Lagrangian Torus Fibration Models of Fano Threefolds

Thomas Prince

Mirror Symmetry and Related Topics

14 December 2017
In this talk we take the point of view suggested by the Strominger–Yau–Zaslow (SYZ) conjecture: that Mirror Symmetry can be realised by dualising (special) Lagrangian torus fibrations. Our particular inspiration is the following result of Gross from the paper ‘Topological Mirror Symmetry’ (2001).

The quintic threefold X has a ‘well-behaved’ torus fibration $\pi: X \to B$.

Moreover there is a duality for well-behaved fibrations such that if $\tilde{\pi}: \tilde{X} \to B$, is the dual fibration in this case, \tilde{X} is diffeomorphic to a non-singular minimal model of the mirror quintic.

Note that as a consequence of the dual fibration structures we have that $H^{ev}(X, \mathbb{R}) \sim = H^3(\tilde{X}, \mathbb{R})$ and $H^3(X, \mathbb{R}) \sim = H^{ev}(\tilde{X}, \mathbb{R})$ as expected.
In this talk we take the point of view suggested by the Strominger–Yau–Zaslow (SYZ) conjecture: that Mirror Symmetry can be realised by dualising (special) Lagrangian torus fibrations. Our particular inspiration is the following result of Gross from the paper ‘Topological Mirror Symmetry’ (2001).

The quintic threefold X has a ‘well-behaved’ torus fibration $\pi: X \to B$. Moreover there is a duality for well-behaved fibrations such that if $\tilde{\pi}: \tilde{X} \to B$, is the dual fibration in this case, \tilde{X} is diffeomorphic to a non-singular minimal model of the mirror quintic.
In this talk we take the point of view suggested by the Strominger–Yau–Zaslow (SYZ) conjecture: that Mirror Symmetry can be realised by dualising (special) Lagrangian torus fibrations. Our particular inspiration is the following result of Gross from the paper ‘Topological Mirror Symmetry’ (2001).

The quintic threefold X has a ‘well-behaved’ torus fibration $\pi: X \to B$. Moreover there is a duality for well-behaved fibrations such that if $\tilde{\pi}: \tilde{X} \to B$, is the dual fibration in this case, \tilde{X} is diffeomorphic to a non-singular minimal model of the mirror quintic.

Note that as a consequence of the dual fibration structures we have that $H^{ev}(X, \mathbb{R}) \cong H^3(\tilde{X}, \mathbb{R})$ and $H^3(X, \mathbb{R}) \cong H^{ev}(\tilde{X}, \mathbb{R})$ as expected.
Quintic threefold

There are two important remarks to make about this torus fibration on the quintic.
Quintic threefold

There are two important remarks to make about this torus fibration on the quintic.

Lagrangian Fibrations

Castaño-Bernard–Matessi have shown that the topological torus fibration on the quintic can be adjusted slightly to make it a Lagrangian fibration on a symplectic manifold (homeomorphic to the quintic).
Quintic threefold

There are two important remarks to make about this torus fibration on the quintic.

Lagrangian Fibrations

Castaño-Bernard–Matessi have shown that the topological torus fibration on the quintic can be adjusted slightly to make it a Lagrangian fibration on a symplectic manifold (homeomorphic to the quintic).

Integral Affine structure

The base manifold $B \cong S^3$, is equipped with an affine structure which contains certain singularities. In ‘simple’ situations (which will always hold in our constructions) there is a construction of $\pi: X \to B$ from B together with its affine structure.

In general, we denote the total space of the torus fibration constructed from B as $\check{X}(B)$.
Torus fibrations on Fano manifolds

We will describe an extension of the construction of a topological torus fibration to the Fano threefolds. In this context the base of the fibration we obtain is a manifold with boundary, and we have the following statement.

Main Statement

Given a Fano threefold X, there is an integral affine manifold (with corners and singularities) B such that the numerical invariants of the pair $(\tilde{X}(B), \pi^{-1}(\partial B))$ coincide with those of (X, D) for a divisor $D \in |-K_X|$.

In the case that X has Picard rank one we show that $\tilde{X}(B)$ is homeomorphic to X.

The numerical invariants of X we refer to are $-K_X^3$, h^2, ρ_X, and the index of $-K_X$. Note that our choice of codimension 2 submanifold $D := \pi^{-1}(\partial B)$ is completely analogous to the toric situation.
We will describe an extension of the construction of a topological torus fibration to the Fano threefolds. In this context the base of the fibration we obtain is a manifold with boundary, and we have the following statement.

Main Statement

Given a Fano threefold X there is an integral affine manifold (with corners and singularities) B such that the numerical invariants of the pair $(\tilde{X}(B), \pi^{-1}(\partial B))$ coincide with those of (X, D) for a divisor $D \in |-K_X|$. In the case that X has Picard rank one we show that $\tilde{X}(B)$ is homeomorphic to X.

