formula

Possible singular fibres are classified by Kodaira, Perrson.

An Id fibre is an anti-canonical cycle consisting of a wheel of
d (−2)-rational curves
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∼= OY̌ (−Ď), where Ď fibre. canonical bundle formula

Possible singular fibres are classified by Kodaira, Perrson.

An Id fibre is an anti-canonical cycle consisting of a wheel of
d (−2)-rational curves

4 / 26



Del Pezzo/RES as Log Calabi-Yau Pairs

Y = del Pezzo surface, D ∈ | − KY | smooth
∃Ω ∈ H0(Y ,KY (−D)) non-vanishing mero. (2, 0)-form.

(Tian-Yau ’90) ∃ exact Ricci-flat metric ω on X = Y \ D
such that 2ω2 = Ω ∧ Ω̄.

Y̌ = RES, Ď=Id fibre
∃Ω̌ ∈ H0(Y̌ ,KY̌ (−Ď)) non-vanishing mero. (2, 0)-form.

(Hein ’12) ∃ Ricci-flat metric ω̌ on X̌ = Y̌ \ Ď such that

2ω̌2 = Ω̌ ∧ ¯̌Ω.

Both X and X̌ are hyperKähler. Sp(1) ∼= SU(2)
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Deformation os Log CY Surfaces and Torelli Theorem

(McMullen) The moduli space of (Y ,D) is a fibration over
j-line with fibres Hom(D⊥,C∗)/W , of dimension 10− d .

This is captured by the classical periods
∫

Ω.

(Gross-Hacking-Keel, Friedman) The moduli space of RES Y̌
with an Id fibre Ď is given by Hom(Ď⊥,C∗)/W̌ .

∃ distinguished pairs (Y̌e , Ďe) with trivial periods in each
deformation family for RES.

This is captured by the classical periods
∫

Ω̌.
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Strominger-Yau-Zaslow Conjecture

Conjecture (Strominger-Yau-Zaslow ’96)

Calabi-Yau manifolds admit special Lagrangian torus
fibration near large complex structure limit.

Mirror Calabi-Yau are constructed by dual torus fibration.

Mirror complex structure receives quantum correction from
holomorphic discs with special Lagrangian fibre. boundary
conditions.

(Harvey-Lawson ’82) A submanifold L in X is special
Lagrangian if ω|L = 0, ImΩ|L = 0.

Del Pezzo/RES cases are conjectured by Auroux ’07.
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New Special Lagrangian Fibrations I

Theorem (Collins-Jacob-L. ’19)

Y=del Pezzo surface or RES, D ∈ | − KY | smooth.
Then X = Y \D admits a special Lagrangian fibration with a
special Lagrangian section with respect to the Tian-Yau metric.

This solves conjectures of Yau and Auroux ’07.
1 Y = P2, with 3 nodal singular fibres.
2 For generic (Y ,D) with Y rational elliptic surface, there are

12 singular fibres.

The base is R2 by uniformization theorem and theorem of Yau.
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HK Rotation connecting dP/RES

Theorem (Collins-Jacob-L. ’19)

Let X̌ be a suitable hypKähler rotation of X .
ω̌ = ReΩ, Ω̌ = ImΩ + iω.

Then X̌ compactified to a RES Y̌ by adding an Id fibre at infinity,
where d = (−KY )2.

(Auroux-Kartzarkov-Orlov ’05) showed that the above is the
compactification of the Landau-Ginzburg mirror of Y .

DbCoh(Y ) ∼= FS(W )

The correspondence respects the deformation families.
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New Special Lagrangian Fibrations II

The mirror symmetry of log Calabi-Yau surfaces (Y̌ , Ď) are studied
by Gross-Hacking-Keel when Ď is maximal degenerate.

Theorem (Collins-Jacob-L)

Let Y̌ = RES and Ď = Id singular fibre. Then X̌ = Y̌ \Ď admits a
special Lagrangian fibration. Moreover, a suitable hyperKähler
rotation X ′ → C can be compactified to a rational elliptic surface
Y ′ by adding an Id singular fibre.

The complex affine structure on the base is asymptotically to
that of Gross-Hacking-Keel.

It is natural to expect that it is the mirror SYZ fibraton.
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Idea of the proof

Construct a special Lagrangian torus for the model geometry
(Calabi ansatz, semi-flat metric).

Run Lagrangian mean curvature flow on the model special
Lagrangian and prove convergence.

Caveat: the geometry is degenerate!

The deformation of a special Lagrangian tori covered the
non-compact Calabi-Yau surface via J-holo. curves theory.

1 (Closedness) Sacks-Uhlenbeck-Gromov compactness theorem
for the degenerate geometry.

2 (Openness) Classification of possible singular fibres and
analysis the their local deformations.
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Kähler moduli of RESs

A hidden difficulty: to define the Kähler moduli ǨKah.

