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Topological Mirror Symmetry

In this talk we take the point of view suggested by the
Strominger–Yau–Zaslow (SYZ) conjecture: that Mirror Symmetry can be
realised by dualising (special) Lagrangian torus fibrations. Our particular
inspiration is the following result of Gross from the paper ‘Topological
Mirror Symmetry’ (2001).

Topological Mirror Symmetry

The quintic threefold X has a ‘well-behaved’ torus fibration π : X → B.
Moreover there is a duality for well-behaved fibrations such that if
π̆ : X̆ → B, is the dual fibration in this case, X̆ is diffeomorphic to a
non-singular minimal model of the mirror quintic.

Note that as a consequence of the dual fibration structures we have that
Hev (X ,R) ∼= H3(X̆ ,R) and H3(X ,R) ∼= Hev (X̆ ,R) as expected.

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 2 / 34



Topological Mirror Symmetry

In this talk we take the point of view suggested by the
Strominger–Yau–Zaslow (SYZ) conjecture: that Mirror Symmetry can be
realised by dualising (special) Lagrangian torus fibrations. Our particular
inspiration is the following result of Gross from the paper ‘Topological
Mirror Symmetry’ (2001).

Topological Mirror Symmetry

The quintic threefold X has a ‘well-behaved’ torus fibration π : X → B.
Moreover there is a duality for well-behaved fibrations such that if
π̆ : X̆ → B, is the dual fibration in this case, X̆ is diffeomorphic to a
non-singular minimal model of the mirror quintic.

Note that as a consequence of the dual fibration structures we have that
Hev (X ,R) ∼= H3(X̆ ,R) and H3(X ,R) ∼= Hev (X̆ ,R) as expected.

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 2 / 34



Topological Mirror Symmetry

In this talk we take the point of view suggested by the
Strominger–Yau–Zaslow (SYZ) conjecture: that Mirror Symmetry can be
realised by dualising (special) Lagrangian torus fibrations. Our particular
inspiration is the following result of Gross from the paper ‘Topological
Mirror Symmetry’ (2001).

Topological Mirror Symmetry

The quintic threefold X has a ‘well-behaved’ torus fibration π : X → B.
Moreover there is a duality for well-behaved fibrations such that if
π̆ : X̆ → B, is the dual fibration in this case, X̆ is diffeomorphic to a
non-singular minimal model of the mirror quintic.

Note that as a consequence of the dual fibration structures we have that
Hev (X ,R) ∼= H3(X̆ ,R) and H3(X ,R) ∼= Hev (X̆ ,R) as expected.

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 2 / 34



Quintic threefold

There are two important remarks to make about this torus fibration on the
quintic.

Lagrangian Fibrations

Castaño-Bernard–Matessi have shown that the topologial torus fibration
on the quintic can be adjusted slightly to make it a Lagrangian fibration
on a symplectic manifold (homeomorphic to the quintic).

Integral Affine structure

The base manifold B ∼= S3, is equipped with an affine structure which
contains certain singularities. In ‘simple’ situations (which will always hold
in our constructions) there is a construction of π : X → B from B together
with its affine structure.

In general, we denote the total space of the torus fibration constructed
from B as X̆ (B).
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Torus fibrations on Fano manifolds

We will describe an extension of the construction of a topological torus
fibration to the Fano threefolds. In this context the base of the fibration we
obtain is a manifold with boundary, and we have the following statement.

Main Statement

Given a Fano threefold X there is an integral affine manifold (with corners
and singularities) B such that the numerical invariants of the pair
(X̆ (B), π−1(∂B)) coincide with those of (X ,D) for a divisor D ∈ | − KX |.
In the case that X has Picard rank one we show that X̆ (B) is
homeomorphic to X .

The numerical invariants of X we refer to are −K 3
X , h2,1, ρX and the index

of −KX . Note that our choice of codimension 2 submanifold
D := π−1(∂B) is completely analogous to the toric situation.
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Fano classification

We briefly recall the classification of the 105 classes of Fano threefolds
completed by Mori–Mukai, building on work of Fano and Iskovskikh. In
particular, we summarise the classification below according to properties
relevant later.

