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Abstract. Hodge-theoretic mirror symmetry for a Calabi-Yau mirror pair says that the
variation of Hodge structure arising from quantum cohomology of a Calabi-Yau manifold
and that arising from deformation of complex structures on the dual Calabi-Yau manifold

can be identified with each other, and it has been conjectured (Γ̂-conjecture) that the Γ̂-
integral structure [10] in quantum cohomology corresponds to a natural integral structure

on the mirror side. Here the Γ̂-integral structure is defined via the topological K-group and

the Γ̂-class, a characteristic class with transcendental coefficients containing the Riemann ζ-

values. In this article, we explain an approach to the Γ̂-conjecture using tropical geometry and
observe that the Riemann ζ-values arise as error terms of tropicalization in the computation
of mirror periods. This is based on joint work [1] with Abouzaid, Ganatra and Sheridan.

1. Mirror symmetry

Mirror symmetry is a conjectural duality between symplectic and complex geometry. It
roughly speaking predicts that symplectic topology on a symplectic manifold Y “corresponds”
(or equivalent) to complex geometry on another complex manifold Z. Then Z is called a
mirror of Y and vice versa. In this article, we consider two kinds of mirror correspondences:
Calabi-Yau mirror pairs and Fano/LG mirror pairs.

Calabi-Yau mirror pairs:

(Y, (− log t)ω) ←→ (Zt,Ωt)t∈∆∗

In the left-hand side, we consider a Calabi-Yau manifold Y equipped with a Kähler
form ω whose cohomology class is integral: they give a family (Y, (− log t)ω) of sym-
plectic manifolds parametrized by small t > 0. On the right-hand side we consider a
family of Calabi-Yau manifolds Zt of the same dimension equipped with a holomor-
phic volume form Ωt. The family {Zt} maximally degenerates at t = 0 in a suitable
sense: the monodromy M on Hn

prim(Zt) is maximally unipotent (i.e. (M − id)n 6=
0, (M − id)n+1 = 0 for n = dimZt) and the limiting mixed Hodge structure is of
Hodge-Tate type (see [2]). The limit point t = 0 is called the large complex structure
limit.

Fano/LG mirror pairs:

F ←→ W : (C×)n → C

In the left-hand side we consider a Fano manifold F (or a monotone symplectic mani-
fold), i.e. c1(F ) is represented by a positive (1, 1)-form, which gives a symplectic form.
In the right-hand side we consider a Landau-Ginzburg model, a Laurent polynomial
function W on the algebraic torus (C×)n with n = dimF .
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On the complex geometry side, we consider (exponential) periods, namely, integrals of the
following form∫

Ct⊂Zt

Ωt for an n-cycle Ct (for Calabi-Yau mirrors)∫
Γ
e−tW dx1

x1
· · · dxn

xn
for a not necessarily compact n-cycle Γ (for Fano mirrors)

Under mirror symmetry, they should yield solutions to the quantum differential equation on
the symplectic side, which is defined by counting rational curves (the genus-zero Gromov-
Witten invariants). In the Calabi-Yau case, the mirror correspondence can be formulated as
an isomorphism of variation of Hodge structure (VHS) as given in Table 1.

Table 1. Mirror correspondence on the level of VHS (see e.g. [11]). Here {ϕi}
is a basis of H1,1

alg (X) and τ =
∑r

i=1 τ
iϕi.

symplectic side complex side

bundle
(⊕

pH
p,p
alg (Y )

)
×H1,1

alg (Y )→ H1,1
alg (Y )

⋃
tH

n
prim(Zt)→ ∆∗

connection quantum connection ∇ = d+
r∑

i=1

(ϕi⋆τ )dτ
i Gauss-Manin connection ∇GM

filtration F p =
⊕

k≤n−p

Hk,k
alg (Y ) F p =

⊕
k≥p

Hn−k,k
prim (Zt)

polarization (2πi)n
∫
Y
((−1)deg /2α) ∪ β (−1)

n(n−1)
2

∫
X
α ∪ β

Z-structure Γ̂-integral structure K0
alg(X)→

⊕
kH

k,k
alg (X), Hn(Zt,Z)

