SYZ Mirror Symmetry of Del Pezzo Surfaces

Yu-Shen Lin

Boston University

Mirror symmetry and related topics 2020, Kyoto University
Dec 9, 2020

Outline of the Talk

- Set-up of the Geometry
- SYZ Fibrations of Del Pezzo Surfaces and their Dual Fibrations
- Applications to Enumerative Geometry

The Easter Egg

Del Pezzo Surfaces

- A compact complex surface Y is del Pezzo if $-K_{Y}$ is ample.

Del Pezzo Surfaces

- A compact complex surface Y is del Pezzo if $-K_{Y}$ is ample.
- Classification of surfaces \Rightarrow $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ or $\mathrm{Bl}\left(\mathbb{P}^{2}\right)$ at generic d points, $d=1, \cdots, 8$.
- $d=\left(-K_{Y}\right)^{2}$ is called the degree of the del Pezzo surface. Denote $d=8^{\prime}$ for the case of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Del Pezzo Surfaces

- A compact complex surface Y is del Pezzo if $-K_{Y}$ is ample.
- Classification of surfaces \Rightarrow $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ or $\mathrm{Bl}\left(\mathbb{P}^{2}\right)$ at generic d points, $d=1, \cdots, 8$.
- $d=\left(-K_{Y}\right)^{2}$ is called the degree of the del Pezzo surface. Denote $d=8^{\prime}$ for the case of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- Every del Pezzo surface Y admits a smooth anti-canonical divisor $D \in\left|-K_{Y}\right|$.

Rational Elliptic Surfaces

- A rational elliptic surface (RES) \check{Y} is a rational surface with a minimal elliptic fibration.

Rational Elliptic Surfaces

- A rational elliptic surface (RES) \check{Y} is a rational surface with a minimal elliptic fibration.
- Any RES can be realized blow up possibly (infinitely near) 9 points on \mathbb{P}^{2}.
- $K_{\check{Y}} \cong \mathcal{O}_{\check{Y}}(-\check{D})$, where \check{D} fibre. canonical bundle formula

Rational Elliptic Surfaces

- A rational elliptic surface (RES) \check{Y} is a rational surface with a minimal elliptic fibration.
- Any RES can be realized blow up possibly (infinitely near) 9 points on \mathbb{P}^{2}.
- $K_{\check{Y}} \cong \mathcal{O}_{\check{Y}}(-\check{D})$, where \check{D} fibre. canonical bundle formula
- Possible singular fibres are classified by Kodaira, Perrson.
- An I_{d} fibre is an anti-canonical cycle consisting of a wheel of $d(-2)$-rational curves

Del Pezzo/RES as Log Calabi-Yau Pairs

- $Y=$ del Pezzo surface, $D \in\left|-K_{Y}\right|$ smooth $\exists \Omega \in H^{0}\left(Y, K_{Y}(-D)\right)$ non-vanishing mero. $(2,0)$-form.
- (Tian-Yau '90) \exists exact Ricci-flat metric ω on $X=Y \backslash D$ such that $2 \omega^{2}=\Omega \wedge \bar{\Omega}$.

Del Pezzo/RES as Log Calabi-Yau Pairs

- $Y=$ del Pezzo surface, $D \in\left|-K_{Y}\right|$ smooth $\exists \Omega \in H^{0}\left(Y, K_{Y}(-D)\right)$ non-vanishing mero. (2,0)-form.
- (Tian-Yau '90) \exists exact Ricci-flat metric ω on $X=Y \backslash D$ such that $2 \omega^{2}=\Omega \wedge \bar{\Omega}$.
- $\check{Y}=$ RES,$\check{D}=I_{d}$ fibre
$\exists \check{\Omega} \in H^{0}\left(\check{Y}, K_{\check{Y}}(-\check{D})\right)$ non-vanishing mero. (2, 0)-form.
- (Hein '12) \exists Ricci-flat metric $\check{\omega}$ on $\check{X}=\check{Y} \backslash \check{D}$ such that $2 \breve{\omega}^{2}=\check{\Omega} \wedge \bar{\Omega}$.

