SYZ Mirror Symmetry of Del Pezzo Surfaces

Yu-Shen Lin

Boston University

Mirror symmetry and related topics 2020, Kyoto University Dec 9, 2020

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

Outline of the Talk

- Set-up of the Geometry
- SYZ Fibrations of Del Pezzo Surfaces and their Dual Fibrations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2/26

• Applications to Enumerative Geometry

The Easter Egg

Del Pezzo Surfaces

• A compact complex surface Y is **del Pezzo** if $-K_Y$ is ample.

Del Pezzo Surfaces

- A compact complex surface Y is **del Pezzo** if $-K_Y$ is ample.
- Classification of surfaces \Rightarrow $Y \cong \mathbb{P}^1 \times \mathbb{P}^1$ or Bl(\mathbb{P}^2) at generic *d* points, $d = 1, \dots, 8$.
- d = (−K_Y)² is called the degree of the del Pezzo surface. Denote d = 8' for the case of P¹ × P¹.

Del Pezzo Surfaces

- A compact complex surface Y is **del Pezzo** if $-K_Y$ is ample.
- Classification of surfaces \Rightarrow $Y \cong \mathbb{P}^1 \times \mathbb{P}^1$ or $\mathsf{Bl}(\mathbb{P}^2)$ at generic *d* points, $d = 1, \cdots, 8$.
- d = (−K_Y)² is called the degree of the del Pezzo surface. Denote d = 8' for the case of P¹ × P¹.
- Every del Pezzo surface Y admits a smooth anti-canonical divisor D ∈ | − K_Y|.

• A rational elliptic surface (RES) \check{Y} is a rational surface with a minimal elliptic fibration.

- A rational elliptic surface (RES) \check{Y} is a rational surface with a minimal elliptic fibration.
- Any RES can be realized blow up possibly (infinitely near) 9 points on P².
- $K_{\check{Y}} \cong \mathcal{O}_{\check{Y}}(-\check{D})$, where \check{D} fibre. canonical bundle formula

- A rational elliptic surface (RES) \check{Y} is a rational surface with a minimal elliptic fibration.
- Any RES can be realized blow up possibly (infinitely near) 9 points on P².
- $K_{\check{Y}} \cong \mathcal{O}_{\check{Y}}(-\check{D})$, where \check{D} fibre. canonical bundle formula
- Possible singular fibres are classified by Kodaira, Perrson.
- An I_d fibre is an anti-canonical cycle consisting of a wheel of d (-2)-rational curves

(日)

Del Pezzo/RES as Log Calabi-Yau Pairs

- $Y = \text{del Pezzo surface}, D \in |-K_Y| \text{ smooth}$ $\exists \Omega \in H^0(Y, K_Y(-D)) \text{ non-vanishing mero. } (2,0)\text{-form.}$
- (Tian-Yau '90) \exists exact Ricci-flat metric ω on $X = Y \setminus D$ such that $2\omega^2 = \Omega \land \overline{\Omega}$.

Del Pezzo/RES as Log Calabi-Yau Pairs

- $Y = \text{del Pezzo surface}, D \in |-K_Y| \text{ smooth}$ $\exists \Omega \in H^0(Y, K_Y(-D)) \text{ non-vanishing mero. } (2,0)\text{-form.}$
- (Tian-Yau '90) ∃ exact Ricci-flat metric ω on X = Y \ D such that 2ω² = Ω ∧ Ω.
- $\check{Y} = \text{RES}, \ \check{D} = I_d$ fibre $\exists \check{\Omega} \in H^0(\check{Y}, K_{\check{Y}}(-\check{D}))$ non-vanishing mero. (2,0)-form.
- (Hein '12) \exists Ricci-flat metric $\check{\omega}$ on $\check{X} = \check{Y} \setminus \check{D}$ such that $2\check{\omega}^2 = \check{\Omega} \wedge \bar{\check{\Omega}}$.