Theorem (Collins-Jacob-L.)

Y̌ = RES and Ď = Id fibre. If ω1, ω2 two Ricci-flat metrics on
X̌ = Y̌ \ Ď such that ω2

1 = ω2
2, [ω1]dR = [ω2]dR and asymptotic to

the some semi-flat metric ωi
sf ,ε with polynomial decay. Then

ω1 = ω2.

M̌Kah := {CY metrics asympototic to ωsf ,ε}/Aut0(X̌ ),

which is a cone with non-empty interior in H2(X̌ ,R) ∼ R11−d .
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SYZ Mirror Symmetry between Del Pezzo surfaces & RES

Theorem (Collins-Jacob-L.)

Under the mirror map near LCSL, Mcpx −→ ǨKah

PD([σq]) + Ωq 7→ B̌q̌(q) + i
m[ω̌q̌(q)]

αq̌(q)

Imτq = mαq̌(q),

the special Lagrangian fibration in dPs and RES

1 exchange the complex and symplectic affine structures, and

2 the volume of the fibres are inverse to each other.

αq̌(q) is the additional variable in ǨKah.
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Gravitational Instantons

Gravitational instantons are complete hyperKähler metrics,
introduced by Hawking for Euclidean quantum gravity.

They are labeled by ALE, ALF, ALG, ALH from the volume
growth r4, r3, r2, r .

(Chen-Chen ’15) Classification of gravitational instantons with
faster than quadratic curvature decay.

(Hein ’12) New gravitational instantons from RES of volume
growth r2, r4/3 labeled as ALG*, ALH*, which curvature have
no quadratic decay.
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Application to ”New” Gravitational Instantons

Theorem (Collins-Jacob-L.)

Given (Y̌ , Ď), there exists an extra R-family of Ricci-flat metrics
on X̌ with Hein’s metrics are indexed by Z.

Take X̌ as in the 2nd theorem which is complete hyperKähler.

If HK metric on X̌ is Hein’s metric, then there exists a special
Lagrangian fibration on X̌ .

The special Lagrangian tori in X̌ hyperKähler rotate back to
X to be special Lagrangian tori but with phase π/2.

D ∼= Z/(Z⊕ aZi), a ∈ R+ and leads to a contradiction for
general choice of D.
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Given (Y̌ , Ď), there exists an extra R-family of Ricci-flat metrics
on X̌ with Hein’s metrics are indexed by Z.

Take X̌ as in the 2nd theorem which is complete hyperKähler.

If HK metric on X̌ is Hein’s metric, then there exists a special
Lagrangian fibration on X̌ .

The special Lagrangian tori in X̌ hyperKähler rotate back to
X to be special Lagrangian tori but with phase π/2.

D ∼= Z/(Z⊕ aZi), a ∈ R+ and leads to a contradiction for
general choice of D.

15 / 26



Application to ”New” Gravitational Instantons

Theorem (Collins-Jacob-L.)
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Mirror Symmetry and Enumerative Geometry
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Mirror Symmetry for Fano Manifolds

Fano manifold Y ↔ Landau-Ginzburg superpotential
W : Y̌ → C, where W is a holomorphic function.

W captures the enumerative/symplectic geometry of Y .

1 QH∗(Y ) ∼= Jac(W )⇐ Fuk(X ) ∼= DbSing(W ) ∼= MF (W ).
2 FS(W ) ∼= DbCoh(Y ).
3 SH∗(Y \ D) ∼= PV ∗(Y̌ )⇐ DbW(Y \D) ∼= DbCoh(Y̌ ).
4 Quantum periods

∫
etW Ω recover the generating function of

descending Gromov-Witten invariant of Y .
5 .....

How do we compute the LG superpotential?

17 / 26



Mirror Symmetry for Fano Manifolds

Fano manifold Y ↔ Landau-Ginzburg superpotential
W : Y̌ → C, where W is a holomorphic function.

W captures the enumerative/symplectic geometry of Y .
1 QH∗(Y ) ∼= Jac(W )⇐ Fuk(X ) ∼= DbSing(W ) ∼= MF (W ).
2 FS(W ) ∼= DbCoh(Y ).
3 SH∗(Y \ D) ∼= PV ∗(Y̌ )⇐ DbW(Y \D) ∼= DbCoh(Y̌ ).
4 Quantum periods

∫
etW Ω recover the generating function of

descending Gromov-Witten invariant of Y .
5 .....

How do we compute the LG superpotential?

17 / 26



Mirror Symmetry for Fano Manifolds

Fano manifold Y ↔ Landau-Ginzburg superpotential
W : Y̌ → C, where W is a holomorphic function.