Del Pezzo/RES as Log Calabi-Yau Pairs

- $Y=$ del Pezzo surface, $D \in\left|-K_{Y}\right|$ smooth $\exists \Omega \in H^{0}\left(Y, K_{Y}(-D)\right)$ non-vanishing mero. (2, 0)-form.
- (Tian-Yau '90) \exists exact Ricci-flat metric ω on $X=Y \backslash D$ such that $2 \omega^{2}=\Omega \wedge \bar{\Omega}$.
- $\check{Y}=$ RES,$\check{D}=I_{d}$ fibre
$\exists \check{\Omega} \in H^{0}\left(\check{Y}, K_{\check{Y}}(-\check{D})\right)$ non-vanishing mero. (2, 0)-form.
- (Hein '12) \exists Ricci-flat metric $\check{\omega}$ on $\check{X}=\check{Y} \backslash \check{D}$ such that $2 \breve{\omega}^{2}=\check{\Omega} \wedge \bar{\Omega}$.
- Both X and \check{X} are hyperKähler. $S p(1) \cong S U(2)$

Deformation os Log CY Surfaces and Torelli Theorem

- (McMullen) The moduli space of (Y, D) is a fibration over j-line with fibres $\operatorname{Hom}\left(D^{\perp}, \mathbb{C}^{*}\right) / W$, of dimension $10-d$.
- This is captured by the classical periods $\int \Omega$.

Deformation os Log CY Surfaces and Torelli Theorem

- (McMullen) The moduli space of (Y, D) is a fibration over j-line with fibres $\operatorname{Hom}\left(D^{\perp}, \mathbb{C}^{*}\right) / W$, of dimension $10-d$.
- This is captured by the classical periods $\int \Omega$.
- (Gross-Hacking-Keel, Friedman) The moduli space of RES \check{Y} with an I_{d} fibre \check{D} is given by $\operatorname{Hom}\left(\check{D}^{\perp}, \mathbb{C}^{*}\right) / \check{W}$.
- \exists distinguished pairs $\left(\check{Y}_{e}, \check{D}_{e}\right)$ with trivial periods in each deformation family for RES.
- This is captured by the classical periods $\int \check{\Omega}$.

Strominger-Yau-Zaslow Conjecture

Conjecture (Strominger-Yau-Zaslow '96)

- Calabi-Yau manifolds admit special Lagrangian torus fibration near large complex structure limit.
- Mirror Calabi-Yau are constructed by dual torus fibration.
- Mirror complex structure receives quantum correction from holomorphic discs with special Lagrangian fibre. boundary conditions.
- (Harvey-Lawson '82) A submanifold L in X is special Lagrangian if $\left.\omega\right|_{L}=0,\left.\operatorname{Im} \Omega\right|_{L}=0$.

Strominger-Yau-Zaslow Conjecture

Conjecture (Strominger-Yau-Zaslow '96)

- Calabi-Yau manifolds admit special Lagrangian torus fibration near large complex structure limit.
- Mirror Calabi-Yau are constructed by dual torus fibration.
- Mirror complex structure receives quantum correction from holomorphic discs with special Lagrangian fibre. boundary conditions.
- (Harvey-Lawson '82) A submanifold L in X is special Lagrangian if $\left.\omega\right|_{L}=0,\left.\operatorname{lm} \Omega\right|_{L}=0$.
- Del Pezzo/RES cases are conjectured by Auroux '07.

New Special Lagrangian Fibrations I

Theorem (Collins-Jacob-L. '19)
$Y=$ del Pezzo surface or RES, $D \in\left|-K_{Y}\right|$ smooth.
Then $X=Y \backslash D$ admits a special Lagrangian fibration with a special Lagrangian section with respect to the Tian-Yau metric.

New Special Lagrangian Fibrations I

Theorem (Collins-Jacob-L. '19)
$Y=$ del Pezzo surface or RES, $D \in\left|-K_{Y}\right|$ smooth.
Then $X=Y \backslash D$ admits a special Lagrangian fibration with a special Lagrangian section with respect to the Tian-Yau metric.