◆□ → < @ → < E → < E → < E</p>

Del Pezzo/RES as Log Calabi-Yau Pairs

- $Y = \text{del Pezzo surface}, D \in |-K_Y| \text{ smooth}$ $\exists \Omega \in H^0(Y, K_Y(-D)) \text{ non-vanishing mero. } (2,0)\text{-form.}$
- (Tian-Yau '90) \exists exact Ricci-flat metric ω on $X = Y \setminus D$ such that $2\omega^2 = \Omega \wedge \overline{\Omega}$.
- $\check{Y} = \text{RES}, \ \check{D} = I_d$ fibre $\exists \check{\Omega} \in H^0(\check{Y}, K_{\check{Y}}(-\check{D}))$ non-vanishing mero. (2,0)-form.
- (Hein '12) \exists Ricci-flat metric $\check{\omega}$ on $\check{X} = \check{Y} \setminus \check{D}$ such that $2\check{\omega}^2 = \check{\Omega} \wedge \bar{\check{\Omega}}$.
- Both X and \check{X} are hyperKähler. $Sp(1) \cong SU(2)$

Deformation os Log CY Surfaces and Torelli Theorem

- (McMullen) The moduli space of (Y, D) is a fibration over j-line with fibres Hom(D[⊥], C^{*})/W, of dimension 10 − d.
- This is captured by the classical periods $\int \Omega$.

Deformation os Log CY Surfaces and Torelli Theorem

- (McMullen) The moduli space of (Y, D) is a fibration over j-line with fibres Hom(D[⊥], C^{*})/W, of dimension 10 − d.
- This is captured by the classical periods $\int \Omega$.
- (Gross-Hacking-Keel, Friedman) The moduli space of RES Y
 with an I_d fibre Ď is given by Hom(Ď[⊥], ℂ*)/W.

◆□ → < @ → < E → < E → < E</p>

- \exists distinguished pairs $(\check{Y}_e, \check{D}_e)$ with trivial periods in each deformation family for RES.
- This is captured by the classical periods $\int \check{\Omega}$.

Strominger-Yau-Zaslow Conjecture

Conjecture (Strominger-Yau-Zaslow '96)

- Calabi-Yau manifolds admit **special Lagrangian** torus fibration near large complex structure limit.
- Mirror Calabi-Yau are constructed by dual torus fibration.
- Mirror complex structure receives quantum correction from holomorphic discs with special Lagrangian fibre. boundary conditions.

イロト 不得 トイヨト イヨト

26

 (Harvey-Lawson '82) A submanifold L in X is special Lagrangian if ω|_L = 0, ImΩ|_L = 0.

Conjecture (Strominger-Yau-Zaslow '96)

- Calabi-Yau manifolds admit **special Lagrangian** torus fibration near large complex structure limit.
- Mirror Calabi-Yau are constructed by dual torus fibration.
- Mirror complex structure receives quantum correction from holomorphic discs with special Lagrangian fibre. boundary conditions.
- (Harvey-Lawson '82) A submanifold L in X is special Lagrangian if $\omega|_L = 0$, $\text{Im}\Omega|_L = 0$.
- Del Pezzo/RES cases are conjectured by Auroux '07.

 $Y = del Pezzo surface or RES, D \in |-K_Y|$ smooth. Then $X = Y \setminus D$ admits a special Lagrangian fibration with a special Lagrangian section with respect to the Tian-Yau metric.

<ロ> (四) (四) (三) (三) (三) (三)

Y=del Pezzo surface or RES, $D \in |-K_Y|$ smooth. Then $X = Y \setminus D$ admits a special Lagrangian fibration with a special Lagrangian section with respect to the Tian-Yau metric.

- This solves conjectures of Yau and Auroux '07.
 - $Y = \mathbb{P}^2$, with 3 nodal singular fibres.
 - For generic (Y, D) with Y rational elliptic surface, there are 12 singular fibres.
- The base is \mathbb{R}^2 by uniformization theorem and theorem of Yau.