The numerical invariants of X we refer to are $-K_X^3$, $h^{2,1}$, ρ_X and the index of $-K_X$. Note that our choice of codimension 2 submanifold $D := \pi^{-1}(\partial B)$ is completely analogous to the toric situation.
We will describe an extension of the construction of a topological torus fibration to the Fano threefolds. In this context the base of the fibration we obtain is a manifold with boundary, and we have the following statement.

Main Statement

Given a Fano threefold X there is an integral affine manifold (with corners and singularities) B such that the numerical invariants of the pair $(\check{X}(B), \pi^{-1}(\partial B))$ coincide with those of (X, D) for a divisor $D \in |-K_X|$. In the case that X has Picard rank one we show that $\check{X}(B)$ is homeomorphic to X.

The numerical invariants of X we refer to are $-K_X^3$, $h^{2,1}$, ρ_X and the index of $-K_X$. Note that our choice of codimension 2 submanifold $D := \pi^{-1}(\partial B)$ is completely analogous to the toric situation.
We briefly recall the classification of the 105 classes of Fano threefolds completed by Mori–Mukai, building on work of Fano and Iskovskikh. In particular, we summarise the classification below according to properties relevant later.

<table>
<thead>
<tr>
<th>Picard rank</th>
<th>Total</th>
<th>Toric</th>
<th>$-K_X$ not very ample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>≥ 6</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Check: 105 total, 18 smooth toric, and 98 with very ample $-K_X$.
Rather than identify a fibration on each Fano threefold in turn we are going to reconstruct them by (topologically) smoothing Fano toric varieties. The method proceeds as follows:
Rather than identify a fibration on each Fano threefold in turn we are going to reconstruct them by (topologically) smoothing Fano toric varieties. The method proceeds as follows:

1. Find a way of putting (non-trivial) affine structures on moment polytopes of toric (\(\mathbb{Q}\)-Gorenstein) Fano 3-folds.
Plan

Rather than identify a fibration on each Fano threefold in turn we are going to reconstruct them by (topologically) smoothing Fano toric varieties. The method proceeds as follows:

1. Find a way of putting (non-trivial) affine structures on moment polytopes of toric (\(\mathbb{Q}\)-Gorenstein) Fano 3-folds.
2. For each such affine manifold \(B\), compute invariants of \(\tilde{X}(B)\).
Rather than identify a fibration on each Fano threefold in turn we are going to reconstruct them by (topologically) smoothing Fano toric varieties. The method proceeds as follows:

1. Find a way of putting (non-trivial) affine structures on moment polytopes of toric (\mathbb{Q}-Gorenstein) Fano 3-folds.
2. For each such affine manifold B, compute invariants of $\check{X}(B)$.
3. In the rank one case use topological classification results to prove $\check{X}(B)$ is homeomorphic to a Fano manifold.

$$X_P \sim \sim \check{X}(B)$$

$$P^\circ \sim \sim B$$

Idea: start on the top left, and finish on the top right going via the deformation of affine structures.
Our approach dovetails with the computation of quantum periods of Fano threefolds completed by Coates–Corti–Galkin–Kasprzyk. Starting from any Fano 3-fold X the authors give Laurent polynomials f such that

$$
\pi_f(t) := \int_{T^3} \frac{1}{1 - tf} \bigwedge_{i=1}^{3} \frac{dx_i}{x_i}
$$

coincides with the quantum period of X.
Our approach dovetails with the computation of quantum periods of Fano threefolds completed by Coates–Corti–Galkin–Kasprzyk. Starting from any Fano 3-fold X the authors give Laurent polynomials f such that

$$\pi_f(t) := \int_{T^3} \frac{1}{1 - tf} \bigwedge_{i=1}^3 dx_i$$

coincides with the quantum period of X.

Compatibility with Mirror Symmetry

Every B we consider such that $\check{X}(B)$ models a Fano threefold X is constructed by deforming the affine structure on a polytope P°, such that P supports a Laurent polynomial mirror to X.
Affine manifolds with corners...

We first need to describe the objects B which appear in our constructions.

Integral Affine manifold

A manifold B with a maximal atlas \mathcal{A} with charts in the group of integral affine transformations $\text{GL}_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$.

Note that for such a manifold $\hat{\mathcal{X}}(B)$ is easy to define: $\hat{\mathcal{X}}(B) := T \star B / \hat{\Lambda}$.

Thomas Prince (Magdalen College, Oxford)

Lagrangian fibrations

14 December 2017 8 / 34
Affine manifolds with corners...

We first need to describe the objects B which appear in our constructions.

Integral Affine manifold

A manifold B with a maximal atlas \mathcal{A} with charts in the group of integral affine transformations $\text{GL}_n(\mathbb{Z}) \rtimes \mathbb{Z}^n$.

Affine manifold with corners

A manifold with boundary B with a maximal atlas \mathcal{A} with charts in the group of integral affine transformations $\text{GL}_n(\mathbb{Z}) \rtimes \mathbb{Z}^n$. Moreover we insist that any point $b \in \partial B$ has a chart making it the origin of a smooth cone $(\mathbb{R}^{n-k} \times \mathbb{R}^k_{\geq 0}$, for some $k \in \{1, 2, 3\}$).
Affine manifolds with corners...

