Moduli of Lagrangian immersions in pair-of-pants decompositions and mirror symmetry

Siu-Cheong Lau Boston University

Decemeber 2017

Joint work with Cheol-Hyun Cho and Hansol Hong

Outline

- Overview.
- Construction for pair-of-pants decompositions.
- An application to wall-crossing.

Section 1

Overview and background

Moduli theory in the B-side

Moduli theory for vector bundles was well established.

Theorem (**Donaldson**, **Uhlenbeck-Yau**)

A slope-semistable holomorphic vector bundle admits a Hermitian Yang-Mills metric.

- ▶ GIT and stability conditions were essential to the construction.
- Bridgeland developed a general mathematical theory of stability conditions for triangulated categories.
- ► Toda developed foundational techniques to construct Bridgeland stability conditions for derived categories of coherent sheaves.
- Moduli spaces undergo birational changes (such as flops) in a variation of stability conditions.
- ▶ How about moduli of Lagrangians in the mirror A-side?

Moduli theory in the B-side

Moduli theory for vector bundles was well established.

Theorem (**Donaldson**, **Uhlenbeck-Yau**)

A slope-semistable holomorphic vector bundle admits a Hermitian Yang-Mills metric.

- ▶ GIT and stability conditions were essential to the construction.
- Bridgeland developed a general mathematical theory of stability conditions for triangulated categories.
- Toda developed foundational techniques to construct Bridgeland stability conditions for derived categories of coherent sheaves.
- Moduli spaces undergo birational changes (such as flops) in a variation of stability conditions.
- ► How about moduli of Lagrangians in the mirror A-side?

Moduli theory in the B-side

Moduli theory for vector bundles was well established.

Theorem (**Donaldson**, **Uhlenbeck-Yau**)

A slope-semistable holomorphic vector bundle admits a Hermitian Yang-Mills metric.

- ▶ GIT and stability conditions were essential to the construction.
- Bridgeland developed a general mathematical theory of stability conditions for triangulated categories.
- Toda developed foundational techniques to construct Bridgeland stability conditions for derived categories of coherent sheaves.
- Moduli spaces undergo birational changes (such as flops) in a variation of stability conditions.
- ► How about moduli of Lagrangians in the mirror A-side?

- Complexification. The naive moduli spaces are affine manifolds with singularities. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.
- Quantum correction. The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.
- ► Landau-Ginzburg model. The moduli in general are singular varieties. They are described as critical loci of holomorphic functions
- ► Singular Lagrangians. Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.

- Complexification. The naive moduli spaces are affine manifolds with singularities. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.
- Quantum correction. The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.
- ► Landau-Ginzburg model. The moduli in general are singular varieties. They are described as critical loci of holomorphic functions.
- Singular Lagrangians. Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.

- Complexification. The naive moduli spaces are affine manifolds with singularities. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.
- Quantum correction. The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.
- Landau-Ginzburg model. The moduli in general are singular varieties. They are described as critical loci of holomorphic functions.
- Singular Lagrangians. Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.

- Complexification. The naive moduli spaces are affine manifolds with singularities. Complexification is needed in order to compactify. Technically we need to work over the Novikov ring.
- Quantum correction. The canonical complex structures need to be corrected using Lagrangian Floer theory [Fukaya-Oh-Ohta-Ono]. The combinatorial structure of quantum corrections for SYZ fibrations was deeply studied by Kontsevich-Soibelman and Gross-Siebert.
- Landau-Ginzburg model. The moduli in general are singular varieties. They are described as critical loci of holomorphic functions.
- Singular Lagrangians. Kontsevich proposed to study them using cosheaves of categories. Nadler is developing a theory of arboreal singularities.

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- ► They are the main sources of wall-crossing phenomenon in the SYZ setting.
- ► The deformation space of a Lagrangian immersion is 'bigger' than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- ► A Lagrangian immersion in the pair-of-pants was used by **Seidel** and **Sheridan** to prove homological mirror symmetry for Fermat-type hypersurfaces.

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- They are the main sources of wall-crossing phenomenon in the SYZ setting.
- ► The deformation space of a Lagrangian immersion is 'bigger' than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- ► A Lagrangian immersion in the pair-of-pants was used by Seidel and Sheridan to prove homological mirror symmetry for Fermat-type hypersurfaces.