Let \check{X} be a suitable hypKähler rotation of X. $\check{\omega} = Re\Omega, \quad \check{\Omega} = Im\Omega + i\omega.$

Then \check{X} compactified to a RES \check{Y} by adding an I_d fibre at infinity, where $d = (-K_Y)^2$.

<ロト <回ト < 回ト < 回ト < 回ト

Let \check{X} be a suitable hypKähler rotation of X. $\check{\omega} = Re\Omega, \quad \check{\Omega} = Im\Omega + i\omega.$

Then \check{X} compactified to a RES \check{Y} by adding an I_d fibre at infinity, where $d = (-K_Y)^2$.

- (Auroux-Kartzarkov-Orlov '05) showed that the above is the compactification of the Landau-Ginzburg mirror of Y.
 D^bCoh(Y) ≅ FS(W)
- The correspondence respects the deformation families.

The mirror symmetry of log Calabi-Yau surfaces (\check{Y}, \check{D}) are studied by Gross-Hacking-Keel when \check{D} is maximal degenerate.

Theorem (Collins-Jacob-L)

Let $\check{Y} = RES$ and $\check{D} = I_d$ singular fibre. Then $\check{X} = \check{Y} \setminus \check{D}$ admits a special Lagrangian fibration. Moreover, a suitable hyperKähler rotation $X' \to \mathbb{C}$ can be compactified to a rational elliptic surface Y' by adding an I_d singular fibre.

The mirror symmetry of log Calabi-Yau surfaces (\check{Y}, \check{D}) are studied by Gross-Hacking-Keel when \check{D} is maximal degenerate.

Theorem (Collins-Jacob-L)

Let $\check{Y} = RES$ and $\check{D} = I_d$ singular fibre. Then $\check{X} = \check{Y} \setminus \check{D}$ admits a special Lagrangian fibration. Moreover, a suitable hyperKähler rotation $X' \to \mathbb{C}$ can be compactified to a rational elliptic surface Y' by adding an I_d singular fibre.

• The complex affine structure on the base is asymptotically to that of Gross-Hacking-Keel.

イロト イロト イヨト イヨト 三日

The mirror symmetry of log Calabi-Yau surfaces (\check{Y}, \check{D}) are studied by Gross-Hacking-Keel when \check{D} is maximal degenerate.

Theorem (Collins-Jacob-L)

Let $\check{Y} = RES$ and $\check{D} = I_d$ singular fibre. Then $\check{X} = \check{Y} \setminus \check{D}$ admits a special Lagrangian fibration. Moreover, a suitable hyperKähler rotation $X' \to \mathbb{C}$ can be compactified to a rational elliptic surface Y' by adding an I_d singular fibre.

- The complex affine structure on the base is asymptotically to that of Gross-Hacking-Keel.
- It is natural to expect that it is the mirror SYZ fibraton.

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence.

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence.
 Caveat: the geometry is degenerate!

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence.
 Caveat: the geometry is degenerate!
- The deformation of a special Lagrangian tori covered the non-compact Calabi-Yau surface via *J*-holo. curves theory.

<ロ> (四) (四) (三) (三) (三) (三)

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence.
 Caveat: the geometry is degenerate!
- The deformation of a special Lagrangian tori covered the non-compact Calabi-Yau surface via *J*-holo. curves theory.
 - (Closedness) Sacks-Uhlenbeck-Gromov compactness theorem for the degenerate geometry.
 - Openness) Classification of possible singular fibres and analysis the their local deformations.

• A hidden difficulty: to define the Kähler moduli \check{K}_{Kah} .

• A hidden difficulty: to define the Kähler moduli \check{K}_{Kah} .

Theorem (Collins-Jacob-L.)