We first need to describe the objects B which appear in our constructions.

Integral Affine manifold

A manifold B with a maximal atlas \mathcal{A} with charts in the group of integral affine transformations $\text{GL}_n(\mathbb{Z}) \rtimes \mathbb{Z}^n$.

Affine manifold with corners

A manifold with boundary B with a maximal atlas \mathcal{A} with charts in the group of integral affine transformations $\text{GL}_n(\mathbb{Z}) \rtimes \mathbb{Z}^n$. Moreover we insist that any point $b \in \partial B$ has a chart making it the origin of a smooth cone ($\mathbb{R}^{n-k} \times \mathbb{R}_{\geq 0}^k$, for some $k \in \{1, 2, 3\}$).

Note that for such a manifold $\check{X}(B)$ is easy to define:

$$\check{X}(B) := T^* B / \check{\Lambda}.$$
Affine manifold with corners and singularities

A triple \((B, A, \Delta)\), where \(B\) is a topological manifold with boundary, \(A\) is an atlas making \(B_0 := B \setminus \Delta\) an affine manifold with corners and \(\Delta\) is a union of submanifolds of codimension at least two.

In fact we only consider a very special class of singularities (simple) which we can describe explicitly. All of these are derived from the focus-focus singularity in dimension 2.
...and singularities.

Affine manifold with corners and singularities

A triple \((B, \mathcal{A}, \Delta)\), where \(B\) is a topological manifold with boundary, \(\mathcal{A}\) is an atlas making \(B_0 := B \setminus \Delta\) an affine manifold with corners and \(\Delta\) is a union of submanifolds of codimension at least two.

In fact we only consider a very special class of singularities (simple) which we can describe explicitly. All of these are derived from the focus-focus singularity in dimension 2.

focus-focus singularity

This is an affine structure with singularities on \(\mathbb{R}^2\), with \(\Delta = \{0\}\), and monodromy of \(\Lambda\) equal to the monodromy defined on integral homology by a Dehn twist.

Indeed, \(\tilde{X}(B_0)\) is (topologically) exactly the usual local model in Picard–Lefschetz theory.
...and singularities.

An affine manifold with *simple* singularities is a triple \((B, A, \Delta)\) such that \(B_0\) is an affine manifold with corners and for any point \(b \in \Delta\) there is a neighbourhood \(U\) of \(b \in B\) such that \(U\) is affine isomorphic to one of the following possibilities.

1. The product of a focus-focus singularity times an open interval.
2. A positive node. This is a trivalent point of \(\Delta\) with local monodromies given by:
 \[
 \begin{pmatrix}
 1 & 0 & 1 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 1 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 1 & -1 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \]
3. A negative node. This is a trivalent point of \(\Delta\) with local monodromies given by the transpose of the matrices given for the positive node.
4. The product of a focus-focus singularity times a half-open interval.
An affine manifold with *simple* singularities is a triple \((B, A, \Delta)\) such that \(B_0\) is an affine manifold with corners and for any point \(b \in \Delta\) there is neighbourhood \(U\) of \(b \in B\) such that \(U\) is affine isomorphic to one of the following possibilities.

1. The product of a focus-focus singularity times an open interval.
2. A positive node. This is a trivalent point of \(\Delta\) with local monodromies given by the transpose of the matrices given for the positive node.
3. A negative node. This is a trivalent point of \(\Delta\) with local monodromies given by the transpose of the matrices given for the positive node.
4. The product of a focus-focus singularity times a half-open interval.

...and singularities.
...and singularities.

An affine manifold with *simple* singularities is a triple \((B, A, \Delta)\) such that \(B_0\) is an affine manifold with corners and for any point \(b \in \Delta\) there is neighbourhood \(U\) of \(b \in B\) such that \(U\) is affine isomorphic to one of the following possibilities.

1. The product of a focus-focus singularity times an open interval.
2. A *positive node*. This is a trivalent point of \(\Delta\) with local monodromies

\[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\quad \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\quad \begin{pmatrix}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]
...and singularities.

An affine manifold with *simple* singularities is a triple \((B, A, \Delta)\) such that \(B_0\) is an affine manifold with corners and for any point \(b \in \Delta\) there is neighbourhood \(U\) of \(b \in B\) such that \(U\) is affine isomorphic to one of the following possibilities.

1. The product of a focus-focus singularity times an open interval.
2. A *positive node*. This is a trivalent point of \(\Delta\) with local monodromies

\[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

3. A *negative node*. This is a trivalent point of \(\Delta\) with local monodromies given by the transpose of the matrices given for the positive node.
...and singularities.

An affine manifold with *simple* singularities is a triple \((B, A, \Delta)\) such that \(B_0\) is an affine manifold with corners and for any point \(b \in \Delta\) there is a neighbourhood \(U\) of \(b \in B\) such that \(U\) is affine isomorphic to one of the following possibilities.

