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Outline of the Talk

@ Set-up of the Geometry

@ SYZ Fibrations of Del Pezzo Surfaces and their Dual
Fibrations

@ Applications to Enumerative Geometry
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Del Pezzo Surfaces

@ A compact complex surface Y is del Pezzo if —Ky is ample.
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Del Pezzo Surfaces

@ A compact complex surface Y is del Pezzo if —Ky is ample.

o Classification of surfaces =
Y = P! x P! or BI(IP?) at generic d points, d =1,---,8.
o d = (—Ky)? is called the degree of the del Pezzo surface.
Denote d = 8’ for the case of P! x P!

@ Every del Pezzo surface Y admits a smooth anti-canonical
divisor D € | — Ky|.
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Rational Elliptic Surfaces

o A rational elliptic surface (RES) Y is a rational surface
with a minimal elliptic fibration.
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Rational Elliptic Surfaces

A rational elliptic surface (RES) Y is a rational surface
with a minimal elliptic fibration.

Any RES can be realized blow up possibly (infinitely near) 9
points on P2,

Ky = Oy (D), where D fibre. canonical bundle formula

Possible singular fibres are classified by Kodaira, Perrson.

An Iy fibre is an anti-canonical cycle consisting of a wheel of
d (—2)-rational curves
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Del Pezzo/RES as Log Calabi-Yau Pairs

@ Y = del Pezzo surface, D € | — Ky| smooth
3Q € HO(Y, Ky(—D)) non-vanishing mero. (2,0)-form.
o (Tian-Yau '90) 3 exact Ricci-flat metric w on X = Y\ D
such that 2w? = QA Q.
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Del Pezzo/RES as Log Calabi-Yau Pairs

@ Y = del Pezzo surface, D € | — Ky| smooth
3Q € HO(Y, Ky(—D)) non-vanishing mero. (2,0)-form.
o (Tian-Yau '90) 3 exact Ricci-flat metric w on X = Y\ D
such that 2w? = QA Q.

o Y = RES, D=l fibre
30 € HO(Y, Ky(—D)) non-vanishing mero. (2,0)-form.
o (Hein '12) 3 Ricci-flat metric & on X = Y\ D such that
202 = QAQ.

@ Both X and X are hyperKahler. Sp(1) = SU(2)
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Deformation os Log CY Surfaces and Torelli Theorem

@ (McMullen) The moduli space of (Y, D) is a fibration over
j-line with fibres Hom(D+,C*)/W, of dimension 10 — d.

e This is captured by the classical periods | Q.
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Deformation os Log CY Surfaces and Torelli Theorem

@ (McMullen) The moduli space of (Y, D) is a fibration over
j-line with fibres Hom(D+,C*)/W, of dimension 10 — d.

e This is captured by the classical periods | Q.

o (Gross-Hacking-Keel, Friedman) The moduli space of RES Y
with an Iy fibre D is given by Hom(D+,C*)/W.

o 3 distinguished pairs (Ye, D) with trivial periods in each
deformation family for RES.

@ This is captured by the classical periods f§v2
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Strominger-Yau-Zaslow Conjecture

Conjecture (Strominger-Yau-Zaslow '96)

o Calabi-Yau manifolds admit special Lagrangian torus
fibration near large complex structure limit.

@ Mirror Calabi-Yau are constructed by dual torus fibration.

@ Mirror complex structure receives quantum correction from
holomorphic discs with special Lagrangian fibre. boundary
conditions.

@ (Harvey-Lawson '82) A submanifold L in X is special
Lagrangian if w|, =0, ImQ|, = 0.
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Strominger-Yau-Zaslow Conjecture

Conjecture (Strominger-Yau-Zaslow '96)

Calabi-Yau manifolds admit special Lagrangian torus
fibration near large complex structure limit.

Mirror Calabi-Yau are constructed by dual torus fibration.

Mirror complex structure receives quantum correction from
holomorphic discs with special Lagrangian fibre. boundary
conditions.

(Harvey-Lawson '82) A submanifold L in X is special
Lagrangian if w|, =0, ImQ|, = 0.

Del Pezzo/RES cases are conjectured by Auroux '07.
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New Special Lagrangian Fibrations |

Theorem (Collins-Jacob-L. '19)

Y =del Pezzo surface or RES, D € | — Ky| smooth.