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- They are the main sources of wall-crossing phenomenon in the SYZ setting.
- The deformation space of a Lagrangian immersion is 'bigger' than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- ► A Lagrangian immersion in the pair-of-pants was used by **Seidel** and **Sheridan** to prove homological mirror symmetry for Fermat-type hypersurfaces.

- Lagrangian immersions have a well-defined Floer theory by Akaho-Joyce.
- They are the main sources of wall-crossing phenomenon in the SYZ setting.
- The deformation space of a Lagrangian immersion is 'bigger' than its smoothing and covers a local family of Lagrangians (including singular Lagrangians).
- ► A Lagrangian immersion in the pair-of-pants was used by **Seidel** and **Sheridan** to prove homological mirror symmetry for Fermat-type hypersurfaces.

Family Floer theory

- ▶ **Fukaya** proposed to study mirror symmetry by using $CF(L_b, \cdot)$ for fibers L_b of a Lagrangian torus fibration.
- ► **Tu** took this approach to construct mirror spaces away from singular fibers.
- ▶ **Abouzaid** constructed family Floer functors for torus bundles and showed that the functor is fully faithful.
- ► We consider moduli of Lagrangians which are not necessarily tori.
- ▶ Instead of Fukaya trick, we consider pseudo-isomorphisms between Lagrangian immersions which intersect with each other in a certain manner, and obtain the gluing information from cocyle conditions. (In particular we do not need diffeomorphisms.)
- Lagrangian immersions help in gluing. The immersed sectors provide Λ_+ (or even Λ_0) space of deformations, which is much 'bigger' than the deformation space of flat \mathbf{C}^{\times} -connections.

Family Floer theory

- ▶ **Fukaya** proposed to study mirror symmetry by using $CF(L_b, \cdot)$ for fibers L_b of a Lagrangian torus fibration.
- ► **Tu** took this approach to construct mirror spaces away from singular fibers.
- ▶ **Abouzaid** constructed family Floer functors for torus bundles and showed that the functor is fully faithful.
- ► We consider moduli of Lagrangians which are not necessarily tori.
- Instead of Fukaya trick, we consider pseudo-isomorphisms between Lagrangian immersions which intersect with each other in a certain manner, and obtain the gluing information from cocyle conditions. (In particular we do not need diffeomorphisms.)
- Lagrangian immersions help in gluing. The immersed sectors provide Λ_+ (or even Λ_0) space of deformations, which is much 'bigger' than the deformation space of flat \mathbf{C}^{\times} -connections.

Section 2

Pair-of-pants decompositions

Punctured Riemann surfaces

- ► Consider a pair-of-pants decomposition of a punctured Riemann surface.
- Homological mirror symmetry was proved for punctured Riemann surface by
 Abouzaid-Auroux-Efimov-Katzarkov-Orlov, Bocklandt, and Heather Lee.
- Our focus is on the construction of moduli rather than HMS. The construction comes with a natural functor which derives HMS.
- We have a family of Lagrangian immersions as shown in the figure. We will take finitely many representing Lagrangians and glue their deformation spaces together.

Punctured Riemann surfaces

- Consider a pair-of-pants decomposition of a punctured Riemann surface.
- Homological mirror symmetry was proved for punctured Riemann surface by
 Abouzaid-Auroux-Efimov-Katzarkov-Orlov, Bocklandt, and Heather Lee.
- Our focus is on the construction of moduli rather than HMS. The construction comes with a natural functor which derives HMS.
- We have a family of Lagrangian immersions as shown in the figure. We will take finitely many representing Lagrangians and glue their deformation spaces together.
- ▶ dim = 1 contains the essential ingredients. In higher dimensions, Seidel's Lagrangians are replaced by Sheridan's Lagrangians.

Review on local moduli construction

- First consider a pair-of-pants, with the Lagrangian immersion constructed by Seidel.
- $\qquad \qquad \mathsf{CF}(L,L) = \mathsf{Span}\{\mathbf{1},X,Y,Z,\bar{X},\bar{Y},\bar{Z},\mathsf{pt}\}.$
- ▶ We proved that xX + yY + zZ is weakly unobstructed for $x, y, z \in \mathbf{C}$. It is important that the areas of the two triangles are the same.
- ▶ Thus the local moduli is (\mathbf{C}^3, W) , where W = xyz.
- The pair-of-pants can be compactified to $\mathbb{P}^1_{a,b,c}$. We used this to construct and compute the mirror, and derived homological mirror symmetry. In an ongoing work with **Amorim** we prove closed-string mirror symmetry. For elliptic orbifolds the coefficients of W are modular forms $[\mathbf{L}_{\cdot}\mathbf{-Zhou}]$.