1. The product of a focus-focus singularity times an open interval.
2. A *positive node*. This is a trivalent point of \(\Delta\) with local monodromies given by the matrices:

 \[
 \begin{pmatrix}
 1 & 0 & 1 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \quad \begin{pmatrix}
 1 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \quad \begin{pmatrix}
 1 & -1 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}.
 \]
3. A *negative node*. This is a trivalent point of \(\Delta\) with local monodromies given by the transpose of the matrices given for the positive node.
4. The product of a focus-focus singularity times a half-open interval.
We have a very straightforward definition of $\tilde{X}(B_0) \to B_0$, but how should we extend this to $\pi : \tilde{X}(B) \to B$? The problem is a local one, and solution to this is given in detail in *D-Branes and Mirror Symmetry*, Chapter 6. For each type of point in Δ we describe the topology of the fibre we insert.

1. Over generic singular points insert a pinched $T^2 \times S^1$.
2. Over a positive node insert a T^3 with a collapsed T^2.
3. Over a negative node insert a T^3 with a pair of solid tori attached.
4. Over a singular point in ∂B insert a pinched T^2.
We have a very straightforward definition of \(\check{X}(B_0) \to B_0 \), but how should we extend this to \(\pi: \check{X}(B) \to B \)? The problem is a local one, and solution to this is given in detail in *D-Branes and Mirror Symmetry*, Chapter 6. For each type of point in \(\Delta \) we describe the topology of the fibre we insert.

1. Over generic singular points insert a pinched \(T^2 \) times \(S^1 \).

2. Over a positive node insert a \(T^3 \) with a collapsed \(T^2 \).

3. Over a negative node insert a \(T^3 \) with a pair of solid tori attached.

4. Over a singular point in \(\partial B \) insert a pinched \(T^2 \).
We have a very straightforward definition of $\tilde{X}(B_0) \to B_0$, but how should we extend this to $\pi: \tilde{X}(B) \to B$? The problem is a local one, and solution to this is given in detail in *D-Branes and Mirror Symmetry*, Chapter 6. For each type of point in Δ we describe the topology of the fibre we insert.

1. Over generic singular points insert a pinched T^2 times S^1.
2. Over a positive node insert a T^3 with a collapsed T^2.
We have a very straightforward definition of \(\tilde{X}(B_0) \to B_0 \), but how should we extend this to \(\pi: \tilde{X}(B) \to B \)? The problem is a local one, and solution to this is given in detail in *D-Branes and Mirror Symmetry*, Chapter 6. For each type of point in \(\Delta \) we describe the topology of the fibre we insert.

1. Over generic singular points insert a pinched \(T^2 \) times \(S^1 \).
2. Over a positive node insert a \(T^3 \) with a collapsed \(T^2 \).
3. Over a negative node insert a \(T^3 \) with a pair of solid tori attached.
Compactifications

We have a very straightforward definition of $\check{X}(B_0) \to B_0$, but how should we extend this to $\pi: \check{X}(B) \to B$? The problem is a local one, and solution to this is given in detail in *D-Branes and Mirror Symmetry*, Chapter 6. For each type of point in Δ we describe the topology of the fibre we insert.

1. Over generic singular points insert a pinched T^2 times S^1.
2. Over a positive node insert a T^3 with a collapsed T^2.
3. Over a negative node insert a T^3 with a pair of solid tori attached.
4. Over a singular point in ∂B insert a pinched T^2.
Starting from a Fano polytope P, how can we construct B? We will encode the data used to define B in *degeneration data*, which depends on two auxiliary combinatorial notions. We fix a Fano polytope $P \subset N_\mathbb{R} \cong \mathbb{R}^3$ and a rational fan Σ in $M_\mathbb{R}$.

Edge data

Edge data is a one-dimensional torus invariant cycle C on the toric variety X_P. Moreover we demand that C is supported on the collection of those torus invariant curves of X_P whose images under the moment map $X_P \to P \circlearrowleft$ are contained in a two-dimensional cone of Σ.

Ray data

Ray data is a set $\mathcal{J} := \{ \mathcal{J}(\rho) : \rho \in \Sigma(1) \}$ of collections of nef divisors on each torus invariant hypersurface X_ρ of X_Σ.

Thomas Prince (Magdalen College, Oxford)
Starting from a Fano polytope P, how can we construct B? We will encode the data used to define B in *degeneration data*, which depends on two auxiliary combinatorial notions. We fix a Fano polytope $P \subset N_\mathbb{R} \cong \mathbb{R}^3$ and a rational fan Σ in $M_\mathbb{R}$.

Edge data

Edge data is a one-dimensional torus invariant cycle C on the toric variety X_P. Moreover we demand that C is supported on the collection of those torus invariant curves of X_P whose images under the moment map $X_P \to P^\circ$ are contained in a two-dimensional cone of Σ.
Starting from a Fano polytope P, how can we construct B? We will encode the data used to define B in *degeneration data*, which depends on two auxiliary combinatorial notions. We fix a Fano polytope $P \subset N_{\mathbb{R}} \cong \mathbb{R}^3$ and a rational fan Σ in $M_{\mathbb{R}}$.