V 7→ Γ̂X(2πi)deg /2 ch(V )

Remark 1.1. In Table 1, we restrict our attention to the algebraic part of cohomology in the
symplectic side, and the primitive part of the middle cohomology in the complex side. The

Γ̂-integral structure is also restricted to the K-group of algebraic vector bundles. We do not
know much about Hodge-theoretic mirror symmetry beyond these parts. On the symplectic

side, we can naturally define the Γ̂-integral structure corresponding to the topolgoical K-group
[10], so it might be possible to consider an integral structure on the complex side corresponding
to the topological K-group as well. A conjectural isomorphism K∗

top(Y ) ∼= K∗
top(Z) has been

discussed in the literature [21].

2. The Γ̂-class

Let X be an almost complex manifold. We write the total Chern class of the tangent bundle
TX as

c(TX) = (1 + δ1)(1 + δ2) · · · (1 + δn)

where δ1, . . . , δn are virtual cohomology classes called the Chern roots. Each δi may not exist
as a cohomology class, but any symmetric functions in δ1, . . . , δn can be written as polynomials

in c1(TX), . . . , cn(TX) and make sense as cohomology classes. The Γ̂-class of X is defined to
be

Γ̂X = Γ(1 + δ1) · · ·Γ(1 + δn) ∈ H∗(X,R)
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where Γ(1 + x) =
∫∞
0 e−ttxdt/t is the Euler Γ-function. By the Taylor expansion of the Γ̂-

function, we can think of the right-hand side as a symmetric power series of δ1, . . . , δn: then

the right-hand side makes sense as a cohomology class of X. The Γ̂-function Γ(1 + x) has
simple poles at x = −1,−2,−3, . . . and it has the following infinite product expansion:

Γ(1 + x) =
e−γx∏

n≥0(1 + x/n)e−x/n

where γ = limn→∞(1 + 1
2 + · · ·+ 1

n − log n). This can be calculated as

Γ(1 + x) = e−γx
∞∏
n=1

e− log(1+ x
n
)+ x

n

= e−γx
∞∏
n=1

exp

( ∞∑
k=2

(−1)k

k

xk

nk

)

= exp

(
−γx+

∞∑
k=2

(−1)k ζ(k)
k

xk

)

where ζ(k) =
∑∞

n=1
1
nk is the value of the Riemann ζ-function. Hence the Γ̂-class can be

written as

Γ̂X = exp

(
−γc1(X) +

∞∑
k=2

(−1)k ζ(k)

(k − 1)!
chk(TX)

)

Remark 2.1. The Γ̂-class has the following geometric interpretation. We consider a free loop
space LX equipped with the S1-action rotating loops. We also consider the set X of constant

loops in LX. Then the Γ̂-class can be interpreted as a regularization of the S1-equivariant
Euler class of the positive normal bundle N+ of X in LX [15, 4]; here positive means the
positive weight part as an S1-representation. We have

(2π)n/2zn−
deg
2 zc1(X)Γ̂X ∼ eS1(N+) =

1∏
i

∏
k≥0(δi + kz)

.

3. Mirror symmetric Γ̂-conjecture

The mirror symmetric Γ̂-conjecture roughly speaking says that the Γ̂-integral structure [10]
on the symplectic side should correspond to a natural integral structure on the complex side.
In this article, we do not discuss Hodge-theoretic mirror symmetry with integral structure

anymore (we do not even give the definition of quantum cohomology or the Γ̂-integral structure
on it): we refer the reader to e.g. [12, 3, 11]. Instead, we discuss a more concrete conjecture,

“mirror symmetric Γ̂-conjecture” stated in terms of (exponential) periods. This problem is
more of a topological nature, and does not involve counting rational curves.