Then X = Y\D admits a special Lagrangian fibration with a
special Lagrangian section with respect to the Tian-Yau metric.
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New Special Lagrangian Fibrations |

Theorem (Collins-Jacob-L. '19)

Y =del Pezzo surface or RES, D € | — Ky| smooth.

Then X = Y\D admits a special Lagrangian fibration with a
special Lagrangian section with respect to the Tian-Yau metric.

@ This solves conjectures of Yau and Auroux '07.
@ Y = P2, with 3 nodal singular fibres.

@ For generic (Y, D) with Y rational elliptic surface, there are
12 singular fibres.

@ The base is R? by uniformization theorem and theorem of Yau.
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HK Rotation connecting dP/RES

Theorem (Collins-Jacob-L. '19)

Let X be a suitable hypKahler rotation of X.
O =ReQ, Q=ImQ+iw.

Then X compactified to a RES Y by adding an Iy fibre at infinity,

where d = (—Ky)?.
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HK Rotation connecting dP/RES

Theorem (Collins-Jacob-L. '19)

Let X be a suitable hypKahler rotation of X.
O =ReQ, Q=ImQ+iw.

Then X compactified to a RES Y by adding an Iy fibre at infinity,
where d = (—Ky)?.

@ (Auroux-Kartzarkov-Orlov '05) showed that the above is the
compactification of the Landau-Ginzburg mirror of Y.
DPCoh(Y) = FS(W)

@ The correspondence respects the deformation families.
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New Special Lagrangian Fibrations Il

The mirror symmetry of log Calabi-Yau surfaces (Y, D) are studied
by Gross-Hacking-Keel when D is maximal degenerate.

Theorem (Collins-Jacob-L)

Let Y = RES and D = Iy singular fibre. Then X = Y\D admits a
special Lagrangian fibration. Moreover, a suitable hyperKahler
rotation X' — C can be compactified to a rational elliptic surface
Y’ by adding an ly singular fibre.
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New Special Lagrangian Fibrations Il

The mirror symmetry of log Calabi-Yau surfaces (Y, D) are studied
by Gross-Hacking-Keel when D is maximal degenerate.

Theorem (Collins-Jacob-L)

Let Y = RES and D = Iy singular fibre. Then X = Y\D admits a
special Lagrangian fibration. Moreover, a suitable hyperKahler
rotation X' — C can be compactified to a rational elliptic surface
Y’ by adding an ly singular fibre.

@ The complex affine structure on the base is asymptotically to
that of Gross-Hacking-Keel.

@ It is natural to expect that it is the mirror SYZ fibraton.
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Idea of the proof

@ Construct a special Lagrangian torus for the model geometry
(Calabi ansatz, semi-flat metric).

@ Run Lagrangian mean curvature flow on the model special
Lagrangian and prove convergence.
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Idea of the proof

@ Construct a special Lagrangian torus for the model geometry
(Calabi ansatz, semi-flat metric).

@ Run Lagrangian mean curvature flow on the model special
Lagrangian and prove convergence.
Caveat: the geometry is degenerate!

@ The deformation of a special Lagrangian tori covered the
non-compact Calabi-Yau surface via J-holo. curves theory.

@ (Closedness) Sacks-Uhlenbeck-Gromov compactness theorem
for the degenerate geometry.

@ (Openness) Classification of possible singular fibres and
analysis the their local deformations.
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Kahler moduli of RESs

@ A hidden difficulty: to define the Kahler moduli KKah.
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Kahler moduli of RESs

@ A hidden difficulty: to define the Kahler moduli KKah.

Theorem (Collins-Jacob-L.)

Y = RES and D = Iy fibre. If w1, ws two Ricci-flat metrics on

X = Y\ D such that w? = w3, [w1]dr = [w2]dr and asymptotic to
the some semi-flat metric wy, . with polynomial decay. Then
w1 = wy.

M an := {CY metrics asympototic to wsr . }/Auto(X),

which is a cone with non-empty interior in H2(X,R) ~ R11~¢
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SYZ Mirror Symmetry between Del Pezzo surfaces & RES

Theorem (Collins-Jacob-L.)

Under the mirror map near LCSL, M px — Kican

. .m[@gq)]
PD([04]) + Qg — By(q) + i— 2=
Qg(q)

/mTq = maé(q),

the special Lagrangian fibration in dPs and RES

© exchange the complex and symplectic affine structures, and

@ the volume of the fibres are inverse to each other.