Edge data

Edge data is a one-dimensional torus invariant cycle C on the toric variety X_P. Moreover we demand that C is supported on the collection of those torus invariant curves of X_P whose images under the moment map $X_P \to P^\circ$ are contained in a two-dimensional cone of Σ.

Ray data

Ray data is a set $J := \{ J(\rho) : \rho \in \Sigma(1) \}$ of collections of nef divisors on each torus invariant hypersurface X_ρ of X_Σ.
Degeneration data

This is our central combinatorial notion. We say the triple \((\Sigma, C, J)\) forms degeneration data for \(P\) if:

1. \(J\) is *smooth*: all polyhedra of sections are standard simplices.
2. \(C\) and \(J\) are *compatible*: the numbers \(C\) assigns to edges neighbouring a vertex \(v\) of \(P^\circ\) contained in a ray \(\rho \in \Sigma(1)\) equal the edge lengths of the sum of the polyhedra in \(J(\rho)\).
3. \(C\) is *smooth and convex*. If \(P\) is reflexive this means that \(C\) assigns a number to an edge \(E\) of \(P^\circ\) which is either equal to \(\ell(E^*)\), the length of \(E^*\), or to \(\ell(E^*) - 1\).
Example

To show how this data is used to describe an affine structure we consider the prototypical example of \mathbb{P}^3. Let P be the convex hull of the standard basis and the point $(-1, -1, -1)$.
Example

To show how this data is used to describe an affine structure we consider the prototypical example of \mathbb{P}^3. Let P be the convex hull of the standard basis and the point $(-1, -1, -1)$.

Degeneration data

Let Σ be the normal fan of P, let C be the sum of the torus invariant curves of \mathbb{P}^3 (assigning 1 to every edge of P°), and let J be the trivial Minkowski decomposition of each facet of P into itself.
To show how this data is used to describe an affine structure we consider the prototypical example of \mathbb{P}^3. Let P be the convex hull of the standard basis and the point $(-1, -1, -1)$.

Degeneration data

Let Σ be the normal fan of P, let C be the sum of the torus invariant curves of \mathbb{P}^3 (assigning 1 to every edge of P°), and let J be the trivial Minkowski decomposition of each facet of P into itself.

Affine structure

To describe an affine structure we first identify Δ. Note that each $\sigma \in \Sigma(2)$ defines a polyhedral subset c of P° and C defines a divisor on the toric variety $TV(c)$ (we call these pairs (c, D) slabs).
Each toric variety $TV(c)$ is isomorphic to $\mathbb{P}(1, 1, 4)$ and the divisor described by C is in the class $\mathcal{O}(4)$ (corresponding to the base of the triangle c). Let Γ_c be the dual graph to a triangulation of the polyhedron of sections of $\mathcal{O}(4)$. We embed these graphs into c as shown below. Glue these curves together at points on the rays (positive nodes), trivalent points of each Γ_c become negative nodes.
In fact we rely on a number of methods for constructing degeneration data, we describe the most important one here.

Smooth Minkowski decompositions

Given a reflexive polytope P and Minkowski decompositions of all of its facets into standard simplices, we can assign degeneration data as follows.

1. Let Σ be the normal fan of P.
2. Let C be the cycle $E \mapsto \ell(E \star)$.
3. Let J be the divisors corresponding to the chosen Minkowski decompositions.

We observe that the condition on P is very restrictive. In fact 89 of the 105 Fano threefolds are constructed this way. Note that the previous example is a special case of this construction, and that the slabs are always wps, with divisor class $O(\ell(E \star) \ell(E))$.
Polytopes to affine manifolds

In fact we rely on a number of methods for constructing degeneration data, we describe the most important one here.

Smooth Minkowski decompositions

Given a reflexive polytope P and Minkowski decompositions of all of its facets into standard simplices, we can assign degeneration data as follows.

1. Let Σ be the normal fan of P.
2. Let C be the cycle $E \mapsto \ell(E^*)$.
3. Let J be the divisors corresponding to the chosen Minkowski decompositions.

We observe that the condition on P is very restrictive. In fact 89 of the 105 Fano threefolds are constructed this way. Note that the previous example is a special case of this construction, and that the slabs are always wps, with divisor class $O(\ell(E^*) + \ell(E^*))$.
Polytopes to affine manifolds

In fact we rely on a number of methods for constructing degeneration data, we describe the most important one here.

Smooth Minkowski decompositions

Given a reflexive polytope P and Minkowski decompositions of all of its facets into standard simplices, we can assign degeneration data as follows.

1. Let Σ be the normal fan of P.
2. Let C be the cycle $E \mapsto \ell(E^*)$.
3. Let J be the divisors corresponding to the chosen Minkowski decompositions.

