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Brieskorn lattices

f : (X, 0) := (Cn+1, 0)→ (∆, 0) holo. with isol. sing.

H ′′
f := Ωn+1

X,0 /df ∧ dΩn−1
X,0 (Brieskorn lattice),

Ωf := Ωn+1
X,0 /df ∧ Ωn

X,0

(∼= H ′′
f /∂

−1
t H ′′

f

)
.

Here ∂−1
t [ω] := [df ∧ η], t [ω] := [fω] in H ′′

f ,

with dη = ω (ω ∈ Ωn+1
X,0 , η ∈ Ωn

X,0).

Prop. H ′′
f free of rank µ over C{t}, C{{∂−1

t }}, where

C{{∂−1
t }} =

{∑
k⩾0 ak∂

−k
∣∣ ∑

k |ak|rk/k! <∞ (∃ r > 0)
}
.

Def. A C-linear section σ0 of pr0 : H ′′
f → Ωf is good if

tIσ0 ⊂ Iσ0 + ∂−1
t Iσ0 with Iσ0 := Imσ0 ,

i.e. tσ0 = σ0A0 + ∂−1
t σ0A1

(
A0, A1 ∈ EndC(Ωf )

)
,

or tv = A0v + ∂−1
t A1v

(
v := t(v1, . . . , vµ) basis of Iσ0

)
,

and very good if moreover σ0 strictly compatible with V ,

i.e. σ−1
0 (V αH ′′

f ) = pr0(V
αH ′′

f ) (∀α ∈ Q).

Here V αGf :=
⊕̂

β⩾αG
β
f

(
Gf := H ′′

f [∂t] G-M system
)
,

Gα
f := Ker

(
∂tt− α

)r ⊂ Gf (r ⩾ n) s.t. Gf =
⊕̂

α∈QGα
f .

Note Gα
f
∼= Hn(Ff ,C)e−2πiα

(
:= Ker(Ts − e−2πiα)

)
.

Thm.
{
very good sections σ0 of pr0 : H ′′

f → Ωf

}
1:1⇐⇒

{
good splittings of F on Hn(Ff ,C)

}
.

Here F is Hodge filtration, Ff is Milnor fiber, and
good splitting means an opposite filtration U to F

(i.e. F p+1 ⊕ Up = Hn(Ff )) stable by monodromy T .

Prop. NUp ⊂ Up−1 (∀ p)⇐⇒ A1 semisimple (N := log Tu).

A good splitting of F corresponds to Eα
f ⊂ Gα

f

(
α ∈ (0, n+ 1)

)
s.t. Eα

f ≃ GrαV Ωf , Gf =
⊕

α KEα
f

(
K := C{{∂−1

t }}[∂t]
)
.

For C-bases {eα,i} of Eα
f , there is a C-basis {vα,i} of Imσ0

s.t. vα,i = eα,i +
∑

j,k>0,β>α cα,i
β,j,k ∂

k
t eβ,j

(
cα,i
β,j,k ∈ C

)
.

It is very difficult to determine all the cα,i
β,j,k in general.

Note dimEα = #{ i | αf,i = α }
(
αf,i eigenvalues of A1

)
.

Basic example. Set R :=C{{∂−1
t }}, K :=R [∂t],

M (0) :=R∂−1
t e1 +R∂−1

t e2 +R(e1 + e2) ⊂M :=Ke1 ⊕Ke2 ,

v1 := e1 + e2, v2 := ∂−1
t e2 with ∂tt ei = βi ei (i=1, 2).

Then ∂tt v1 = β1v1 + (β2 − β1)∂tv2 , ∂tt v2 = (β2 + 1)v2 ,

A1 =

(
β1 0
0 β2 + 1

) [
A1 =

(
β2 0
0 β1 + 1

)
if v2 = ∂−1

t e1

]
Geometric example. Let f = x5 + y4 + x3y2. Then

H ′′
f =

⊕
(i,j)∈Λ Rvi,j ⊂ Gf =

⊕
(i,j)∈Λ Kei,j with

∂tt ei,j = αi,j ei,j
(
αi,j := i

5
+ j

4

)
, Λ := [1, 4]× [1, 3],

v1,1 := e1,1 + ∂−1
t e4,3 , vi,j := ei,j

(
(i, j) ̸= (1, 1)

)
.