Q(q) is the additional variable in KK,.,;,.
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Gravitational Instantons

o Gravitational instantons are complete hyperKahler metrics,
introduced by Hawking for Euclidean quantum gravity.

@ They are labeled by ALE, ALF, ALG, ALH from the volume

4 .3 ,2
growth r* r° ro r.
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Gravitational Instantons

o Gravitational instantons are complete hyperKahler metrics,
introduced by Hawking for Euclidean quantum gravity.

@ They are labeled by ALE, ALF, ALG, ALH from the volume

growth r* r3,r2 r.

@ (Chen-Chen '15) Classification of gravitational instantons with
faster than quadratic curvature decay.

@ (Hein '12) New gravitational instantons from RES of volume
growth r2, r*/3 labeled as ALG*, ALH*, which curvature have
no quadratic decay.

Y
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Application to "New" Gravitational Instantons

Theorem (Collins-Jacob-L.)

Given (Y, D), there exists an extra R-family of Ricci-flat metrics
on X with Hein's metrics are indexed by 7.
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Application to "New" Gravitational Instantons

Theorem (Collins-Jacob-L.)

Given (Y, D), there exists an extra R-family of Ricci-flat metrics
on X with Hein's metrics are indexed by 7.

o Take X as in the 2nd theorem which is complete hyperKahler.

o If HK metric on X is Hein's metric, then there exists a special
Lagrangian fibration on X.

o The special Lagrangian tori in X hyperKihler rotate back to
X to be special Lagrangian tori but with phase 7/2.

o D=Z/(Z @& aZi),a € Ry and leads to a contradiction for
general choice of D.
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Mirror Symmetry and Enumerative Geometry
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Mirror Symmetry for Fano Manifolds

@ Fano manifold Y < Landau-Ginzburg superpotential
W :Y — C, where W is a holomorphic function.
@ W captures the enumerative/symplectic geometry of Y.
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Mirror Symmetry for Fano Manifolds

@ Fano manifold Y < Landau-Ginzburg superpotential
W :Y — C, where W is a holomorphic function.
@ W captures the enumerative/symplectic geometry of Y.
QO QH*(Y) = Jac(W) < Fuk(X) =2 DPSing(W) =2 MF(W).
@ FS(W) = DPCoh(Y).
@ SH*(Y \ D) = PV*(Y) < D*W(Y\D) = D?Coh(Y).
© Quantum periods [ e Q recover the generating function of
descending Gromov-Witten invariant of Y.

@ How do we compute the LG superpotential?
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Superpotential from Lagrangian Floer theory

e (Givental, Hori-Vafa) Y = toric Fano, formula for W.

@ (Cho-Oh) Y toric Fano, L = moment torus fibre, then
W = WtF(L).

Write b =Y x;e; € HY(L, A1) wrt basis e; of H*(L,Z),
then m(e?) = >, my(b,---,b) = WHF(b)1,.
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Superpotential from Lagrangian Floer theory

e (Givental, Hori-Vafa) Y = toric Fano, formula for W.
@ (Cho-Oh) Y toric Fano, L = moment torus fibre, then
W = WtF(L).
Write b =Y x;e; € HY(L, A1) wrt basis e; of H*(L,Z),
then m(e?) = >, my(b,---,b) = WHF(b)1,.

o Write z; = €% and for v € Ha( Y, L) write 207 = [, 2\77.

Then

W(217 e ,Zn) = Z nﬂ Tw(ﬂ)2857
B:MI(8)=2

where ng = [{\q x 1.y 1-
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Renormalization Procedure

wTy blows up near D and thus not the correct symplectic form.
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wTy blows up near D and thus not the correct symplectic form.
Lemma (L- '19)
JU; /B and w; Kahler forms on Y such that

o Wi|rl(u,-) = wTYy
Q [w,-] = k,'Cl(Y) with k; /‘ Q.

e L, are Lagrangian wrt wj for i > 0.
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Renormalization Procedure

wTy blows up near D and thus not the correct symplectic form.
Lemma (L- '19)
JU; /B and w; Kahler forms on Y such that

o Wi|rl(u,-) = wTYy

Q [w,-] = k,'Cl(Y) with k; /‘ Q.

e L, are Lagrangian wrt wj for i > 0.