We observe that the condition on P is very restrictive. In fact 89 of the 105 Fano threefolds are constructed this way. Note that the previous example is a special case of this construction, and that the slabs are always wps, with divisor class $O(\ell(E)\ell(E^*))$.
Two dimensional situation

Our constructions directly generalise a two-dimensional one, in which any of the 10 del Pezzo surfaces may be obtained by making *nodal trades* from a polygon. We summarise the two-dimensional affine manifolds important in our construction below.

<table>
<thead>
<tr>
<th>B</th>
<th>$\tilde{X}(B)$</th>
<th>Affine structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygon</td>
<td>polarised toric variety</td>
<td>B is the image of the moment map</td>
</tr>
<tr>
<td>S^2</td>
<td>K3 surface</td>
<td>24 focus-focus singularities</td>
</tr>
<tr>
<td>Disc</td>
<td>Del Pezzo surface dP_d</td>
<td>12 – d focus-focus singularities</td>
</tr>
</tbody>
</table>
Product constructions

In fact the two-dimensional cases automatically give us 5 examples by taking products of non-toric del Pezzo surfaces with \mathbb{P}^1. The images below shows the base of a torus fibration on $dP_4 \times \mathbb{P}^1$. We see that the fan on which Δ is supported is \textit{not} the normal fan of P.

![Diagram of a torus fibration base](image-url)
Example: MM_{3-5}
Example: \mathbb{M}_4-2
Euler numbers

We can easily compute the Euler number of the manifold $\tilde{X}(B)$ by taking the sum of the Euler numbers of the fibres which do not contain a circle factor.

<table>
<thead>
<tr>
<th>Special fibre</th>
<th>Euler number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive node</td>
<td>1</td>
</tr>
<tr>
<td>Negative node</td>
<td>-1</td>
</tr>
<tr>
<td>Point in $\Delta \cap \partial B$</td>
<td>1</td>
</tr>
<tr>
<td>Vertex of B</td>
<td>1</td>
</tr>
</tbody>
</table>

Formula for Euler number

In the case that B has smooth boundary, and is constructed using our first method, the Euler number obeys the following formula:

$$e(\tilde{X}(B)) = 24 + T - \sum_{E \in \text{edges}(P)} \ell(E)^2/\ell(E^*) ,$$
The next invariant we need to consider is the anti-canonical degree, which we replace in our topological model with the integer $\lceil \pi^{-1}(\partial B) \rceil^3$.

Degree calculation

The self-intersection number D_3, where $D := \lceil \pi^{-1}(\partial B) \rceil$, is equal to the anti-canonical degree of the toric variety X_{P}. This is expected from the deformation of X_{P} to \tilde{X}_{B}.

We can give an entirely topological proof:

1. Construct a (specific) push-off D' of D so that $C := D' \cap D$ is a surface in D.
2. Find the genus of C by taking the image under C and computing the genus of the tropical curve.
3. Use Lefschetz theorem on $(1, 1)$-classes and genus formula to compute $C^2 = 2g(C) - 2$.

Thomas Prince (Magdalen College, Oxford)

Lagrangian fibrations
The next invariant we need to consider is the anti-canonical degree, which we replace in our topological model with the integer $[\pi^{-1}(\partial B)]^3$.

Degree calculation

The self-intersection number D^3, where $D := [\pi^{-1}(\partial B)]$, is equal to the anti-canonical degree of the toric variety X_P.

This is expected from the deformation of X_P to $\check{X}(B)$.
The next invariant we need to consider is the anti-canonical degree, which we replace in our topological model with the integer \([\pi^{-1}(\partial B)]^3\).

Degree calculation

The self-intersection number \(D^3\), where \(D := [\pi^{-1}(\partial B)]\), is equal to the anti-canonical degree of the toric variety \(X_P\).

This is expected from the deformation of \(X_P\) to \(\tilde{X}(B)\). We can give an entirely topological proof:

1. **Construct a (specific) push-off** \(D'\) of \(D\) so that \(C := D' \cap D\) is a surface in \(D\).

2. **Find the genus of** \(C\) **by taking the image under** \(C\) **and computing the genus of the tropical curve.**

3. **Use Lefschetz theorem on** \((1,1)\)-classes and genus formula to compute \(C^2 = 2g(C) - 2\).
We compute the Betti numbers of $\tilde{X}(B)$ via the contraction map $\xi: \tilde{X}(B) \to \tilde{X}_0(B)$, the union of toric varieties defined by decomposing P° along Σ. We tabulate the possible fibres over points in the interior of B.

<table>
<thead>
<tr>
<th>codimension of $\pi_0(p)$</th>
<th>$p \in \tilde{\Delta}$</th>
<th>$\xi^{-1}(p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no</td>
<td>point</td>
</tr>
<tr>
<td>1</td>
<td>no</td>
<td>S^1</td>
</tr>
<tr>
<td>1</td>
<td>yes</td>
<td>point</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>T^2</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
<td>point or S^1</td>
</tr>
<tr>
<td>3</td>
<td>no</td>
<td>T^3</td>
</tr>
</tbody>
</table>
Our aim is to compute $H^2(\tilde{X}(B), \mathbb{Q})$. If this is achieved all other Betti numbers will follow from the Euler number formula and simply connectedness of $\tilde{X}(B)$.