Set M (0) := Rv1,1 ⊕Rv4,3 ⊂M := Ke1,1 ⊕Ke4,3 ⊂ Gf .

Then (β1, β2 + 1) =
(

9
20
, 31
20

)
, (β2, β1 + 1) =

(
11
20
, 29
20

)
.

These definitions come from Brieskorn’s classical paper.
In this talk we consider only analytic sheaves.
This definition of Gauss-Manin connection is compatible

with that of Gauss-Manin system explained later
(by considering the differential of the G-M complex).

It should be stressed that the inverse of the Gauss-Manin
connection ∂−1

t is always well-defined.

This can be proved easily by using Gauss-Manin system.
This

(
C{{∂−1

t }}
)
is the ring of microdifferential operators of

non-positive degrees with constant coefficients.
The freeness over C{t} is closely related with negativity of

roots of b-functions due to Kashiwara.
This is the expansion of action of t (only 2 terms appear).
Note that A0 expresses the action of f on Ωf .
Here A1 and A2 are identified with matrices of size (µ, µ).

This means that the induced filtration by the section σ0

coincides with the quotient filtration by the projection pr0.
V is the filtration of Kashiwara-Malgrange indexed by Q.
Localization of Br. lattice by ∂−1

t coincides with G-M system.
We have this ‘convergent’ direct sum decomposition.
Each piece is isomorphic to an eigenspace of Milnor cohom.
This

(
Ff

)
denotes the Milnor fiber of f around 0.

This is the main result of an old paper on Brieskorn lattice.
F is the Hodge filtration of the canonical mixed Hodge

structure on the Milnor cohomology.
Here only the stability by the monodromy T is assumed;

i.e. this stronger condition (in Prop) is not assumed;
so A1 is not necessarily semisimple.

Tu is the unipotent part of the monodromy.

Here we use the isomorphism between Gf and Milnor cohom.
K is the ring of microdifferential operators with const. coeff.
This basis (vα,i) is unique by these conditions: k > 0, β > α.

These (cα,i
β,j,k) are called the structure constants of the basis.

Eigenvalues of A1 are called the exponents associated to σ0.
If σ0 is very good, they coincide with Steenbrink exponents,

but they may depend on σ0 if it is not very good.
But A0 (expressing action of f on Ωf ) is independent of σ0.

This is really a fundamental example.

Note first that this expression is redundant: either
this (R∂−1

t e1) or this (R∂−1
t e2) is unnecessary.

If this (R∂−1
t e1) is removed, we get these generators

(v1, v2) and this matrix (by these calculations).

If the other one is removed we get this matrix.

This is one of the simplest examples of non weighted
homogeneous singularities.

Steenbrink (or standard) exponents are given by these(
αi,j := i

5
+ j

4

)
as is well-known.

This
(
M (0)

)
is a direct factor of Brieskorn lattice.

If we take these generators, we get these
(

9
20
, 31
20

)
,
(
they

are equal to α1,1 and α4,3

)
, and

(
11
20
, 29
20

)
in other case.
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Prop. Pairings of Hn(Ff ) compatible with monodromy T
1:1⇐⇒ S : Gf ×Gf → K := C{{∂−1

t }}[∂t] s.t.

PS(u, v) = S(u, Pv) = S(P ∗u, v) (P ∈ K; ∂∗
t :=−∂t),[

t, S(u, v)
]
= S(u, tv)− S(tu, v).

(The last two imply S(Gα
f , G

β
f ) ⊂ C ∂α+β

t for α+ β ∈ Z.)

This is closely related to D(Gf ) = HomK(Gf ,K), where

D(Gf ) := Ext1E∆,0

(
Gf , E∆,0

)
(dual as E∆,0-module).

Note Canonical self-duality ⇐⇒ Higher residue pairing SK

satisfying SK(H ′′
f ,H ′′

f ) ⊂ R∂−n−1
t

(
R := C{{∂−1

t }}
)
.(

This gives strong restrictions on structure constants cα,i
β,j,k .