Review on local moduli construction

- First consider a pair-of-pants, with the Lagrangian immersion constructed by Seidel.
- $\qquad \qquad \mathsf{CF}(L,L) = \mathsf{Span}\{\mathbf{1},X,Y,Z,\bar{X},\bar{Y},\bar{Z},\mathsf{pt}\}.$
- ▶ We proved that xX + yY + zZ is weakly unobstructed for $x, y, z \in \mathbf{C}$. It is important that the areas of the two triangles are the same.
- ▶ Thus the local moduli is (\mathbf{C}^3, W) , where W = xyz.
- The pair-of-pants can be compactified to $\mathbb{P}^1_{a,b,c}$. We used this to construct and compute the mirror, and derived homological mirror symmetry. In an ongoing work with **Amorim** we prove closed-string mirror symmetry. For elliptic orbifolds the coefficients of W are modular forms [L.-Zhou].

Gluing

- Consider the four-punctured sphere as shown above.
- ▶ We need to glue the deformation spaces of the two Seidel Lagrangians S_1 and S_2 .
- ▶ There are two main processes: smoothing and gauge change.
- Let's pretend to work over C at this stage. The gluing we need is

$$(\mathbf{C}^3,W) \overset{\mathrm{smoothing}}{\longleftrightarrow} (\mathbf{C}^\times \times \mathbf{C}^2) \overset{\mathrm{gauge\ change}}{\longleftrightarrow} (\mathbf{C}^\times \times \mathbf{C}^2) \overset{\mathrm{smoothing}}{\longleftrightarrow} \mathbf{C}^3.$$

Gluing

- Consider the four-punctured sphere as shown above.
- We need to glue the deformation spaces of the two Seidel Lagrangians S_1 and S_2 .
- ▶ There are two main processes: smoothing and gauge change.
- Let's pretend to work over C at this stage. The gluing we need is

$$(\mathbf{C}^3,W) \overset{\mathrm{smoothing}}{\longleftrightarrow} (\mathbf{C}^\times \times \mathbf{C}^2) \overset{\mathrm{gauge\ change}}{\longleftrightarrow} (\mathbf{C}^\times \times \mathbf{C}^2) \overset{\mathrm{smoothing}}{\longleftrightarrow} \mathbf{C}^3.$$

- ▶ There is a vanishing sphere in a smoothing at an immersed point of *S*. In this case it is simply the union of two points.
- ▶ Put a flat \mathbf{C}^{\times} connection on the smoothing C, which is acting by $t \in \mathbf{C}^{\times}$ when passing through the two points.
- ► The position of the two points are different for smoothings on the left and on the right.
- ▶ When a gauge point T is moved across the immersed point Y, the A_{∞} algebras are related by $\tilde{y} = ty$.
- ▶ There are different ways of moving the gauge points to match them. This results in $\tilde{y} = t^a y$, $\tilde{z} = t^b z$ with a + b = 2.

- ▶ There is a vanishing sphere in a smoothing at an immersed point of *S*. In this case it is simply the union of two points.
- ▶ Put a flat \mathbf{C}^{\times} connection on the smoothing C, which is acting by $t \in \mathbf{C}^{\times}$ when passing through the two points.
- ► The position of the two points are different for smoothings on the left and on the right.
- ▶ When a gauge point T is moved across the immersed point Y, the A_{∞} algebras are related by $\tilde{y} = ty$.
- ▶ There are different ways of moving the gauge points to match them. This results in $\tilde{y} = t^a y$, $\tilde{z} = t^b z$ with a + b = 2.

- ▶ There is a vanishing sphere in a smoothing at an immersed point of *S*. In this case it is simply the union of two points.
- ▶ Put a flat \mathbf{C}^{\times} connection on the smoothing C, which is acting by $t \in \mathbf{C}^{\times}$ when passing through the two points.
- ► The position of the two points are different for smoothings on the left and on the right.
- ▶ When a gauge point T is moved across the immersed point Y, the A_{∞} algebras are related by $\tilde{y} = ty$.
- ► There are different ways of moving the gauge points to match them. This results in $\tilde{y} = t^a y$, $\tilde{z} = t^b z$ with a + b = 2.