 $\check{Y} = RES$ and $\check{D} = I_d$ fibre. If ω_1, ω_2 two Ricci-flat metrics on $\check{X} = \check{Y} \setminus \check{D}$ such that $\omega_1^2 = \omega_2^2$, $[\omega_1]_{dR} = [\omega_2]_{dR}$ and asymptotic to the some semi-flat metric $\omega_{sf,\epsilon}^i$ with **polynomial decay**. Then $\omega_1 = \omega_2$.

• A hidden difficulty: to define the Kähler moduli \check{K}_{Kah} .

Theorem (Collins-Jacob-L.)

 $\check{Y} = RES$ and $\check{D} = I_d$ fibre. If ω_1, ω_2 two Ricci-flat metrics on $\check{X} = \check{Y} \setminus \check{D}$ such that $\omega_1^2 = \omega_2^2$, $[\omega_1]_{dR} = [\omega_2]_{dR}$ and asymptotic to the some semi-flat metric $\omega_{sf,\epsilon}^i$ with **polynomial decay**. Then $\omega_1 = \omega_2$.

 $\check{\mathcal{M}}_{Kah} := \{\mathsf{CY} \text{ metrics asymptotic to } \omega_{sf,\epsilon}\}/\mathsf{Aut}_0(\check{X}),$

(日) (圖) (E) (E) (E)

12 / 26

which is a cone with non-empty interior in $H^2(\check{X}, \mathbb{R}) \sim \mathbb{R}^{11-d}$.

SYZ Mirror Symmetry between Del Pezzo surfaces & RES

Theorem (Collins-Jacob-L.)

Under the mirror map near LCSL, $\mathcal{M}_{cpx} \longrightarrow \check{K}_{Kah}$

$$PD([\sigma_q]) + \Omega_q \mapsto \check{\mathbf{B}}_{\check{q}(q)} + i \frac{m[\check{\omega}_{\check{q}(q)}]}{\alpha_{\check{q}(q)}}$$
$$Im\tau_q = m\alpha_{\check{q}(q)},$$

the special Lagrangian fibration in dPs and RES

exchange the complex and symplectic affine structures, and

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

13 / 26

2 the volume of the fibres are inverse to each other.

 $\alpha_{\check{q}(q)}$ is the additional variable in \check{K}_{Kah} .

- **Gravitational instantons** are complete hyperKähler metrics, introduced by Hawking for Euclidean quantum gravity.
- They are labeled by ALE, ALF, ALG, ALH from the volume growth r^4 , r^3 , r^2 , r.

- Gravitational instantons are complete hyperKähler metrics, introduced by Hawking for Euclidean quantum gravity.
- They are labeled by ALE, ALF, ALG, ALH from the volume growth r^4 , r^3 , r^2 , r.
- (Chen-Chen '15) Classification of gravitational instantons with faster than quadratic curvature decay.

- Gravitational instantons are complete hyperKähler metrics, introduced by Hawking for Euclidean quantum gravity.
- They are labeled by ALE, ALF, ALG, ALH from the volume growth r^4 , r^3 , r^2 , r.
- (Chen-Chen '15) Classification of gravitational instantons with faster than quadratic curvature decay.
- (Hein '12) New gravitational instantons from RES of volume growth r^2 , $r^{4/3}$ labeled as ALG*, ALH*, which curvature have no quadratic decay.

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

- Take \check{X} as in the 2nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X} .

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

- Take \check{X} as in the 2nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X} .
- The special Lagrangian tori in X hyperKähler rotate back to X to be special Lagrangian tori but with phase π/2.

イロト イロト イヨト イヨト 三日

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

- Take \check{X} as in the 2nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X} .
- D ≃ Z/(Z ⊕ aZi), a ∈ R₊ and leads to a contradiction for general choice of D.

Mirror Symmetry and Enumerative Geometry

- Fano manifold Y ↔ Landau-Ginzburg superpotential
 W : Ỹ → C, where W is a holomorphic function.
- W captures the enumerative/symplectic geometry of Y.