- This solves conjectures of Yau and Auroux '07.
(1) $Y=\mathbb{P}^{2}$, with 3 nodal singular fibres.
(2) For generic (Y, D) with Y rational elliptic surface, there are 12 singular fibres.
- The base is \mathbb{R}^{2} by uniformization theorem and theorem of Yau.

HK Rotation connecting dP/RES

Theorem (Collins-Jacob-L. '19)
Let \check{X} be a suitable hypKähler rotation of X.

$$
\check{\omega}=\operatorname{Re} \Omega, \quad \check{\Omega}=\operatorname{Im} \Omega+i \omega .
$$

Then \check{X} compactified to a RES \check{Y} by adding an I_{d} fibre at infinity, where $d=\left(-K_{Y}\right)^{2}$.

HK Rotation connecting dP/RES

Theorem (Collins-Jacob-L. '19)

Let \check{X} be a suitable hypKähler rotation of X.

$$
\check{\omega}=\operatorname{Re} \Omega, \quad \check{\Omega}=\operatorname{Im} \Omega+i \omega .
$$

Then \check{X} compactified to a RES \check{Y} by adding an I_{d} fibre at infinity, where $d=\left(-K_{Y}\right)^{2}$.

- (Auroux-Kartzarkov-Orlov '05) showed that the above is the compactification of the Landau-Ginzburg mirror of Y.

$$
D^{b} \operatorname{Coh}(Y) \cong F S(W)
$$

- The correspondence respects the deformation families.

New Special Lagrangian Fibrations II

The mirror symmetry of \log Calabi-Yau surfaces (\check{Y}, \check{D}) are studied by Gross-Hacking-Keel when \check{D} is maximal degenerate.

Theorem (Collins-Jacob-L)
Let $\check{Y}=R E S$ and $\check{D}=I_{d}$ singular fibre. Then $\check{X}=\check{Y} \backslash \check{D}$ admits a special Lagrangian fibration. Moreover, a suitable hyperKähler rotation $X^{\prime} \rightarrow \mathbb{C}$ can be compactified to a rational elliptic surface Y^{\prime} by adding an I_{d} singular fibre.

New Special Lagrangian Fibrations II

The mirror symmetry of \log Calabi-Yau surfaces (\check{Y}, \check{D}) are studied by Gross-Hacking-Keel when \check{D} is maximal degenerate.

Theorem (Collins-Jacob-L)
Let $\check{Y}=$ RES and $\check{D}=I_{d}$ singular fibre. Then $\check{X}=\check{Y} \backslash \check{D}$ admits a special Lagrangian fibration. Moreover, a suitable hyperKähler rotation $X^{\prime} \rightarrow \mathbb{C}$ can be compactified to a rational elliptic surface Y^{\prime} by adding an I_{d} singular fibre.

- The complex affine structure on the base is asymptotically to that of Gross-Hacking-Keel.

New Special Lagrangian Fibrations II

The mirror symmetry of \log Calabi-Yau surfaces (\check{Y}, \check{D}) are studied by Gross-Hacking-Keel when \check{D} is maximal degenerate.

Theorem (Collins-Jacob-L)
Let $\check{Y}=$ RES and $\check{D}=I_{d}$ singular fibre. Then $\check{X}=\check{Y} \backslash \check{D}$ admits a special Lagrangian fibration. Moreover, a suitable hyperKähler rotation $X^{\prime} \rightarrow \mathbb{C}$ can be compactified to a rational elliptic surface Y^{\prime} by adding an I_{d} singular fibre.

- The complex affine structure on the base is asymptotically to that of Gross-Hacking-Keel.
- It is natural to expect that it is the mirror SYZ fibraton.

Idea of the proof

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence.

Idea of the proof

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence. Caveat: the geometry is degenerate!

Idea of the proof

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence. Caveat: the geometry is degenerate!
- The deformation of a special Lagrangian tori covered the non-compact Calabi-Yau surface via J-holo. curves theory.