- ► There is a vanishing sphere in a smoothing at an immersed point of S. In this case it is simply the union of two points.
- ▶ Put a flat \mathbf{C}^{\times} connection on the smoothing C, which is acting by $t \in \mathbf{C}^{\times}$ when passing through the two points.
- ► The position of the two points are different for smoothings on the left and on the right.
- ▶ When a gauge point T is moved across the immersed point Y, the A_{∞} algebras are related by $\tilde{y} = ty$.
- There are different ways of moving the gauge points to match them. This results in $\tilde{y}=t^ay$, $\tilde{z}=t^bz$ with a+b=2.

Smoothing

- ▶ We need to glue the deformation spaces of *S* and *C*.
- ▶ They are given by $(x, y, z) \in \mathbb{C}^3$ and $(t, y_0, z_0) \in \mathbb{C}^\times \times \mathbb{C}^2$ respectively.
- Intuitively to match the superpotentials xyz and ty_0z_0 , we simply put $x=t, y=y_0, z=z_0$.
- ▶ We take *S*₁ to be the deformed Seidel Lagrangian which intersects *C* as in the figure.
- ► Then we use cocycle conditions to deduce the gluing between *S* and *C*.

Smoothing

- ▶ We need to glue the deformation spaces of *S* and *C*.
- ▶ They are given by $(x, y, z) \in \mathbb{C}^3$ and $(t, y_0, z_0) \in \mathbb{C}^\times \times \mathbb{C}^2$ respectively.
- Intuitively to match the superpotentials xyz and ty_0z_0 , we simply put $x=t, y=y_0, z=z_0$.
- ▶ We take S₁ to be the deformed Seidel Lagrangian which intersects C as in the figure.
- ► Then we use cocycle conditions to deduce the gluing between *S* and *C*.

Isomorphisms in smoothing

- ▶ We consider $a_1 + b_1 \in \mathrm{CF}((C, \nabla_t), (S, xX))$ and $c_2 + d_2 \in \mathrm{CF}((S, xX), (C, \nabla_t))$.
- ▶ Consider cocycle conditions on $a_1 + b_1$ and $c_2 + d_2$. Once the cocycle conditions are satisfied, they give isomorphisms between the two objects.

A paradox

- ▶ S is isomorphic to S_1 , and (S_1, xX) is isomorphic to (C, ∇_t) for $t = x \neq 0$. Thus (S, xX) is isomorphic to C.
- ▶ But *S* and *C* are disjoint, and hence there is no morphism between them!
- ▶ We need to take a closer look at areas of holomorphic discs.
- Following **Fukaya-Oh-Ohta-Ono**, we shall use the Novikov ring $\Lambda_0 = \{\sum_{i=0}^{\infty} a_i T^{A_i} : 0 \le A_0 \le A_1 \le ...\}$ to filter deformations into different energy levels.

A paradox

- ▶ S is isomorphic to S_1 , and (S_1, xX) is isomorphic to (C, ∇_t) for $t = x \neq 0$. Thus (S, xX) is isomorphic to C.
- ▶ But *S* and *C* are disjoint, and hence there is no morphism between them!
- We need to take a closer look at areas of holomorphic discs.
- ▶ Following **Fukaya-Oh-Ohta-Ono**, we shall use the Novikov ring $\Lambda_0 = \{\sum_{i=0}^{\infty} a_i T^{A_i} : 0 \le A_0 \le A_1 \le ...\}$ to filter deformations into different energy levels.

Area constraints for isomorphisms

- ▶ For the cocycle conditions on $(S_1, x_1X_1) \rightarrow (C, \nabla_t)$, indeed we have $t = T^{A_1 + ... + A_5 A_7}x_1$.
- ▶ Note that $t \in \mathbf{C}^{\times}$ while $x_1 \in \Lambda_0$. When $A_1 + \ldots + A_5 > A_7$, the condition is never satisfied.
- ▶ Hence (S_1, x_1X_1) can never be isomorphic to (C, ∇_t) if $A_1 + \ldots + A_5 > A_7$.
- ▶ When $A_1 + ... + A_5 = A_7$, the change of coordinates $x_1 = t$ does not involve Novikov parameters.
- For the cocycle conditions on $(S, xX) \rightarrow (S_1, x_1X_1)$, we have $x_1 = T^Ax$ for certain A > 0. Thus $\operatorname{val}(x_1) \ge A > 0$ in order to have them to be isomorphic.
- The two regions $\operatorname{val}(x_1) = 0$ and $\operatorname{val}(x_1) \ge A > 0$ are disjoint. This solves the paradox.