- Fano manifold Y ↔ Landau-Ginzburg superpotential
 W : Ỹ → C, where W is a holomorphic function.
- W captures the enumerative/symplectic geometry of Y.
 - $QH^*(Y) \cong Jac(W) \Leftarrow Fuk(X) \cong D^bSing(W) \cong MF(W).$
 - 2 $FS(W) \cong D^bCoh(Y)$.
 - $SH^*(Y \setminus D) \cong PV^*(\check{Y}) \Leftarrow D^b W(Y \setminus D) \cong D^b Coh(\check{Y}).$
 - Quantum periods $\int e^{tW} \Omega$ recover the generating function of descending Gromov-Witten invariant of Y.

◆□ → < @ → < E → < E → < E</p>

17 / 26

5 ...

- Fano manifold Y ↔ Landau-Ginzburg superpotential
 W : Ỹ → C, where W is a holomorphic function.
- W captures the enumerative/symplectic geometry of Y.
 - $QH^*(Y) \cong Jac(W) \Leftarrow Fuk(X) \cong D^bSing(W) \cong MF(W).$
 - 2 $FS(W) \cong D^bCoh(Y)$.
 - $SH^*(Y \setminus D) \cong PV^*(\check{Y}) \Leftarrow D^b \mathcal{W}(Y \setminus D) \cong D^b Coh(\check{Y}).$
 - Quantum periods $\int e^{tW} \Omega$ recover the generating function of descending Gromov-Witten invariant of Y.

◆□ → < @ → < E → < E → < E</p>

- 5
- How do we compute the LG superpotential?

Superpotential from Lagrangian Floer theory

- (Givental, Hori-Vafa) Y =toric Fano, formula for W.
- (Cho-Oh) Y toric Fano, L = moment torus fibre, then $W = W^{LF}(L)$.

Write $b = \sum x_i e_i \in H^1(L, \Lambda_+)$ wrt basis e_i of $H^1(L, \mathbb{Z})$, then $m(e^b) = \sum_k m_k(b, \cdots, b) = W^{LF}(b)\mathbf{1}_L$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Superpotential from Lagrangian Floer theory

- (Givental, Hori-Vafa) Y = toric Fano, formula for W.
- (Cho-Oh) Y toric Fano, L = moment torus fibre, then $W = W^{LF}(L).$

Write $b = \sum x_i e_i \in H^1(L, \Lambda_+)$ wrt basis e_i of $H^1(L, \mathbb{Z})$, then $m(e^b) = \sum_k m_k(b, \cdots, b) = W^{LF}(b)\mathbf{1}_L$.

• Write $z_i = e^{x_i}$ and for $\gamma \in H_2(Y, L)$ write $z^{\partial \gamma} = \prod_i z_i^{\langle \partial \gamma, e_i \rangle}$. Then

$$W(z_1,\cdots,z_n)=\sum_{\beta:MI(\beta)=2}n_{\beta}T^{\omega(\beta)}z^{\partial\beta},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

18 / 26

where $n_{\beta} := \int_{[\mathcal{M}_1(X,L;\beta)]^{vir}} 1.$

 ω_{TY} blows up near D and thus not the correct symplectic form.

 ω_{TY} blows up near D and thus not the correct symplectic form.

19/26

Lemma (L- '19) $\exists U_i \nearrow B \text{ and } \omega_i \text{ K\"ahler forms on } Y \text{ such that}$ $\bullet \omega_i|_{\pi^{-1}(U_i)} = \omega_{TY}$ $\bullet [\omega_i] = k_i c_1(Y) \text{ with } k_i \nearrow \infty.$

• L_u are Lagrangian wrt ω_i for $i \gg 0$.

 ω_{TY} blows up near D and thus not the correct symplectic form.

Lemma (L- '19) $\exists U_i \nearrow B \text{ and } \omega_i \text{ K\"ahler forms on } Y \text{ such that}$ $\bullet \omega_i|_{\pi^{-1}(U_i)} = \omega_{TY}$ $\bullet [\omega_i] = k_i c_1(Y) \text{ with } k_i \nearrow \infty.$

- L_u are Lagrangian wrt ω_i for $i \gg 0$.
- Together with the computation of $W(L_u)$ later, this is a realization of the renormalization procedure proposed by Hori-Vafa and Auroux.