The mirror symmetric Γ̂-conjecture originates from Hosono’s conjecture [9], which says
that mirror periods equal the pairing of certain explicit hypergeometric series with the Chern
classes of vector bundles, for Batyrev mirror pairs of Calabi-Yau hypersurfaces. By taking
the asymptotics of Hosono’s conjecture at the large complex structure limit, we arrive at the
following conjecture.
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Calabi-Yau case: Let (Y, (− log t)ω) and (Zt,Ωt) be a Calabi-Yau mirror pair as above.
For a certain family of n-cycles Ct ⊂ Zt, we have a K-theory class V on Y such that

(1)

∫
Ct⊂Zt

Ωt =

∫
Y
t−ωΓ̂Y (2πi)

deg /2 ch(V ) +O(tϵ)

as t→ +0, where ϵ > 0 is a positive real number.
Fano/LG case: Let F and W : (C×)n → C be a Fano/LG mirror pair as above. For a

certain (possibly noncompact) n-cycle Γ ⊂ (C×)n, we have a K-theory class V on F
such that

(2)

∫
Γ
e−tW dx1 · · · dxn

x1 · · ·xn
=

∫
F
t−c1(F )Γ̂F (2πi)

deg /2 ch(V ) +O(tϵ)

as t→ +0, where ϵ > 0 is a positive real number.

This conjecture has been verified for (weak) Fano toric orbifolds and certain complete
intersections in them, for some choices of V and cycles Ct (or Γ), see [10, 11]. The paper [1]
gives another proof for Batyrev mirror pairs based on the SYZ picture and tropical geometry.

Remark 3.1. (A) This conjecture is closely related to homological mirror symmetry (with
symplectic side and complex side interchanged). Homological mirror symmetry predicts that
the derived category of coherent sheaf on one side should be equivalent to the Fukaya (or
Fukaya-Seidel) category of the other side:

DbCoh(Y ) ∼= Db Fuk(Zt) for Calabi-Yau mirror pairs

DbCoh(F ) ∼= Db FS(W ) for Fano/LG mirror pairs

We expect that the K-classes V and the cycles Ct (or Γ) in the above conjecture should
correspond to each other under homological mirror symmetry. Namely, when V comes from
a coherent sheaf V ∈ DbCoh(Y ) or DbCoh(F ), the cycle Ct (or Γ) should be the Lagrangian
submanifold L mirror to V.

(B) The categorical equivalence in homological mirror symmetry is given only up to auto-
equivalences, and hence the correspondence in (A) is ambiguous. In this conjecture, more
precisely, we should consider the equivalence induced from Strominger-Yau-Zaslow (SYZ)
dual torus fibrations (see [19, 6, 7]). The SYZ conjecture says that (in the Calabi-Yau case)
we have special Lagrangian torus fibrations1 p1 : Y → B, p2 : Zt → B with singularities

Y
p1

��?
??

??
??