Picard rank Total Toric −KX not very ample

1 17 1 2

2 36 4 3

3 31 7 0

4 13 4 0

5 3 2 0

≥ 6 5 0 2

Check: 105 total, 18 smooth toric, and 98 with very ample −KX .
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Plan

Rather than identify a fibration on each Fano threefold in turn we are
going to reconstruct them by (topologically) smoothing Fano toric
varieties. The method proceeds as follows:

1 Find a way of putting (non-trivial) affine structures on moment
polytopes of toric (Q-Gorenstein) Fano 3-folds.

2 For each such affine manifold B, compute invariants of X̆ (B).

3 In the rank one case use topological classification results to prove
X̆ (B) is homeomorphic to a Fano manifold.

XP

��

// X̆ (B)

��
P◦ // B

Idea: start on the top left, and finish on the top right going via the
deformation of affine structures.
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Fano classification and Mirror Symmetry

Our approach dovetails with the computation of quantum periods of Fano
threefolds completed by Coates–Corti–Galkin–Kasprzyk. Starting from any
Fano 3-fold X the authors give Laurent polynomials f such that

πf (t) :=

∫
T 3

1

1− tf

3∧
i=1

dxi
xi

coincides with the quantum period of X .

Compatibility with Mirror Symmetry

Every B we consider such that X̆ (B) models a Fano threefold X is
constructed by deforming the affine structure on a polytope P◦, such that
P supports a Laurent polynomial mirror to X .
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Affine manifolds with corners...

We first need to describe the objects B which appear in our constructions.

Integral Affine manifold

A manifold B with a maximal atlas A with charts in the group of integral
affine transformations GLn(Z) o Zn.

Affine manifold with corners

A manifold with boundary B with a maximal atlas A with charts in the
group of integral affine transformations GLn(Z) o Zn. Moreover we insist
that any point b ∈ ∂B has a chart making it the origin of a smooth cone
(Rn−k × Rk

≥0, for some k ∈ {1, 2, 3}).

Note that for such a manifold X̆ (B) is easy to define:

X̆ (B) := T ?B/Λ̆.
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...and singularities.

Affine manifold with corners and singularities

A triple (B,A,∆), where B is a topological manifold with boundary, A is
an atlas making B0 := B \∆ an affine manifold with corners and ∆ is a
union of submanifolds of codimension at least two.

In fact we only consider a very special class of singularities (simple) which
we can describe explicitly. All of these are derived from the focus-focus
singularity in dimension 2.

focus-focus singularity

This is an affine structure with singularities on R2, with ∆ = {0}, and
monodromy of Λ equal to the monodromy defined on integral homology by
a Dehn twist.

Indeed, X̆ (B0) is (topologically) exactly the usual local model in
Picard–Lefschetz theory.
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...and singularities.

An affine manifold with simple singularities is a triple (B,A,∆) such that
B0 is an affine manifold with corners and for any point b ∈ ∆ there is
neighbourhood U of b ∈ B such that U is affine isomorphic to one of the
following possibilities.

1 The product of a focus-focus singularity times an open interval.

2 A positive node. This is a trivalent point of ∆ with local monodromies

1 0 1
0 1 0
0 0 1

 1 1 0
0 1 0
0 0 1

 1 −1 −1
0 1 0
0 0 1

 .

3 A negative node. This is a trivalent point of ∆ with local
monodromies given by the transpose of the matrices given for the
positive node.

4 The product of a focus-focus singularity times a half-open interval.
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Compactifications

We have a very straightforward definition of X̆ (B0)→ B0, but how should
we extend this to π : X̆ (B)→ B? The problem is a local one, and solution
to this is given in detail in D-Branes and Mirror Symmetry, Chapter 6. For
each type of point in ∆ we describe the topology of the fibre we insert.

1 Over generic singular points insert a pinched T 2 times S1.

2 Over a positive node insert a T 3 with a collapsed T 2.

3 Over a negative node insert a T 3 with a pair of solid tori attached.

4 Over a singular point in ∂B insert a pinched T 2.
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Polytopes to affine manifolds

Starting from a Fano polytope P, how can we construct B? We will
encode the data used to define B in degeneration data, which depends on
two auxiliary combinatorial notions. We fix a Fano polytope P ⊂ NR

∼= R3

and a rational fan Σ in MR.