)
Def. A good splitting of F is called compatible with
self-duality if SK(Eα, Eβ) = 0 for α+ β ̸= n+ 1.

Thm. Any very good section (i.e. a good splitting of F )
compatible with self-duality gives a unique primitive form.

For the proof we need the following

Prop. Minimal eigenvalue αf,1 of A1 has multiplicity 1.

The corresponding eigenvector ζ0 generates Ωf over OX,0.
(More precisely, GrαV Ωf are annihilated by mX,0 ⊂ OX,0.)

This is shown by using microlocal Gauss-Manin system.
(Varchenko’s theory can be used if αf,1 < 1.)

Note Theorem does not hold for general good sections.

In fact, there may be many eigenvectors ζ0 of A1 generating
Ωf over OX,0 , and uniqueness does not necessarily hold,

e.g. f = xa + yb + xa−3yb−2 + xa−2yb−2
(
a > b, 3

a
+ 2

b
< 1

)
.

As for existence we have the semi-simplicity problem of A1

(the eigenspace in strict sense can be contained in mX,0 Ωf ),

e.g. f = x10 + y3 + x2y2 + z6 + w5 + z4w3.

In the weighted homogeneous case, there is no problem since

Prop. Any good section is very good if f weighted homog.

(This easily follows from ∂tt σ0 = σ0A1 since A0 = 0 .)

Deformation

F : Y := X×S → ∆ (miniversal) deformation of f .

H ′′
F,S := Ωn+1

Y/S,0

/
dF ∧ dΩn−1

Y/S,0 (rel. Brieskorn module),

ΩF,S := Ωn+1
Y/S,0

/
dF ∧ Ωn

Y/S,0

(∼= H ′′
F,S/∂

−1
t H ′′

F,S

)
.

Def. An OS,0-linear section σS of H ′′
F,S → ΩF,S is good if

tIσS ⊂ IσS + ∂−1
t IσS , ∂siIσS ⊂ IσS + ∂tIσS (IσS := ImσS).

Thm. (Malgrange). Any good section σ0 is uniquely lifted
to a good section σS (by solving Birkhoff’s R-H problem).

Thm. (K. Saito). Any good section σS is uniquely lifted to

σ∇
S : Ωf → H ′′

F,S s.t. ∂si(Imσ∇
S ) ⊂ OS,0 ∂t(Imσ∇

S ).

Note The associated primitive form can be defined by

ζS := σ∇
S (ζ0) for ζ0 ∈ Ωf s.t. A1ζ0 = αf,1 ζ0 .

This follows from the isomorphism Gα
f
∼= Hn(Ff )e−2πiα

by restricting the pairing S to Gα
f ×Gβ

f .

P ∗ comes from transformation between left and right D-mod.

For G-M system we use microlocal dual as explained below.

This
(
S(Gα

f , G
β
f )
)
vanishes unless α+ β is an integer.

Here Fourier transformation is implicit.

This is the microlocal dual of the Gauss-Manin system.

This canonical pairing is defined by vanishing cycle functor.

This inclusion also follows from the filtered self-duality.

This can be stated in terms of the corresponding splitting of
the Milnor cohomology and the canonical pairing on it.

This was not shown in the old paper on Brieskorn lattice
since the next proposition was not proved there.

For the proof we use microlocal G-M system and the theory
of strict bifiltered complexes.

This is essential for uniqueness of generating eigenvector ζ0.

This was not stated explicitly in the old paper of Br. lattice.

This seems to be a rather generic phenomenon;
it may always occur if f is sufficiently complicated,
although the calculation is not necessarily easy.

On the other hand, this is a quite rare case.
It is not very easy to construct this kind of example.
Here we use the compatibility of the Thom-Sebastiani

isomorphism with the canonical self-duality isomorphism.

This means that the image of the section σ0 is stable by
the action of ∂tt, and this is expressed by A1.

Here we still consider in the analytic category,
and use analytic sheaves.

We do not assume that the deformation is miniversal.
These are natural generalization to the deformation case.
Here it is better to consider the action of ∂−1

t ∂si ,
and say that its expansion has only two terms
(this expression is convenient for proof of uniqueness
of extensions of good sections to the deformation).