Area constraints for isomorphisms

- ▶ For the cocycle conditions on $(S_1, x_1X_1) \rightarrow (C, \nabla_t)$, indeed we have $t = T^{A_1 + ... + A_5 A_7}x_1$.
- ▶ Note that $t \in \mathbf{C}^{\times}$ while $x_1 \in \Lambda_0$. When $A_1 + \ldots + A_5 > A_7$, the condition is never satisfied.
- ▶ Hence (S_1, x_1X_1) can never be isomorphic to (C, ∇_t) if $A_1 + \ldots + A_5 > A_7$.
- ▶ When $A_1 + ... + A_5 = A_7$, the change of coordinates $x_1 = t$ does not involve Novikov parameters.
- ▶ For the cocycle conditions on $(S, xX) \rightarrow (S_1, x_1X_1)$, we have $x_1 = T^Ax$ for certain A > 0. Thus $val(x_1) \ge A > 0$ in order to have them to be isomorphic.
- The two regions $\operatorname{val}(x_1) = 0$ and $\operatorname{val}(x_1) \ge A > 0$ are disjoint. This solves the paradox.

Area constraints for isomorphisms

- ▶ For the cocycle conditions on $(S_1, x_1X_1) \rightarrow (C, \nabla_t)$, indeed we have $t = T^{A_1 + ... + A_5 A_7}x_1$.
- ▶ Note that $t \in \mathbf{C}^{\times}$ while $x_1 \in \Lambda_0$. When $A_1 + \ldots + A_5 > A_7$, the condition is never satisfied.
- ▶ Hence (S_1, x_1X_1) can never be isomorphic to (C, ∇_t) if $A_1 + \ldots + A_5 > A_7$.
- ▶ When $A_1 + ... + A_5 = A_7$, the change of coordinates $x_1 = t$ does not involve Novikov parameters.
- ▶ For the cocycle conditions on $(S, xX) \rightarrow (S_1, x_1X_1)$, we have $x_1 = T^Ax$ for certain A > 0. Thus $val(x_1) \ge A > 0$ in order to have them to be isomorphic.
- ▶ The two regions $val(x_1) = 0$ and $val(x_1) \ge A > 0$ are disjoint. This solves the paradox.

More pair-of-pants

- For the four-punctured sphere with two pants in the decomposition, we can choose S_1 as above in each pants such that the gluing x = t does not involve the Novikov parameter.
- ► Then the **C**-valued mirror $(\mathcal{O}(-1) \oplus \mathcal{O}(-1), W)$ embeds well in the Λ -valued mirror $(\Lambda_0^3 \cup \Lambda_0^3, W)$.
- ▶ However suppose there is one more pants in the decomposition. Then we need to consider another Seidel Lagrangian S'_1 .
- ▶ The gluing between S_1 and S'_1 is $x_1 = T^A x'_1$ for certain A > 0. Unavoidably the gluing involves the Novikov parameter.

More pair-of-pants

- For the four-punctured sphere with two pants in the decomposition, we can choose S_1 as above in each pants such that the gluing x = t does not involve the Novikov parameter.
- ► Then the **C**-valued mirror $(\mathcal{O}(-1) \oplus \mathcal{O}(-1), W)$ embeds well in the Λ -valued mirror $(\Lambda_0^3 \cup \Lambda_0^3, W)$.
- ► However suppose there is one more pants in the decomposition. Then we need to consider another Seidel Lagrangian S'_1 .
- ▶ The gluing between S_1 and S'_1 is $x_1 = T^A x'_1$ for certain A > 0. Unavoidably the gluing involves the Novikov parameter.

More pair-of-pants

- For the four-punctured sphere with two pants in the decomposition, we can choose S_1 as above in each pants such that the gluing x = t does not involve the Novikov parameter.
- ► Then the **C**-valued mirror $(\mathcal{O}(-1) \oplus \mathcal{O}(-1), W)$ embeds well in the Λ -valued mirror $(\Lambda_0^3 \cup \Lambda_0^3, W)$.
- ▶ However suppose there is one more pants in the decomposition. Then we need to consider another Seidel Lagrangian S_1' .
- ▶ The gluing between S_1 and S'_1 is $x_1 = T^A x'_1$ for certain A > 0. Unavoidably the gluing involves the Novikov parameter.