Idea of the proof

- Construct a special Lagrangian torus for the model geometry (Calabi ansatz, semi-flat metric).
- Run Lagrangian mean curvature flow on the model special Lagrangian and prove convergence. Caveat: the geometry is degenerate!
- The deformation of a special Lagrangian tori covered the non-compact Calabi-Yau surface via J-holo. curves theory.
(1) (Closedness) Sacks-Uhlenbeck-Gromov compactness theorem for the degenerate geometry.
(2) (Openness) Classification of possible singular fibres and analysis the their local deformations.

Kähler moduli of RESs

- A hidden difficulty: to define the Kähler moduli $\check{K}_{K a h}$.

Kähler moduli of RESs

- A hidden difficulty: to define the Kähler moduli $\check{K}_{K a h}$.

Theorem (Collins-Jacob-L.)

$\check{Y}=$ RES and $\check{D}=I_{d}$ fibre. If ω_{1}, ω_{2} two Ricci-flat metrics on $\check{X}=\check{Y} \backslash \check{D}$ such that $\omega_{1}^{2}=\omega_{2}^{2},\left[\omega_{1}\right]_{d R}=\left[\omega_{2}\right]_{d R}$ and asymptotic to the some semi-flat metric $\omega_{\text {sf }, \epsilon}^{i}$ with polynomial decay. Then $\omega_{1}=\omega_{2}$.

Kähler moduli of RESs

- A hidden difficulty: to define the Kähler moduli $\check{K}_{K a h}$.

Theorem (Collins-Jacob-L.)

$\check{Y}=$ RES and $\check{D}=I_{d}$ fibre. If ω_{1}, ω_{2} two Ricci-flat metrics on $\check{X}=\check{Y} \backslash \check{D}$ such that $\omega_{1}^{2}=\omega_{2}^{2},\left[\omega_{1}\right]_{d R}=\left[\omega_{2}\right]_{d R}$ and asymptotic to the some semi-flat metric $\omega_{\text {sf }, \epsilon}^{i}$ with polynomial decay. Then $\omega_{1}=\omega_{2}$.
$\tilde{\mathcal{M}}_{\text {Kah }}:=\left\{\mathrm{CY}\right.$ metrics asympototic to $\left.\omega_{\text {sf }, \epsilon}\right\} / \operatorname{Aut}_{0}(\check{X})$, which is a cone with non-empty interior in $H^{2}(\check{X}, \mathbb{R}) \sim \mathbb{R}^{11-d}$.

SYZ Mirror Symmetry between Del Pezzo surfaces \& RES

Theorem (Collins-Jacob-L.)
Under the mirror map near LCSL, $\mathcal{M}_{c p x} \longrightarrow \check{K}_{K a h}$

$$
\begin{aligned}
P D\left(\left[\sigma_{q}\right]\right)+\Omega_{q} & \mapsto \check{\mathbf{B}}_{\check{q}(q)}+i \frac{m\left[\check{\omega}_{\check{q}(q)}\right]}{\alpha_{\check{q}(q)}} \\
I m \tau_{q} & =m \alpha_{\check{q}(q)},
\end{aligned}
$$

the special Lagrangian fibration in dPs and RES
(1) exchange the complex and symplectic affine structures, and
(2) the volume of the fibres are inverse to each other.
$\alpha_{\check{q}(q)}$ is the additional variable in $\check{K}_{\text {Kah }}$.

Gravitational Instantons

- Gravitational instantons are complete hyperKähler metrics, introduced by Hawking for Euclidean quantum gravity.
- They are labeled by ALE, ALF, ALG, ALH from the volume growth r^{4}, r^{3}, r^{2}, r.

Gravitational Instantons

- Gravitational instantons are complete hyperKähler metrics, introduced by Hawking for Euclidean quantum gravity.
- They are labeled by ALE, ALF, ALG, ALH from the volume growth r^{4}, r^{3}, r^{2}, r.
- (Chen-Chen '15) Classification of gravitational instantons with faster than quadratic curvature decay.