This is a well-known theorem of Malgrange.
New proofs were found by Sabbah and Hertling.

This is proved by using a connection on ΩF,S

induced by the action of ∂si on ImσS .

Here we assume that σ0 is very good.
For good sections, we take a generating eigenvector ζ0,

and replace αf,1 by the corresponding eigenvalue.
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Formal Gauss-Manin systems

ĜF,Ŝ := Hn+1
(
Ĉ•

F,Ŷ /Ŝ

)
with Ŷ = X × Ŝ and

Ĉ•
F,Ŷ /Ŝ :=

(
Ω•

X,0((∂
−1
t ))[[s1, . . . , sm]] δ(t− F ), d

)
=

(
Ω•

X,0((∂
−1
t ))[[s1, . . . , sm]], d− ∂t dF∧

)
, where

∂xiδ(t− F ) = −(∂xiF ) ∂t δ(t− F ), t δ(t− F ) = F δ(t− F ).

Define similarly Ĝf,Ŝ with F replaced by f. Then

Ĝf,Ŝ = Ĝf [[s1, . . . , sm]].

Note ĜF,Ŝ free of rank µ over C((∂−1
t ))[[s1, . . . , sm]] .

Hence ĜF,Ŝ ̸=
∪

i ∂
i
t Ĥ

′′
F,Ŝ

(
Ĥ ′′

F,Ŝ
∼=

⊕µ C[[∂−1
t , s1, . . . , sm]]

)
.(

Recall C((∂−1
t ))[[s1, . . . , sm]] ̸= C[[s1, . . . , sm]]((∂−1

t )).
)

Thm. (C. Li, S. Li, K. Saito). There are isomorphisms

Ψ := e(F−f) ∂t : Ĝf,Ŝ

∼→ ĜF,Ŝ , Φ := e(f−F ) ∂t : ĜF,Ŝ

∼→ Ĝf,Ŝ ,

compatible with actions of C((∂−1
t ))[[s1, . . . , sm]], t, ∂si .(

In fact, we have e(F−f) ∂t : Ĉ•
f,Ŷ /Ŝ

∼→ Ĉ•
F,Ŷ /Ŝ and its

inverse e(f−F ) ∂t , compatible with actions of t, ∂si , etc.
)

Cor. Any good section σ̂0 of p̂r0 : Ĥ ′′
f → Ωf is uniquely

extended to a good section σ̂Ŝ of p̂rŜ : Ĥ ′′
F,Ŝ → ΩF,Ŝ .

Moreover, it is uniquely determined by the condition:

Im σ̂Ŝ = Ĥ ′′
F,Ŝ ∩ Ψ

(
(Im σ̂0)[∂t][[s1, . . . , sm]]

)
in ĜF,Ŝ ,

where Im σ̂0 ⊂ Ĝf ⊂ Ĝf,Ŝ = Ĝf [[s1, . . . , sm]] .(
In the weighted homogeneous case, this is proved in [LLS].

)
Cor. Formal prim. form is the unique element ζ̂Ŝ ∈ Ĥ ′′

F,Ŝ

s.t. Φ(ζ̂Ŝ) = ζ̂0
(
mod ∂t(Im σ̂0)[∂t][[s1, . . . , sm]]

)
in Ĝf,Ŝ ,

where ζ̂0 := σ̂0(ζ0) ∈ Ĝf ⊂ Ĝf,Ŝ = Ĝf [[s1, . . . , sm]] .(
It is much easier to calculate in Ĝf,Ŝ than in ĜF,Ŝ .

)
Note In the weighted homogeneous case we have always

ζ̂0 = [dx0 ∧ · · · ∧ dxn] ∈ Ĥ ′′
f .

Ex. Let f = x7
1 + x3

2, F = f +
∑

(i,j)∈[0,5]×[0,1] x
i
1x

j
2si,j .

Then ζS/dx1∧dx2

(
mod m7

S,0

)
is represented by

1 + 1
72

x1s
3
5,1 +

22

72·3 s4,1s
2
5,1 − 53

74·32 x2
1s

6
5,1

− 101
74·5 x1s4,1s

5
5,1 − 26

74·3 s24,1s
4
5,1 − 19·22

74·32 s3,1s
5
5,1 ,

This agrees with a calculation using a computer in [LLS].