Moduli over A

- The moduli over Λ is depicted above.
- ▶ The **C**-valued toric Calabi-Yau is not embedded, since the gluing $x_1 = T^A x_1'$ does not preserve **C**.
- On the other hand, the C-valued critical locus of W is embedded in the Λ-valued moduli. Exact Lagrangians are transformed to matrix factorizations supported on the C-valued critical locus.

A compactification

- ▶ The gluing x = t, $y = y_0$, $z = z_0$ looks pretty trivial. Let's compactify to get more interesting gluing.
- ▶ As an example, compactify the four-punctured sphere to a sphere. we still consider the moduli of double-circles.
- ► The gluing is further quantum-corrected by discs emanated from infinite divisors.
- The new gluing is t = x, $y_0 = y_1 + t_1^{-1}$, $z_0 = z_1 t_1^{-1}$. $W = xyz y_1 + x_1 + z_1$. (The Novikov parameter is suppressed for simplicity.)
- ► Unlike the case for anti-canonical divisors, gluing needs to be corrected upon compactification.

A compactification

- ▶ The gluing x = t, $y = y_0$, $z = z_0$ looks pretty trivial. Let's compactify to get more interesting gluing.
- ▶ As an example, compactify the four-punctured sphere to a sphere. we still consider the moduli of double-circles.
- The gluing is further quantum-corrected by discs emanated from infinite divisors.
- ► The new gluing is t = x, $y_0 = y_1 + t_1^{-1}$, $z_0 = z_1 t_1^{-1}$. $W = xyz y_1 + x_1 + z_1$. (The Novikov parameter is suppressed for simplicity.)
- ▶ Unlike the case for anti-canonical divisors, gluing needs to be corrected upon compactification.

A compactification

- ▶ The gluing x = t, $y = y_0$, $z = z_0$ looks pretty trivial. Let's compactify to get more interesting gluing.
- ▶ As an example, compactify the four-punctured sphere to a sphere. we still consider the moduli of double-circles.
- The gluing is further quantum-corrected by discs emanated from infinite divisors.
- ► The new gluing is t = x, $y_0 = y_1 + t_1^{-1}$, $z_0 = z_1 t_1^{-1}$. $W = xyz y_1 + x_1 + z_1$. (The Novikov parameter is suppressed for simplicity.)
- ▶ Unlike the case for anti-canonical divisors, gluing needs to be corrected upon compactification.

Changing stability and flop

- Let's go back to the four-punctured sphere. We can take another pair-of-pants decomposition.
- ▶ It corresponds to another choice of a quadratic differential (stability condition [Haiden-Katzarkov-Kontsevich]).
- ▶ This results in a flop of the moduli space $(\mathcal{O}(-1) \oplus \mathcal{O}(-1), W)$.
- We can also consider a quadratic differential with double zeros. Then the moduli is the non-commutative resolution of the conifold corresponding to a quiver ([Cho-Hong-L. 15]).
- ► In [Fan-Hong-L.-Yau] we studied a 3d version of this (deformed conifold)

Changing stability and flop

- ► Let's go back to the four-punctured sphere. We can take another pair-of-pants decomposition.
- ▶ It corresponds to another choice of a quadratic differential (stability condition [Haiden-Katzarkov-Kontsevich]).
- ▶ This results in a flop of the moduli space $(\mathcal{O}(-1) \oplus \mathcal{O}(-1), W)$.
- ▶ We can also consider a quadratic differential with double zeros. Then the moduli is the non-commutative resolution of the conifold corresponding to a quiver ([Cho-Hong-L. 15]).
- In [Fan-Hong-L.-Yau] we studied a 3d version of this (deformed conifold).

Section 3

Wall-crossing

- The two-dimensional immersed sphere leads to wall-crossing phenomenons for SYZ Lagrangian fibrations.
- Fukaya studied this immersion and studied the relation with the mirror equation. Here we realize it from cocycle conditions.
- ▶ It has two degree-one immersed generators U and V. It gives the deformations b = uU + vV where $(u, v) \in (\Lambda_0 \times \Lambda_+) \cup (\Lambda_+ \times \Lambda_0)$.
- There are constant holomorphic discs with corners U, V, \ldots, U, V . To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.