Gravitational Instantons

- Gravitational instantons are complete hyperKähler metrics, introduced by Hawking for Euclidean quantum gravity.
- They are labeled by ALE, ALF, ALG, ALH from the volume growth r^{4}, r^{3}, r^{2}, r.
- (Chen-Chen '15) Classification of gravitational instantons with faster than quadratic curvature decay.
- (Hein '12) New gravitational instantons from RES of volume growth $r^{2}, r^{4 / 3}$ labeled as ALG*, ALH*, which curvature have no quadratic decay.

Application to "New" Gravitational Instantons

Theorem (Collins-Jacob-L.)
Given ($\check{Y}, \check{D})$, there exists an extra \mathbb{R}-family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z}.

Application to "New" Gravitational Instantons

Theorem (Collins-Jacob-L.)

Given (\check{Y}, \check{D}), there exists an extra \mathbb{R}-family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z}.

- Take \check{X} as in the 2 nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X}.

Application to "New" Gravitational Instantons

Theorem (Collins-Jacob-L.)

Given (\check{Y}, \check{D}), there exists an extra \mathbb{R}-family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z}.

- Take \check{X} as in the 2 nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X}.
- The special Lagrangian tori in \check{X} hyperKähler rotate back to X to be special Lagrangian tori but with phase $\pi / 2$.

Application to "New" Gravitational Instantons

Theorem (Collins-Jacob-L.)

Given (\check{Y}, \check{D}), there exists an extra \mathbb{R}-family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z}.

- Take \check{X} as in the 2 nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X}.
- The special Lagrangian tori in \check{X} hyperKähler rotate back to X to be special Lagrangian tori but with phase $\pi / 2$.
- $D \cong \mathbb{Z} /(\mathbb{Z} \oplus a \mathbb{Z} i), a \in \mathbb{R}_{+}$and leads to a contradiction for general choice of D.

Mirror Symmetry and Enumerative Geometry

Mirror Symmetry for Fano Manifolds

- Fano manifold $Y \leftrightarrow$ Landau-Ginzburg superpotential $W: \check{Y} \rightarrow \mathbb{C}$, where W is a holomorphic function.
- W captures the enumerative/symplectic geometry of Y.

Mirror Symmetry for Fano Manifolds

- Fano manifold $Y \leftrightarrow$ Landau-Ginzburg superpotential $W: \check{Y} \rightarrow \mathbb{C}$, where W is a holomorphic function.
- W captures the enumerative/symplectic geometry of Y.
(1) $Q H^{*}(Y) \cong \operatorname{Jac}(W) \Leftarrow \operatorname{Fuk}(X) \cong D^{b} \operatorname{Sing}(W) \cong M F(W)$.
(2) $F S(W) \cong D^{b} \operatorname{Coh}(Y)$.
(3) $S H^{*}(Y \backslash D) \cong P V^{*}(\check{Y}) \Leftarrow D^{b} \mathcal{W}(Y \backslash D) \cong D^{b} \operatorname{Coh}(\check{Y})$.
(9) Quantum periods $\int e^{t W} \Omega$ recover the generating function of descending Gromov-Witten invariant of Y.
©
.....

Mirror Symmetry for Fano Manifolds

- Fano manifold $Y \leftrightarrow$ Landau-Ginzburg superpotential $W: \check{Y} \rightarrow \mathbb{C}$, where W is a holomorphic function.
- W captures the enumerative/symplectic geometry of Y.
(1) $Q H^{*}(Y) \cong \operatorname{Jac}(W) \Leftarrow \operatorname{Fuk}(X) \cong D^{b} \operatorname{Sing}(W) \cong M F(W)$.
(2) $F S(W) \cong D^{b} \operatorname{Coh}(Y)$.
(3) $S H^{*}(Y \backslash D) \cong P V^{*}(\check{Y}) \Leftarrow D^{b} \mathcal{W}(Y \backslash D) \cong D^{b} \operatorname{Coh}(\check{Y})$.
(9) Quantum periods $\int e^{t W} \Omega$ recover the generating function of descending Gromov-Witten invariant of Y.
(5)
- How do we compute the LG superpotential?