Edge data

Edge data is a one-dimensional torus invariant cycle C on the toric variety
XP . Moreover we demand that C is supported on the collection of those
torus invariant curves of XP whose images under the moment map
XP → P◦ are contained in a two-dimensional cone of Σ.

Ray data

Ray data is a set J := {J(ρ) : ρ ∈ Σ(1)} of collections of nef divisors on
each torus invariant hypersurface Xρ of XΣ.
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Degeneration data

This is our central combinatorial notion. We say the triple (Σ,C , J) forms
degeneration data for P if:

1 J is smooth: all polyhedra of sections are standard simplices.

2 C and J are compatible: the numbers C assigns to edges
neighbouring a vertex v of P◦ contained in a ray ρ ∈ Σ(1) equal the
edge lengths of the sum of the polyhedra in J(ρ).

3 C is smooth and convex. If P is reflexive this means that C assigns a
number to an edge E of P◦ which is either equal to `(E ?), the length
of E ?, or to `(E ?)− 1.
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Example

To show how this data is used to describe an affine structure we consider
the prototypical example of P3. Let P be the convex hull of the standard
basis and the point (−1,−1,−1).

Degeneration data

Let Σ be the normal fan of P, let C be the sum of the torus invariant
curves of P3 (assigning 1 to every edge of P◦), and let J be the trivial
Minkowski decomposition of each facet of P into itself.

Affine structure

To describe an affine structure we first identify ∆. Note that each
σ ∈ Σ(2) defines a polyhedral subset c of P◦ and C defines a divisor on
the toric variety TV (c) (we call these pairs (c ,D) slabs).
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Example

Affine structure

Each toric variety TV (c) is isomorphic to P(1, 1, 4) and the divisor
described by C is in the class O(4) (corresponding to the base of the
triangle c). Let Γc be the dual graph to a triangulation of the polyhedron
of sections of O(4). We embed these graphs into c as shown below. Glue
these curves together at points on the rays (positive nodes), trivalent
points of each Γc become negative nodes.

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 15 / 34



Polytopes to affine manifolds

In fact we rely on a number of methods for constructing degeneration
data, we describe the most important one here.

Smooth Minkowski decompositions

Given a reflexive polytope P and Minkowski decompositions of all of its
facets into standard simplices, we can assign degeneration data as follows.

1 Let Σ be the normal fan of P.

2 Let C be the cycle E 7→ `(E ?).

3 Let J be the divisors corresponding to the chosen Minkowski
decompositions.

We observe that the condition on P is very restrictive. In fact 89 of the
105 Fano threefolds are constructed this way. Note that the previous
example is a special case of this construction, and that the slabs are
always wps, with divisor class O(`(E )`(E ?)).
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Two dimensional situation

Our constructions directly generalise a two-dimensional one, in which any
of the 10 del Pezzo surfaces may be obtained by making nodal trades from
a polygon. We summarise the two-dimensional affine manifolds important
in our construction below.

B X̆ (B) Affine structure

Polygon polarised toric variety B is the image of the moment map

S2 K3 surface 24 focus-focus singularities

Disc Del Pezzo surface dPd 12− d focus-focus singularities
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Product constructions

In fact the two-dimensional cases automatically give us 5 examples by
taking products of non-toric del Pezzo surfaces with P1. The images
below shows the base of a torus fibration on dP4 × P1. We see that the
fan on which ∆ is supported is not the normal fan of P.
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Example: MM3–5
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Example: MM4–2

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 20 / 34



Euler numbers

We can easily compute the Euler number of the manifold X̆ (B) by taking
the sum of the Euler numbers of the fibres which do not contain a circle
factor.