Wall-Crossing of the Superpotentials (FOOO)

• A_{∞} structure $\{m_k\}$ on $H^*(L_u)$ with Maurer-Cartan space

 $\mathcal{MC}_{weak}(L_u) := \{b \in H^1(L_u, \Lambda_+) | m(e^b) = c \mathbf{1}_L \} / \sim \cong H^1(L_u, \Lambda_+).$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Wall-Crossing of the Superpotentials (FOOO)

• A_{∞} structure $\{m_k\}$ on $H^*(L_u)$ with Maurer-Cartan space

$$\mathcal{MC}_{weak}(L_u) := \{b \in H^1(L_u, \Lambda_+) | m(e^b) = c \mathbf{1}_L \} / \sim \cong H^1(L_u, \Lambda_+).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

20 / 26

• (Fukaya's trick) ϕ path from u_- to u_+ , the pseudo-isotpy of A_{∞} structures of $H^*(L_{u_{\pm}})$ induces $F_{\phi} : H^1(L_{u_-}) \cong H^1(L_{u_+})$ (without flux), where F_{ϕ} records holo. discs of Maslov index zero with $F_{\phi} \equiv id(\text{mod}\Lambda_+)$.

Wall-Crossing of the Superpotentials (FOOO)

• A_{∞} structure $\{m_k\}$ on $H^*(L_u)$ with Maurer-Cartan space

$$\mathcal{MC}_{weak}(L_u) := \{b \in H^1(L_u, \Lambda_+) | m(e^b) = c \mathbf{1}_L \} / \sim \cong H^1(L_u, \Lambda_+).$$

- (Fukaya's trick) ϕ path from u_- to u_+ , the pseudo-isotpy of A_{∞} structures of $H^*(L_{u_{\pm}})$ induces $F_{\phi} : H^1(L_{u_-}) \cong H^1(L_{u_+})$ (without flux), where F_{ϕ} records holo. discs of Maslov index zero with $F_{\phi} \equiv id(\text{mod}\Lambda_+)$.
- If no negative Maslov index discs, $u_{-} = u_{+}$ and ϕ is contractible, then $F_{\phi} = id$.
- (wall-crossing formula) $W(b; u_{-}) = W(F_{\phi}(b); u_{+}).$

Wall-Crossing w/ SLAG Fibration in CY Surfaces

- (Hitchin) \exists integral affine structure on B_0 .
- L_t bound MI=0 discs of $\gamma \in H_2(X, L_t)$, then L_t sit above an affine line I_{γ} . Advantage of SLag fibration!

Wall-Crossing w/ SLAG Fibration in CY Surfaces

- (Hitchin) \exists integral affine structure on B_0 .
- L_t bound MI=0 discs of $\gamma \in H_2(X, L_t)$, then L_t sit above an affine line I_{γ} . Advantage of SLag fibration!

Theorem (L-'17)

In the surface case, if ϕ goes across I_{γ} , then

$$F_{\phi}: z^{\partial \gamma'} \mapsto z^{\partial \gamma'} f_{\gamma}^{\langle \gamma', \gamma
angle}, \quad \log f_{\gamma}(u) = \sum_{d \geq 1} d \tilde{\Omega}(d\gamma; u) z^{d\gamma},$$

where $\tilde{\Omega}(\gamma; u)$ denotes the weighted count of MI=0 tropical discs.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □

Wall-Crossing w/ SLAG Fibration in CY Surfaces

- (Hitchin) \exists integral affine structure on B_0 .
- L_t bound MI=0 discs of γ ∈ H₂(X, L_t), then L_t sit above an affine line I_γ. Advantage of SLag fibration!