Superpotential from Lagrangian Floer theory

- (Givental, Hori-Vafa) $Y=$ toric Fano, formula for W.
- (Cho-Oh) Y toric Fano, $L=$ moment torus fibre, then

$$
W=W^{L F}(L)
$$

Write $b=\sum x_{i} e_{i} \in H^{1}\left(L, \Lambda_{+}\right)$wrt basis e_{i} of $H^{1}(L, \mathbb{Z})$, then $m\left(e^{b}\right)=\sum_{k} m_{k}(b, \cdots, b)=W^{L F}(b) \mathbf{1}_{L}$.

Superpotential from Lagrangian Floer theory

- (Givental, Hori-Vafa) $Y=$ toric Fano, formula for W.
- (Cho-Oh) Y toric Fano, $L=$ moment torus fibre, then

$$
W=W^{L F}(L)
$$

Write $b=\sum x_{i} e_{i} \in H^{1}\left(L, \Lambda_{+}\right)$wrt basis e_{i} of $H^{1}(L, \mathbb{Z})$, then $m\left(e^{b}\right)=\sum_{k} m_{k}(b, \cdots, b)=W^{L F}(b) \mathbf{1}_{L}$.

- Write $z_{i}=e^{x_{i}}$ and for $\gamma \in H_{2}(Y, L)$ write $z^{\partial \gamma}=\prod_{i} z_{i}^{\left\langle\partial \gamma, e_{i}\right\rangle}$. Then

$$
W\left(z_{1}, \cdots, z_{n}\right)=\sum_{\beta: M I(\beta)=2} n_{\beta} T^{\omega(\beta)} z^{\partial \beta}
$$

where $n_{\beta}:=\int_{\left[\mathcal{M}_{1}(X, L ; \beta)\right]^{\text {vir }}} 1$.

Renormalization Procedure

$\omega_{T Y}$ blows up near D and thus not the correct symplectic form.

Renormalization Procedure

$\omega_{T Y}$ blows up near D and thus not the correct symplectic form.
Lemma (L- '19)
$\exists U_{i} \nearrow B$ and ω_{i} Kähler forms on Y such that
(1) $\left.\omega_{i}\right|_{\pi^{-1}\left(U_{i}\right)}=\omega_{T Y}$
(2) $\left[\omega_{i}\right]=k_{i} c_{1}(Y)$ with $k_{i} \nearrow \infty$.

- L_{u} are Lagrangian wrt ω_{i} for $i \gg 0$.

Renormalization Procedure

$\omega_{T Y}$ blows up near D and thus not the correct symplectic form.
Lemma (L- '19)
$\exists U_{i} \nearrow B$ and ω_{i} Kähler forms on Y such that
(1) $\left.\omega_{i}\right|_{\pi^{-1}\left(U_{i}\right)}=\omega_{T Y}$
(2) $\left[\omega_{i}\right]=k_{i} c_{1}(Y)$ with $k_{i} \nearrow \infty$.

- L_{u} are Lagrangian wrt ω_{i} for $i \gg 0$.
- Together with the computation of $W\left(L_{u}\right)$ later, this is a realization of the renormalization procedure proposed by Hori-Vafa and Auroux.

Wall-Crossing of the Superpotentials (FOOO)

- A_{∞} structure $\left\{m_{k}\right\}$ on $H^{*}\left(L_{u}\right)$ with Maurer-Cartan space

$$
\mathcal{M C} \mathcal{W e a k}\left(L_{u}\right):=\left\{b \in H^{1}\left(L_{u}, \Lambda_{+}\right) \mid m\left(e^{b}\right)=c \mathbf{1}_{L}\right\} / \sim \cong H^{1}\left(L_{u}, \Lambda_{+}\right) .
$$

Wall-Crossing of the Superpotentials (FOOO)