Special fibre Euler number

Positive node 1
Negative node −1

Point in ∆ ∩ ∂B 1
Vertex of B 1

Formula for Euler number

In the case that B has smooth boundary, and is constructed using our first
method, the Euler number obeys the following formula:

e(X̆ (B)) = 24 + T −
∑

E∈edges(P)

`(E )2`(E ?),
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Degree

The next invariant we need to consider is the anti-canonical degree, which
we replace in our topological model with the integer [π−1(∂B)]3.

Degree calculation

The self-intersection number D3, where D := [π−1(∂B)], is equal to the
anti-canonical degree of the toric variety XP .

This is expected from the deformation of XP to X̆ (B). We can give an
entirely topological proof:

1 Construct a (specific) push-off D ′ of D so that C := D ′ ∩ D is a
surface in D.

2 Find the genus of C by taking the image under C and computing the
genus of the tropical curve.

3 Use Lefschetz theorem on (1, 1)-classes and genus formula to
compute C 2 = 2g(C )− 2.
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Contraction map

We compute the Betti numbers of X̆ (B) via the contraction map
ξ : X̆ (B)→ X̆0(B), the union of toric varieties defined by decomposing P◦

along Σ. We tabulate the possible fibres over points in the interior of B.

codimension of π0(p) p ∈ ∆̃ ξ−1(p)

0 no point

1 no S1

1 yes point

2 no T 2

2 yes point or S1

3 no T 3
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A Leray spectral sequence

Our aim is to compute H2(X̆ (B),Q). If this is achieved all other Betti
numbers will follow from the Euler number formula and simply
connectedness of X̆ (B).

Leray spectral sequence

The spectral sequence Hp(X̆0(B),Rqξ?Q)⇒ Hp+q(X̆ (B),Q) has the
following truncated E2 page.

Q
0 ?
0 QR−1 ?
Q 0 Q 0

We often make use of the maps ik from the disjoint union of the
codimension k toric non-boundary strata into X̆0(B).
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A Leray spectral sequence

For example, consider H0(X̆0(B),R2ξ?Q). We have an injection,

R2ξ?Q→ i2?i2
?R2ξ?Q,

By left exactness of global sections we have an inclusion

H0(R2ξ?Q) ↪→ H0(i2?i
?
2R

2ξ?Q).

In fact i2?i
?
2R

2ξ?Q is the direct sum of its restrictions to the one
dimensional strata of the decomposition of P◦ induced by Σ. Computing
this following the argument of Gross we have that,

dimH0(X̆0(B),R2ξ?Q) = dimH0(X̆0(B), i2?i2
?R2ξ?Q) = 0.

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 25 / 34



A Leray spectral sequence

For example, consider H0(X̆0(B),R2ξ?Q). We have an injection,

R2ξ?Q→ i2?i2
?R2ξ?Q,

By left exactness of global sections we have an inclusion

H0(R2ξ?Q) ↪→ H0(i2?i
?
2R

2ξ?Q).

In fact i2?i
?
2R

2ξ?Q is the direct sum of its restrictions to the one
dimensional strata of the decomposition of P◦ induced by Σ. Computing
this following the argument of Gross we have that,

dimH0(X̆0(B),R2ξ?Q) = dimH0(X̆0(B), i2?i2
?R2ξ?Q) = 0.

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 25 / 34



A Leray spectral sequence

For example, consider H0(X̆0(B),R2ξ?Q). We have an injection,

R2ξ?Q→ i2?i2
?R2ξ?Q,

By left exactness of global sections we have an inclusion

H0(R2ξ?Q) ↪→ H0(i2?i
?
2R

2ξ?Q).

In fact i2?i
?
2R

2ξ?Q is the direct sum of its restrictions to the one
dimensional strata of the decomposition of P◦ induced by Σ. Computing
this following the argument of Gross we have that,

dimH0(X̆0(B),R2ξ?Q) = dimH0(X̆0(B), i2?i2
?R2ξ?Q) = 0.

Thomas Prince (Magdalen College, Oxford) Lagrangian fibrations 14 December 2017 25 / 34



Computing H2

We describe a general procedure for computing b2(X̆ (B)) in the case B is
obtained from smooth Minkowski decompositions of the facets of P.