Theorem (L-'17)

In the surface case, if ϕ goes across I_{γ} , then

$$F_{\phi}: z^{\partial \gamma'} \mapsto z^{\partial \gamma'} f_{\gamma}^{\langle \gamma', \gamma
angle}, \quad \log f_{\gamma}(u) = \sum_{d \geq 1} d ilde{\Omega}(d\gamma; u) z^{d\gamma},$$

where $\tilde{\Omega}(\gamma; u)$ denotes the weighted count of MI=0 tropical discs.

21 / 26

This is the form of the Kontsevich-Soibelman transformation.

Theorem (L-'20)

 $n_{\beta}(u) = n_{\beta}^{trop}(u)$, the weighted count of the broken lines end at u.

(中) (월) (문) (문) (문)

Theorem (L-'20) $n_{\beta}(u) = n_{\beta}^{trop}(u)$, the weighted count of the broken lines end at u.

- Notation of broken lines and their weighted count $n_{\beta}^{trop}(u)$.
- $n_{\beta_0}(u) = 1 = n_{\beta_0}^{trop}$ for u near D and β_0 vanishing thimble.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Theorem (L-'20) $n_{\beta}(u) = n_{\beta}^{trop}(u)$, the weighted count of the broken lines end at u.

- Notation of broken lines and their weighted count $n_{\beta}^{trop}(u)$.
- $n_{\beta_0}(u) = 1 = n_{\beta_0}^{trop}$ for u near D and β_0 vanishing thimble.
- Compare the wall-crossing formula.
- By induction on the number of bends of possible broken lines.

(日) (四) (日) (日) (日)

Towards the Equivalence of AG/SG Mirrors

Theorem (Bouseau '19, Lau-Lee-L., '20)

The complex affine structure of the SYZ fibration of $\mathbb{P}^2 \setminus E$ coincides with the one of Carl-Pomperla-Siebert.

। ▶ • @ ▶ • ≣ ▶ • ≣ • ⊃ २०० 23 / 26

More on $Y = \mathbb{P}^2$

- These lay out the foundation of the comparison of family Floer mirror with the mirror constructed in Gross-Siebert program.
- $W(L_u)$ are those appear in Vianna's work after Pascaleff-Tonkonog.
- Limit of certain open GW of MI=0 with limiting boundary condition to infinity coincides with closed GW with maximal tangency together with the work of Gräfnitz.
- Stability of FS(W) and counting of stable objects mirror to geometric stability condition of D^b(ℙ²) from the work of Bousseau.

Fun application in algebraic geometry:

Theorem (? classical result) Let $E \subseteq \mathbb{P}^2$ be a smooth cubic curve. Then there exists $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \subseteq Aut(\mathbb{P}^2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

25 / 26

such that E is preserved.

Fun application in algebraic geometry:

Theorem (? classical result) Let $E \subseteq \mathbb{P}^2$ be a smooth cubic curve. Then there exists $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \subseteq Aut(\mathbb{P}^2)$

such that E is preserved.

The corresponding rational elliptic surface Ỹ is extremal I₉I₁³.
Δ̃ is meromorphic.

(日) (圖) (E) (E) (E)

Fun application in algebraic geometry:

Theorem (? classical result) Let $E \subseteq \mathbb{P}^2$ be a smooth cubic curve. Then there exists $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \subseteq Aut(\mathbb{P}^2)$

such that E is preserved.

- The corresponding rational elliptic surface Ỹ is extremal I₉I₁³.
 Δ̃ is meromorphic.
- $\ \, {\bf 3}\mathbb Z_3\oplus\mathbb Z_3\in {\rm Aut}(\check{Y}) \ {\rm preserving} \ \check{\Omega} \ {\rm and} \ \check{\omega}. \ {\rm Uniqueness} \ {\rm theorem}!$
- The corresponding automorphisms of X extend over E.

THANK YOU!

<ロト < 団ト < 臣ト < 臣ト < 臣ト 三 つへで 26 / 26