? Zt

p2

~~~~
~~
~~
~

B

that are dual to each other, where B is a real n-dimensional manifold homeomorphic to a
sphere. Here Y and Zt are equipped with Ricci-flat Kähler metrics. It is expected that Zt

converges2, as t → 0, to the base B in the sense of Gromov-Hausdorff topology (where we
normalize the metric so that the diameter is constant). The SYZ fibrations should induce

1For tropical computation of periods, we do not need Ricci-flat metrics or special Lagrangian fibrations: we
only need a weaker version as in the Gross-Siebert program [8].

2Likewise, we can consider a maximal degeneration of complex strcutures on Y , which corresponds under
mirror symmetry to the large-radius limit for the Kähler (symplectic) structure on Zt, and the complex degen-
eration induces the collapse Y → B. When we take into account both the symplectic and complex structures,
we should consider a mirror pair (Ys, (− log t)ωY ) ↔ (Zt, (− log s)ωZ) of maximally degenerating families.
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categorical equivalences as above3, and it is expected that a Lagrangian section of p2 : Zt → B
corresponds to a line bundle on Y . In particular, if we take a Lagrangian section C0,t (or Γ0)
corresponding to the structure sheaf, we have∫

C0,t⊂Zt

Ωt =

∫
Y
t−ωΓ̂Y +O(tϵ) (in the Calabi-Yau case)∫

Γ0

e−tW dx1 · · · dxn
x1 · · ·xn

=

∫
F
t−c1(F )Γ̂F +O(tϵ) (in the Fano case)

(3)

as t→ +0. In examples such as Batyrev mirrors, C0,t arises as a “positive real locus”. In the
Fano case, we expect that Γ0 = (R>0)

n.
When V is the class of the structure sheaf of a point, the corresponding cycle should be a

fibre p−1
2 (b) of the SYZ fibration p2 : Zt → B in the Calabi-Yau case, and the compact torus

(S1)n ⊂ (C×)n in the Fano case. Since ch(V ) = [pt] in this case, we do not see nontrivial

components of the Γ̂-class in the asymptotics of the corresponding (exponential) periods.

Tonkonog [20] showed that the exponential period
∫
(S1)n e

−tW dx1···dxn
x1···xn

of (S1)n is a generating

series of gravitational descendants of F (the pairing of the J-function and [pt]), when one
chooses a monotone Lagrangian submanifold L in F and defines W by counting holomorphic
discs with boundaries in L. See also (C) below.

(C) The above conjectures (1), (2), (3) say that the Γ̂-class appears in the asymptotics of
(exponential) periods of the mirror in the large complex structure limit t → 0. The leading
asymptotics are polynomials in log t. The information of curve counting is contained in the
higher order terms in t, which are exponentially small compared to the asymptotic part. If
we include all the higher-order terms, the right-hand side in the conjecture should become∫

Y
JY (ω log t,−1) ∪ Γ̂Y (2πi)

deg /2 ch(V ) (in the Calabi-Yau case)∫
F
JF (c1(F ) log t,−1) ∪ Γ̂F (2πi)

deg /2 ch(V ) (in the Fano case)

where JX(τ, z) is the small J-function

JX(τ, z) = eτ/z

1 +
∑
i

∑
d∈H2(X,Z)

〈
ϕi

z(z − ψ)

〉
e⟨τ,d⟩ϕi


defined in terms of gravitational Gromov-Witten invariants (see [4, 3, 12] for the notation). In
the Calabi-Yau case, we need to normalize the volume form Ωt by a Hodge-theoretic condition,
as discussed in [2]; we also need to assume that the parameter t of the mirror family {Zt} is
normalized so that the mirror map is trivial τ = ω log t.

Example 3.2. Let Y be a Calabi-Yau 3-fold. The asymptotic part of the first equation of
(3) takes the form:∫

Y
t−ωΓ̂ = (− log t)3

∫
Y

ω3

3!︸ ︷︷ ︸
volume of Y

−(− log t)ζ(2)

∫
Y
ω ∪ c2(Y )− ζ(3)

∫
Y
c3(Y )︸ ︷︷ ︸

Euler number

Note that the leading term is the symplectic volume of (Y, (− log t)ω).

3More precisely, the categorical equivalence would be given up to the twist by a line bundle, and the
ambiguity would be fixed by choosing a Lagrangian section that corresponds to the structure sheaf.
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Example 3.3. Let F be the projective space Pn and let Y be a degree n + 1 Calabi-Yau