- A_{∞} structure $\left\{m_{k}\right\}$ on $H^{*}\left(L_{u}\right)$ with Maurer-Cartan space

$$
\mathcal{M C} \mathcal{C}_{\text {weak }}\left(L_{u}\right):=\left\{b \in H^{1}\left(L_{u}, \Lambda_{+}\right) \mid m\left(e^{b}\right)=c \mathbf{1}_{L}\right\} / \sim \cong H^{1}\left(L_{u}, \Lambda_{+}\right) .
$$

- (Fukaya's trick) ϕ path from u_{-}to u_{+}, the pseudo-isotpy of A_{∞} structures of $H^{*}\left(L_{u_{ \pm}}\right)$induces $F_{\phi}: H^{1}\left(L_{u_{-}}\right) \cong H^{1}\left(L_{u_{+}}\right)$ (without flux), where F_{ϕ} records holo. discs of Maslov index zero with $F_{\phi} \equiv i d\left(\bmod \Lambda_{+}\right)$.

Wall-Crossing of the Superpotentials (FOOO)

- A_{∞} structure $\left\{m_{k}\right\}$ on $H^{*}\left(L_{u}\right)$ with Maurer-Cartan space

$$
\mathcal{M} \mathcal{C}_{\text {weak }}\left(L_{u}\right):=\left\{b \in H^{1}\left(L_{u}, \Lambda_{+}\right) \mid m\left(e^{b}\right)=c \mathbf{1}_{L}\right\} / \sim \cong H^{1}\left(L_{u}, \Lambda_{+}\right) .
$$

- (Fukaya's trick) ϕ path from u_{-}to u_{+}, the pseudo-isotpy of A_{∞} structures of $H^{*}\left(L_{u_{ \pm}}\right)$induces $F_{\phi}: H^{1}\left(L_{u_{-}}\right) \cong H^{1}\left(L_{u_{+}}\right)$ (without flux), where F_{ϕ} records holo. discs of Maslov index zero with $F_{\phi} \equiv i d\left(\bmod \Lambda_{+}\right)$.
- If no negative Maslov index discs, $u_{-}=u_{+}$and ϕ is contractible, then $F_{\phi}=i d$.
- (wall-crossing formula) $W\left(b ; u_{-}\right)=W\left(F_{\phi}(b) ; u_{+}\right)$.

Wall-Crossing w/ SLAG Fibration in CY Surfaces

- (Hitchin) \exists integral affine structure on B_{0}.
- L_{t} bound $\mathrm{MI}=0$ discs of $\gamma \in H_{2}\left(X, L_{t}\right)$, then L_{t} sit above an affine line I_{γ}. Advantage of SLag fibration!

Wall-Crossing w/ SLAG Fibration in CY Surfaces

- (Hitchin) \exists integral affine structure on B_{0}.
- L_{t} bound $\mathrm{MI}=0$ discs of $\gamma \in H_{2}\left(X, L_{t}\right)$, then L_{t} sit above an affine line I_{γ}. Advantage of SLag fibration!

Theorem (L-'17)

In the surface case, if ϕ goes across I_{γ}, then

$$
F_{\phi}: z^{\partial \gamma^{\prime}} \mapsto z^{\partial \gamma^{\prime}} f_{\gamma}^{\left\langle\gamma^{\prime}, \gamma\right\rangle}, \quad \log f_{\gamma}(u)=\sum_{d \geq 1} d \tilde{\Omega}(d \gamma ; u) z^{d \gamma}
$$

where $\tilde{\Omega}(\gamma ; u)$ denotes the weighted count of $M I=0$ tropical discs.

Wall-Crossing w/ SLAG Fibration in CY Surfaces

- (Hitchin) \exists integral affine structure on B_{0}.
- L_{t} bound $\mathrm{MI}=0$ discs of $\gamma \in H_{2}\left(X, L_{t}\right)$, then L_{t} sit above an affine line I_{γ}. Advantage of SLag fibration!