- The two-dimensional immersed sphere leads to wall-crossing phenomenons for SYZ Lagrangian fibrations.
- Fukaya studied this immersion and studied the relation with the mirror equation. Here we realize it from cocycle conditions.
- ▶ It has two degree-one immersed generators U and V. It gives the deformations b = uU + vV where $(u, v) \in (\Lambda_0 \times \Lambda_+) \cup (\Lambda_+ \times \Lambda_0)$.
- There are constant holomorphic discs with corners U, V, \ldots, U, V . To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.

- The two-dimensional immersed sphere leads to wall-crossing phenomenons for SYZ Lagrangian fibrations.
- Fukaya studied this immersion and studied the relation with the mirror equation. Here we realize it from cocycle conditions.
- It has two degree-one immersed generators U and V. It gives the deformations b = uU + vV where $(u, v) \in (\Lambda_0 \times \Lambda_+) \cup (\Lambda_+ \times \Lambda_0)$.
- There are constant holomorphic discs with corners U, V, \ldots, U, V . To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.

- ▶ It has two degree-one immersed generators U and V. It gives the deformations b = uU + vV where $(u, v) \in (\Lambda_0 \times \Lambda_+) \cup (\Lambda_+ \times \Lambda_0)$.
- ▶ There are constant holomorphic discs with corners U, V, \ldots, U, V . To ensure there are only finitely many terms under every energy level, we only allow one of u, v having valuation zero.
- ▶ The constant discs with corners U, V, ..., U, V contributing to pt of m_0^b cancel with that with corners V, U, ..., V, U. Thus b = uU + vV is weakly unobstructed.

Gluing

- ► Consider the immersed sphere *S* and a Chekanov torus *T*. *S* is made by deforming the immersed fiber.
- ▶ We glue the deformations $(u, v) \in \Lambda_0 \times \Lambda_+$ with the deformations $(x, y) \in (\mathbf{C}^{\times} \oplus \Lambda_+)^2$ of T.

Gluing

- ▶ We glue the deformations $(u, v) \in \Lambda_0 \times \Lambda_+$ with the deformations $(x, y) \in (\mathbf{C}^{\times} \oplus \Lambda_+)^2$ of T.
- ► The cocycle conditions give u = y and x = uv 1. Note that the second equation is on the region $x = -1 + \Lambda_+$.
- ▶ In other words, CF(T, T) gives an extension of CF(S, S) from $v \in \Lambda_+$ to $v \in \Lambda_0$ with $uv \neq 1$.
- Similarly we can glue the immersed sphere S (with $(u, v) \in \Lambda_+ \times \Lambda_0$) with a Clifford torus T'. It is v = y' and x' = uv 1.
- ▶ The resulting moduli is $\{(u,v) \in \Lambda_0 \times \Lambda_0 : uv \neq 1\}$.

Gluing

- ▶ We glue the deformations $(u, v) \in \Lambda_0 \times \Lambda_+$ with the deformations $(x, y) \in (\mathbf{C}^{\times} \oplus \Lambda_+)^2$ of T.
- ► The cocycle conditions give u = y and x = uv 1. Note that the second equation is on the region $x = -1 + \Lambda_+$.
- ▶ In other words, CF(T, T) gives an extension of CF(S, S) from $v \in \Lambda_+$ to $v \in \Lambda_0$ with $uv \neq 1$.
- ▶ Similarly we can glue the immersed sphere S (with $(u, v) \in \Lambda_+ \times \Lambda_0$) with a Clifford torus T'. It is v = y' and x' = uv 1.
- ► The resulting moduli is $\{(u, v) \in \Lambda_0 \times \Lambda_0 : uv \neq 1\}$.

Grassmannians

- ▶ With **Hansol Hong and Yoosik Kim**, we are applying this to construct the compactified mirror of Gr(2, n).
- ► Flag manifolds have Gelfand-Cetlin systems serving as Lagrangian torus fibrations.
- Immersed spheres are important in that case because they appear as critical fibers of the superpotential.
- ▶ For instance, by **Nohara-Ueda** for Gr(2,4) there is a critical point (0,0) which corresponds to a certain fiber $\mathbf{S}^3 \times \mathbf{S}^1$ of the Gelfand-Cetlin system.
- ► The trouble is **S**³ is rigid!

Grassmannians

- ► Consider the symplectic reduction picture on **S**². We push in one singular point and consider the corresponding moduli.
- ► There is one monotone Lagrangian torus above and below the wall respectively. We glue the deformation spaces of an immersed sphere (times T²) with that of the two monotone tori like in the last slide.
- ▶ This recovers the **Rietsch** Lie theoretical mirror for Gr(2,4).