W captures the enumerative/symplectic geometry of Y .
1 QH∗(Y ) ∼= Jac(W )⇐ Fuk(X ) ∼= DbSing(W ) ∼= MF (W ).
2 FS(W ) ∼= DbCoh(Y ).
3 SH∗(Y \ D) ∼= PV ∗(Y̌ )⇐ DbW(Y \D) ∼= DbCoh(Y̌ ).
4 Quantum periods

∫
etW Ω recover the generating function of

descending Gromov-Witten invariant of Y .
5 .....

How do we compute the LG superpotential?

17 / 26



Superpotential from Lagrangian Floer theory

(Givental, Hori-Vafa) Y = toric Fano, formula for W .

(Cho-Oh) Y toric Fano, L = moment torus fibre, then
W = W LF (L).

Write b =
∑

xiei ∈ H1(L,Λ+) wrt basis ei of H1(L,Z),
then m(eb) =

∑
k mk(b, · · · , b) = W LF (b)1L.

Write zi = exi and for γ ∈ H2(Y , L) write z∂γ =
∏

i z
〈∂γ,ei 〉
i .

Then

W (z1, · · · , zn) =
∑

β:MI (β)=2

nβT
ω(β)z∂β,

where nβ :=
∫

[M1(X ,L;β)]vir 1.
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Renormalization Procedure

ωTY blows up near D and thus not the correct symplectic form.

Lemma (L- ’19)

∃Ui ↗ B and ωi Kähler forms on Y such that

1 ωi |π−1(Ui ) = ωTY

2 [ωi ] = kic1(Y ) with ki ↗∞.

Lu are Lagrangian wrt ωi for i � 0.

Together with the computation of W (Lu) later, this is a
realization of the renormalization procedure proposed by
Hori-Vafa and Auroux.
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Wall-Crossing of the Superpotentials (FOOO)

A∞ structure {mk} on H∗(Lu) with Maurer-Cartan space

MCweak(Lu) := {b ∈ H1(Lu,Λ+)|m(eb) = c1L}/ ∼∼= H1(Lu,Λ+).

(Fukaya’s trick) φ path from u− to u+, the pseudo-isotpy of
A∞ structures of H∗(Lu±) induces Fφ : H1(Lu−) ∼= H1(Lu+)
(without flux), where Fφ records holo. discs of Maslov index
zero with Fφ ≡ id(modΛ+).

If no negative Maslov index discs, u− = u+ and φ is
contractible, then Fφ = id .

(wall-crossing formula) W (b; u−) = W (Fφ(b); u+).
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Wall-Crossing w/ SLAG Fibration in CY Surfaces

(Hitchin) ∃ integral affine structure on B0.

Lt bound MI=0 discs of γ ∈ H2(X , Lt), then Lt sit above an
affine line lγ . Advantage of SLag fibration!

Theorem (L-’17)

In the surface case, if φ goes across lγ , then

Fφ : z∂γ
′ 7→ z∂γ

′
f 〈γ
′,γ〉

γ , log fγ(u) =
∑
d≥1

dΩ̃(dγ; u)zdγ ,

where Ω̃(γ; u) denotes the weighted count of MI=0 tropical discs.

This is the form of the Kontsevich-Soibelman transformation.
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Tropical/Correspondence of Superpotential

Theorem (L-’20)

nβ(u) = ntropβ (u), the weighted count of the broken lines end at u.

Notation of broken lines and their weighted count ntropβ (u).

nβ0(u) = 1 = ntropβ0
for u near D and β0 vanishing thimble.

Compare the wall-crossing formula.

By induction on the number of bends of possible broken lines.
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Towards the Equivalence of AG/SG Mirrors

Theorem (Bouseau ’19, Lau-Lee-L., ’20)

The complex affine structure of the SYZ fibration of P2\E
coincides with the one of Carl-Pomperla-Siebert.
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More on Y = P2

These lay out the foundation of the comparison of family Floer
mirror with the mirror constructed in Gross-Siebert program.

W (Lu) are those appear in Vianna’s work after
Pascaleff-Tonkonog.

Limit of certain open GW of MI=0 with limiting boundary
condition to infinity coincides with closed GW with maximal
tangency together with the work of Gräfnitz.

Stability of FS(W ) and counting of stable objects mirror to
geometric stability condition of Db(P2) from the work of
Bousseau.
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The Easter Egg

Fun application in algebraic geometry:

Theorem (? classical result)

Let E ⊆ P2 be a smooth cubic curve. Then there exists

Z3 ⊕ Z3 ⊆ Aut(P2)

such that E is preserved.

1 The corresponding rational elliptic surface Y̌ is extremal I9I
3
1 .

2 Ω̌ is meromorphic.

3 ∃Z3 ⊕ Z3 ∈ Aut(Y̌ ) preserving Ω̌ and ω̌. Uniqueness theorem!

4 The corresponding automorphisms of X extend over E .
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THANK YOU!
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