A Leray spectral sequence
Our aim is to compute $H^2(\mathcal{X}(B), \mathbb{Q})$. If this is achieved all other Betti numbers will follow from the Euler number formula and simply connectedness of $\mathcal{X}(B)$.

The spectral sequence $H^p(\mathcal{X}_0(B), R^q\xi_*\mathbb{Q}) \Rightarrow H^{p+q}(\mathcal{X}(B), \mathbb{Q})$ has the following truncated E_2 page.

\[
\begin{array}{c}
\mathbb{Q} \\
0 & \star \\
0 & Q^{R-1} & \star \\
\mathbb{Q} & 0 & Q & 0 \\
\end{array}
\]
A Leray spectral sequence

Our aim is to compute $H^2(\tilde{X}(B), \mathbb{Q})$. If this is achieved all other Betti numbers will follow from the Euler number formula and simply connectedness of $\tilde{X}(B)$.

Leray spectral sequence

The spectral sequence $H^p(\tilde{X}_0(B), R^q\xi_*\mathbb{Q}) \Rightarrow H^{p+q}(\tilde{X}(B), \mathbb{Q})$ has the following truncated E_2 page.

\[
\begin{array}{cccc}
\mathbb{Q} & \star & \star \\
0 & 0 & \mathbb{Q}^{R-1} & \star \\
\mathbb{Q} & 0 & \mathbb{Q} & 0 \\
\end{array}
\]

We often make use of the maps i_k from the disjoint union of the codimension k toric non-boundary strata into $\tilde{X}_0(B)$.
For example, consider $H^0(\tilde{X}_0(B), R^2\xi_*Q)$. We have an injection,

$$R^2\xi_*Q \to i_2^* i_2^* R^2\xi_*Q,$$
A Leray spectral sequence

For example, consider $H^0(\check{X}_0(B), R^2\xi_*Q)$. We have an injection,

$$R^2\xi_*Q \to i_2^*i_2^*R^2\xi_*Q,$$

By left exactness of global sections we have an inclusion

$$H^0(R^2\xi_*Q) \hookrightarrow H^0(i_2^*i_2^*R^2\xi_*Q).$$
A Leray spectral sequence

For example, consider \(H^0(\check{X}_0(B), R^2\xi_*Q) \). We have an injection,

\[
R^2\xi_*Q \to i_2^*i_2^* R^2\xi_*Q,
\]

By left exactness of global sections we have an inclusion

\[
H^0(R^2\xi_*Q) \to H^0(i_2^*i_2^* R^2\xi_*Q).
\]

In fact \(i_2^*i_2^* R^2\xi_*Q \) is the direct sum of its restrictions to the one dimensional strata of the decomposition of \(P^o \) induced by \(\Sigma \). Computing this following the argument of Gross we have that,

\[
dim H^0(\check{X}_0(B), R^2\xi_*Q) = \dim H^0(\check{X}_0(B), i_2^*i_2^* R^2\xi_*Q) = 0.
\]
We describe a general procedure for computing $b_2(\check{\mathcal{X}}(B))$ in the case B is obtained from smooth Minkowski decompositions of the facets of P.
We describe a general procedure for computing $b_2(\tilde{\mathcal{X}}(B))$ in the case B is obtained from smooth Minkowski decompositions of the facets of P.

The space $\Gamma(\Sigma, C)$

Fix an orientation of every 1-dimensional space $M_{Q/\langle \sigma \rangle}$ for $\sigma \in \Sigma(2)$. Then $\Gamma(\Sigma, C) \subset Q^{\Sigma(2)}$ is (almost!) defined to be the subspace of elements $\gamma = (\gamma_1, \ldots, \gamma_n)$ where $n = |\Sigma(2)|$ such that $\sum_{i \in I} \gamma_i = 0$ whenever the elements of $\Sigma(2)$ corresponding to I appear as the support of singular locus near a point of $\Delta \cap \Sigma(1)$.
We describe a general procedure for computing $b_2(\check{X}(B))$ in the case B is obtained from smooth Minkowski decompositions of the facets of P.

The space $\Gamma(\Sigma, C)$

Fix an orientation of every 1-dimensional space $M/Q/\langle \sigma \rangle$ for $\sigma \in \Sigma(2)$. Then $\Gamma(\Sigma, C) \subset Q^{\Sigma(2)}$ is (almost!) defined to be the subspace of elements $\gamma = (\gamma_1, \ldots, \gamma_n)$ where $n = |\Sigma(2)|$ such that $\sum_{i \in I} \gamma_i = 0$ whenever the elements of $\Sigma(2)$ corresponding to I appear as the support of singular locus near a point of $\Delta \cap \Sigma(1)$.