Theorem (L-'17)

In the surface case, if ϕ goes across I_{γ}, then

$$
F_{\phi}: z^{\partial \gamma^{\prime}} \mapsto z^{\partial \gamma^{\prime}} f_{\gamma}^{\left\langle\gamma^{\prime}, \gamma\right\rangle}, \quad \log f_{\gamma}(u)=\sum_{d \geq 1} d \tilde{\Omega}(d \gamma ; u) z^{d \gamma}
$$

where $\tilde{\Omega}(\gamma ; u)$ denotes the weighted count of $M I=0$ tropical discs.
This is the form of the Kontsevich-Soibelman transformation.

Tropical/Correspondence of Superpotential

Theorem (L-'20)
$n_{\beta}(u)=n_{\beta}^{\text {trop }}(u)$, the weighted count of the broken lines end at u.

Tropical/Correspondence of Superpotential

> Theorem (L-'20)
> $n_{\beta}(u)=n_{\beta}^{\text {trop }}(u)$, the weighted count of the broken lines end at u.

- Notation of broken lines and their weighted count $n_{\beta}^{\text {trop }}(u)$.
- $n_{\beta_{0}}(u)=1=n_{\beta_{0}}^{\text {trop }}$ for u near D and β_{0} vanishing thimble.

Tropical/Correspondence of Superpotential

Theorem (L-'20)
$n_{\beta}(u)=n_{\beta}^{\text {trop }}(u)$, the weighted count of the broken lines end at u.

- Notation of broken lines and their weighted count $n_{\beta}^{\text {trop }}(u)$.
- $n_{\beta_{0}}(u)=1=n_{\beta_{0}}^{\text {trop }}$ for u near D and β_{0} vanishing thimble.
- Compare the wall-crossing formula.
- By induction on the number of bends of possible broken lines.

Towards the Equivalence of AG/SG Mirrors

Theorem (Bouseau '19, Lau-Lee-L., '20)
The complex affine structure of the SYZ fibration of $\mathbb{P}^{2} \backslash E$ coincides with the one of Carl-Pomperla-Siebert.

More on $Y=\mathbb{P}^{2}$

- These lay out the foundation of the comparison of family Floer mirror with the mirror constructed in Gross-Siebert program.
- $W\left(L_{u}\right)$ are those appear in Vianna's work after Pascaleff-Tonkonog.
- Limit of certain open GW of $\mathrm{MI}=0$ with limiting boundary condition to infinity coincides with closed GW with maximal tangency together with the work of Gräfnitz.
- Stability of $F S(W)$ and counting of stable objects mirror to geometric stability condition of $D^{b}\left(\mathbb{P}^{2}\right)$ from the work of Bousseau.

The Easter Egg

Fun application in algebraic geometry:
Theorem (? classical result)
Let $E \subseteq \mathbb{P}^{2}$ be a smooth cubic curve. Then there exists

$$
\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \subseteq \operatorname{Aut}\left(\mathbb{P}^{2}\right)
$$

such that E is preserved.

The Easter Egg

Fun application in algebraic geometry:
Theorem (? classical result)
Let $E \subseteq \mathbb{P}^{2}$ be a smooth cubic curve. Then there exists

$$
\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \subseteq \operatorname{Aut}\left(\mathbb{P}^{2}\right)
$$

such that E is preserved.
(1) The corresponding rational elliptic surface \bar{Y} is extremal $I_{9} I_{1}^{3}$.
(2) $\check{\Omega}$ is meromorphic.

The Easter Egg

Fun application in algebraic geometry:
Theorem (? classical result)
Let $E \subseteq \mathbb{P}^{2}$ be a smooth cubic curve. Then there exists

$$
\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \subseteq \operatorname{Aut}\left(\mathbb{P}^{2}\right)
$$

such that E is preserved.
(1) The corresponding rational elliptic surface \check{Y} is extremal $I_{9} I_{1}^{3}$.
(2) $\check{\Omega}$ is meromorphic.
(3) $\exists \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \in \operatorname{Aut}(\check{Y})$ preserving $\check{\Omega}$ and $\check{\omega}$. Uniqueness theorem!
(4) The corresponding automorphisms of X extend over E.

THANK YOU!