The space Γ(Σ,C )

Fix an orientation of every 1-dimensional space MQ/〈σ〉 for σ ∈ Σ(2).
Then Γ(Σ,C ) ⊂ QΣ(2) is (almost!) defined to be the subspace of elements
γ = (γ1, . . . , γn) where n = |Σ(2)| such that

∑
i∈I γi = 0 whenever the

elements of Σ(2) corresponding to I appear as the support of singular
locus near a point of ∆ ∩ Σ(1).

Computation of b2(X̆ (B))

In this context
b2(X̆ (B)) = dim Γ(Σ,C )− 2
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Example computation (V22)
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Topological Classification

To prove that the rank one Fano varieties are homeomorphic to the
manifolds X̆ (B) we construct we use the classification of 6-manifolds
(Wall, Jupp). This says that 1-connected topological manifolds with
torsion-free homology which admit a smooth structure are classified by the
following invariants:

1 b3(X ), the third Betti number,

2 H2(X ,Z), the second integral cohomology group,

3 w2(X ) ∈ H2(X ,Z2), the second Stiefel–Whitney class,

4 FX , the cubic form on H2(X ,Z),

5 p1(X ) ∈ H4(X ,Z), the first Pontryagin class.
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Topological Classification

The Betti numbers have already been computed, for the form on H2 we
have:

Cubic form

The form FX is determined in the case b2(X̆ (B)) = 1 by the value of
[π−1(∂B)]3 as well as the index of [π−1(∂B)] ∈ H2(X̆ (B),Z).

The characteristic classes are computed in similar ways, using the
restriction

Second Stiefel–Whitney class

w2(X̆ (B)) = PD[π−1(∂B)] mod 2. We compute the cap product with D
using the projection formula. Let θ : D ↪→ X̆ (B) be the inclusion, then,

θ?

(
θ?w2(X̆ (B)) _ [D]

)
= w2(X̆ (B)) _ θ?[D]
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Topological Classification

Computing w2(X̆ (B))

We can compute

θ?w2(X̆ (B)) = w2(TX̆ (B)|D)

= w2(TD ⊕ ν(D))

= w2(TD) + w2(ν(D))

Using the Whitney product formula and naturality. Observing that
w2(TD) = 0 and w2(ν(D)) = e(ν(D)) mod 2 we see that the cap
product of w2(X̆ (B)) with D is exactly the cup of D with itself.

Since b2(X̆ (B)) = 1 this is sufficient to prove the result, so long as the
index of D is odd. In general we can use the same argument with an
integral lift of the second Stiefel Whitney class.
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Topological Classification

Lemma

Given a Fano threefold X , p1(X )c1(X ) = −K 3
X − 48. This follows

immediately from HRR and p1(X ) = −2c2(X ) + c1(X )2.

Computing p1(X̆ (B))

Noting that we can canonically identify H2(X ,Z) and H2(X̆ (B),Z) and
cubic forms so that [π−1(∂B)] is identified with c1(X ), we use the
projection formula

p1(X̆ (B)) _ θ?[D] = θ?

(
θ?(p1(X̆ (B))) _ [D]

)
,

and we have that θ?p1(X̆ (B)) = p1(D) + p1(ν(D)). However, D is
diffeomorphic to a K3 surface so,
p1(D) = −2c2(D) + c1(D)2 = −2c2(D) = −48. Moreover p1(ν(D)) is the
Euler class of ν(D)⊕ ν(D), which is precisely [D]3.
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Example: B3 and its blow-up
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Where next?

There are several things to be doing in this direction.

Fano 3-folds

Find a general procedure for more general facet decompositions. Find a
generalised formula for Euler number, understand the non-reflexive case
better.

Calabi–Yau 3-folds and Fano 4-folds

Give analogous constructions for a class of reflexive 4-topes. Compute
topological invariants in this case. Smooth boundaries are more interesting
here, corresponding to CY hypersurfaces in general Fano 4-folds.

Mirror Symmetry

Tropical superpotential calculation in some of these examples. Relate SYZ
mirror symmetry and Minkowski polynomials of
Coates–Corti–Galkin–Golyshev–Kasprzyk.
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The End
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