Computation of $b_2(\check{X}(B))$

In this context

$$b_2(\check{X}(B)) = \dim \Gamma(\Sigma, C) - 2$$
Example computation \((V_{22})\)
Topological Classification

To prove that the rank one Fano varieties are homeomorphic to the manifolds $\tilde{X}(B)$ we construct we use the classification of 6-manifolds (Wall, Jupp). This says that 1-connected topological manifolds with torsion-free homology which admit a smooth structure are classified by the following invariants:

1. $b_3(X)$, the third Betti number,
2. $H^2(X, \mathbb{Z})$, the second integral cohomology group,
3. $w_2(X) \in H^2(X, \mathbb{Z}_2)$, the second Stiefel–Whitney class,
4. F_X, the cubic form on $H^2(X, \mathbb{Z})$,
5. $p_1(X) \in H^4(X, \mathbb{Z})$, the first Pontryagin class.
The Betti numbers have already been computed, for the form on H^2 we have:

Cubic form

The form $F_{\mathcal{X}}$ is determined in the case $b_2(\mathcal{X}(B)) = 1$ by the value of $[\pi^{-1}(\partial B)]^3$ as well as the index of $[\pi^{-1}(\partial B)] \in H^2(\mathcal{X}(B), \mathbb{Z})$.

The characteristic classes are computed in similar ways, using the restriction

Second Stiefel–Whitney class

$w_2(\mathcal{X}(B)) = PD[\pi^{-1}(\partial B)] \mod 2$. We compute the cap product with D using the projection formula. Let $\theta : D \hookrightarrow \mathcal{X}(B)$ be the inclusion, then,

$$\theta_* \left(\theta^* w_2(\mathcal{X}(B)) \cap [D] \right) = w_2(\mathcal{X}(B)) \cap \theta_*[D]$$
Computing $w_2(\check{X}(B))$

We can compute

$$\theta^* w_2(\check{X}(B)) = w_2(T\check{X}(B)|_D)$$

$$= w_2(TD \oplus \nu(D))$$

$$= w_2(TD) + w_2(\nu(D))$$

Using the Whitney product formula and naturality. Observing that $w_2(TD) = 0$ and $w_2(\nu(D)) = e(\nu(D))$ mod 2 we see that the cap product of $w_2(\check{X}(B))$ with D is exactly the cup of D with itself.

Since $b_2(\check{X}(B)) = 1$ this is sufficient to prove the result, so long as the index of D is odd. In general we can use the same argument with an integral lift of the second Stiefel Whitney class.
Given a Fano threefold X, $p_1(X)c_1(X) = -K^3_X - 48$. This follows immediately from HRR and $p_1(X) = -2c_2(X) + c_1(X)^2$.
Given a Fano threefold X, $p_1(X)c_1(X) = -K_X^3 - 48$. This follows immediately from HRR and $p_1(X) = -2c_2(X) + c_1(X)^2$.

Noting that we can canonically identify $H^2(X, \mathbb{Z})$ and $H^2(\check{X}(B), \mathbb{Z})$ and cubic forms so that $[\pi^{-1}(\partial B)]$ is identified with $c_1(X)$, we use the projection formula

$$p_1(\check{X}(B)) \circlearrowleft \theta_*[D] = \theta_* \left(\theta^*(p_1(\check{X}(B))) \circlearrowleft [D] \right),$$

and we have that $\theta^*p_1(\check{X}(B)) = p_1(D) + p_1(\nu(D))$. However, D is diffeomorphic to a K3 surface so, $p_1(D) = -2c_2(D) + c_1(D)^2 = -2c_2(D) = -48$. Moreover $p_1(\nu(D))$ is the Euler class of $\nu(D) \oplus \nu(D)$, which is precisely $[D]^3$.

Thomas Prince (Magdalen College, Oxford)
Example: B_3 and its blow-up
Where next?

There are several things to be doing in this direction.
Where next?

There are several things to be doing in this direction.

Fano 3-folds

Find a general procedure for more general facet decompositions. Find a generalised formula for Euler number, understand the non-reflexive case better.
Where next?

There are several things to be doing in this direction.

Fano 3-folds
Find a general procedure for more general facet decompositions. Find a generalised formula for Euler number, understand the non-reflexive case better.

Calabi–Yau 3-folds and Fano 4-folds
Give analogous constructions for a class of reflexive 4-topes. Compute topological invariants in this case. Smooth boundaries are more interesting here, corresponding to CY hypersurfaces in general Fano 4-folds.
Where next?

There are several things to be doing in this direction.

Fano 3-folds

Find a general procedure for more general facet decompositions. Find a generalised formula for Euler number, understand the non-reflexive case better.

Calabi–Yau 3-folds and Fano 4-folds

Give analogous constructions for a class of reflexive 4-topes. Compute topological invariants in this case. Smooth boundaries are more interesting here, corresponding to CY hypersurfaces in general Fano 4-folds.

Mirror Symmetry

Tropical superpotential calculation in some of these examples. Relate SYZ mirror symmetry and Minkowski polynomials of Coates–Corti–Galkin–Golyshev–Kasprzyk.
The End