Note It is nontrivial to see which terms are in the expansion.
For instance, to verify whether si5,1 is in the expansion,

one has to determine when ∂i
t

[(
x5
1x2

)i
dx1∧dx2

]
∈ H ′′

f \{0}.
This is given by the condition:

[5i/7] + [i/3] ⩾ i, 5i+ 1 /∈ 7Z, i+ 1 /∈ 3Z.

(Strictly speaking, however, this gives only candidates for it.)

Here the last 4 coefficients are obtained as follows:

− 1
6!
· 24·17·10·3·4

74·32 + 1
3!
· 1
72
· 10·3
72·3 = − 53

74·32
− 1

5!
· 23·16·9·2·4

74·32 + 1
2!
· 1
72
· 9·2
72·3 + 1

3!
· 22

72·3 ·
9·2
72·3 = − 101

74·5
− 1

4!·2! ·
22·15·8·4
74·32 + 1

2!
· 1
72
· 8
72·3 + 1

2!
· 22

72·3 ·
8

72·3 = − 26

74·3
− 1

5!
· 22·15·8·4

74·32 + 1
2!
· 1
72
· 8
72·3 = − 19·22

74·32
Note that ∂t[x

i
1x

j
2 dx1∧dx2] is equal to

i−6
7

[xi−7
1 xj

2 dx1∧dx2] =
j−2
3

[xi
1x

j−3
2 dx1∧dx2] in H ′′

f .

Here ̂ in Ĝ is for ((∂−1
t )), and ̂ in Ŝ is for [[s1 . . . , sm]].

Convergent microlocal G-M system is defined similarly.
Usual G-M system is defined by replacing ((∂−1

t )) with [∂t].
Here it is better to consider delta function, i.e. the generator

of the direct image as D-module by graph embedding.
This isomorphism is shown by using the following relation.
Similarly we can define the action of vector fields ∂si .

Here ∂si acts only on [[s1, . . . , sm]], and trivially on Ĝf .

Note that the completion commutes with the cohomology
of complex by using the Mittag-Leffler condition
(using the acyclicity of the Koszul complex of df∧).

Note that the LHS is much bigger than the RHS.
This is related to the non-commutativity of lim−→ and lim←−.

This assertion easily follows from the above definition of
formal Gauss-Manin system.

The compatibility with the action of t, ∂si is proved by
using the delta function δ(t− F ) as explained above.

This uniqueness is essential for the calculation of formal
primitive forms explained below.

It is easy to show that there is a unique section satisfying
this condition by using the above theorem.

This is called the opposite filtration associated to σ̂0.
Moreover, this condition is satisfied by any good extension σ̂Ŝ

(using the condition on the action of ∂si explained above

together with the Taylor expansion of Ĝf [[s1, . . . , sm]]).

This easily follows from the definition of primitive form
together with the above corollary.

An essentially equivalent assertion is stated in [LLS].

Note that we work in Ĝf,Ŝ (instead of ĜF,Ŝ)
where the calculation is much easier.

This follows from the above proposition asserting that
every good section is very good in weighted homog. case.

This calculation is possible only by using the exponential
operator Φ in the above corollary.

Using the Taylor expansion of the exponential operator Φ,
we can inductively determine the coefficients of the

expansion of ζ̂Ŝ in s (by comparing the coefficients).
One may wonder why only these monomials appear in the

expansion.

This argument can be applied only in certain special cases.

This condition is equivalent in this case to that this element
does not belong to the opposite filtration defined by σ0

(so the argument is rather simplified in this case).
This number means how many times we can repeat ∂t in H ′′

f .

(In fact, its coefficient may vanish after the calculation.)
The calculation is similar for other monomials of si,j .

The calculation is easy for the first 3 terms.
We explain the calculation for the last 4 terms,

which have degree 6 in variables si.

These numbers on LHS come from the calculation of
Taylor expansion of exponential operator Φ = e(f−F )∂t

and that of G-M connection explained here.