@ Together with the computation of W(L,) later, this is a
realization of the renormalization procedure proposed by
Hori-Vafa and Auroux.
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Wall-Crossing of the Superpotentials (FOOO)

o A structure {my} on H*(L,) with Maurer-Cartan space

MCyear(Ly) == {b € HY(Ly, Ay)|m(eP) = c1,}/ ~= HY (L, AL).
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Wall-Crossing of the Superpotentials (FOOO)

o A structure {my} on H*(L,) with Maurer-Cartan space

MCyear(Ly) == {b € HY(Ly, Ay)|m(eP) = c1,}/ ~= HY (L, AL).

o (Fukaya's trick) ¢ path from u_ to u,, the pseudo-isotpy of
Ao structures of H*(L,, ) induces Fy : HY(L, )= H*(L,,)
(without flux), where Fy records holo. discs of Maslov index
zero with Fy = id(modA.).

@ If no negative Maslov index discs, u— = uy and ¢ is
contractible, then Fy = id.

o (wall-crossing formula) W (b; u_) = W(Fy(b); ut).
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Wall-Crossing w/ SLAG Fibration in CY Surfaces

o (Hitchin) 3 integral affine structure on By.

e L; bound MI=0 discs of v € Ha(X, Lt), then L; sit above an
affine line /. Advantage of SLag fibration!
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Wall-Crossing w/ SLAG Fibration in CY Surfaces

o (Hitchin) 3 integral affine structure on By.

e L; bound MI=0 discs of v € Ha(X, Lt), then L; sit above an
affine line /. Advantage of SLag fibration!

Theorem (L-'17)

In the surface case, if ¢ goes across I, then

/

Fg : 227 s 2O fwh ", log £, Z dQ)(dy; v)
d>1

where Q(’y; u) denotes the weighted count of MI=0 tropical discs.

21/26



Wall-Crossing w/ SLAG Fibration in CY Surfaces

o (Hitchin) 3 integral affine structure on By.

e L; bound MI=0 discs of v € Ha(X, Lt), then L; sit above an

affine line /,. Advantage of SLag fibration!

Theorem (L-'17)

In the surface case, if ¢ goes across I, then

=Y dQ(dv;u)

d>1

— 207 £ log £,

Fg : 97 A

where Q(’y; u) denotes the weighted count of MI=0 tropical discs.

This is the form of the Kontsevich-Soibelman transformation.

v
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Tropical /Correspondence of Superpotential

Theorem (L-'20)

ng(u) = ng"”(u), the weighted count of the broken lines end at u.
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o Notation of broken lines and their weighted count ngo”(u).

o ng(u)=1= ngoo” for u near D and f3p vanishing thimble.
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Tropical /Correspondence of Superpotential

Theorem (L-'20)

ng(u) = ng"p(u), the weighted count of the broken lines end at u.

o Notation of broken lines and their weighted count ngo”(u).

o ng(u)=1= ngoo” for u near D and f3p vanishing thimble.

o Compare the wall-crossing formula.

@ By induction on the number of bends of possible broken lines.
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Towards the Equivalence of AG/SG Mirrors

Theorem (Bouseau '19, Lau-Lee-L., '20)

The complex affine structure of the SYZ fibration of P?\ E
coincides with the one of Carl-Pomperla-Siebert.
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More on Y = P2

@ These lay out the foundation of the comparison of family Floer
mirror with the mirror constructed in Gross-Siebert program.

e W(L,) are those appear in Vianna's work after
Pascaleff-Tonkonog.

@ Limit of certain open GW of MI=0 with limiting boundary
condition to infinity coincides with closed GW with maximal
tangency together with the work of Grafnitz.

e Stability of FS(W) and counting of stable objects mirror to
geometric stability condition of D?(IP?) from the work of
Bousseau.
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The Easter Egg

Fun application in algebraic geometry:

Theorem (7 classical result)

Let E C P? be a smooth cubic curve. Then there exists

Z3 ® 73 C Aut(]P’2)

such that E is preserved.
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The Easter Egg

Fun application in algebraic geometry:

Theorem (7 classical result)

Let E C P? be a smooth cubic curve. Then there exists

Z3 ® 73 C Aut(]P’2)

such that E is preserved.

@ The corresponding rational elliptic surface Y is extremal lol3.
@  is meromorphic.
© 373 ® Z3 € Aut(Y) preserving 2 and . Uniqueness theorem!

@ The corresponding automorphisms of X extend over E.
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THANK YQOU!
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