hypersurface in F = Pn. The mirror of F is given by the Laurent polynomial

W = x1 + · · ·+ xn +
1

x1 · · ·xn
and the mirror of Y is given by a Calabi-Yau compactification Zt of the fibre W−1(1/t)
equipped with the holomorphic volume form

Ωt =
dx1
x1
∧ · · · ∧ dxn

xn

t · dW

∣∣∣∣∣
W−1(1/t)

.

The mirror symmetric Γ̂-conjecture for these mirror pairs holds when V is the structure sheaf
and the cycle is the positive real locus [10, 11]. We have∫

Zt∩(R>0)n
Ωt =

∫
Y
t−c1(F )Γ̂Y +O(tϵ)∫

(R>0)n
e−tW dx1 · · · dxn

x1 · · · dxn
=

∫
F
t−c1(F )Γ̂F +O(tϵ)

for any ϵ with 0 < ϵ < n+ 1. The higher order term can be also given explicitly as hyperge-
ometric series. We remark that the exponential period in the second line can be written as
a Fourier transform of the period in the first line. (The first identity was obtained from the
second one by inverse Fourier transformation in [11].)

Remark 3.4. The Γ̂-conjecture for Fano manifolds [4] proposed by Galkin, Golyshev and
the author does not rely on mirror symmetry (although it sometimes follows from the mirror

symmetric Γ̂-conjecture). It is formulated purely in terms of quantum cohomology of a Fano

manifold. The Γ̂-conjecture in [4] is related to the Stokes structure of the quantum connection.

4. Periods via tropical geometry

We explain how to compute the asymptotics (3) of periods using tropical geometry. Firstly
we see that the term

(− log t)n
∫
Y

ωn

n!

should appear as the leading term of the period
∫
C0,t

Ωt using the SYZ picture. Away from

the descriminant locus (the singular locus of the fibration), the base B is equipped with a
Z-affine structure (i.e. an atlas as a topological manifold such that every coordinate change
is Z-affine linear, that is, belongs to GL(n;Z) ⋉ Rn) and the SYZ dual fibrations are locally
modelled on

T ∗B/Λ∗

p1

##H
HH

HH
HH

HH
TB/Λ

p2

||yy
yy
yy
yy
y

B

where Λ ⊂ TB is the lattice defined by the Z-affine structure. Let x1, . . . , xn be Z-affine
local coordinates on B. Then the symplectic form on T ∗B/Λ∗ is given by (− log t)ω =∑n

j=1 dxj ∧ dy∗j and the holomorphic volume form on TB/Λ is given by Ω = dz1 ∧ · · · ∧ dzn
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with zj = xj + iyj , where y∗j are fibre coordinates on T ∗B dual to dxj and yj are fibre

coordinates on TB dual to ∂/∂xj . Hence we have

p1∗

(
((− log t)ω)n

n!

)
= affine volume form dx1 ∧ · · · ∧ dxn on B = s∗Ω

where s is a section of p2. From this we expect the leading asymptotics:∫
C0,t

Ωt ∼ (− log t)n
∫
Y

ωn

n!
as t→ +0.

The error term of this approximation arises from the discriminant locus of the SYZ fibration.
We explain that tropicalization gives an approximate SYZ(-like) fibration and how we can

compute periods tropically by means of example.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 1. Amoeba

x0 x1
x

y

0

Figure 2. Tropical amoeba

  

Figure 3. Pair of pants (P1 minus three points, on the left) and stretching
the neck (on the right)

Example 4.1. We start with a simple example of tropicalization. Consider the variety

P = {(X,Y ) ∈ (C×)2 : X + Y + 1 = 0}.
This is P1 minus three points, and is called a ‘pair of pants’. We consider the family of maps
for t > 0:

Logt : P → R2, (X,Y ) 7→ (x, y) = (logt |x|, logt |y|).
The image of the map is called amoeba. In this example, the image is determined by the
triangle inequality ||X| − 1| ≤ |Y | = |X + 1| ≤ |X| + 1 ⇔ |tx − 1| ≤ ty ≤ |tx + 1| ⇔
logt(1+ t

x) ≤ y ≤ logt |1− tx|. See Figure 1. If we take the limit t→ 0, this approaches to the
tropical amoeba (tropical variety) in Figure 2. It is given by the singular locus of the piecewise
linear function min(x, y, 0). We can think of Logt as an approximate torus fibration of P over
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the tropical amoeba. For example, the fibre at (x0, 0) (with x0 > 0) is approximately the
circle |X| = tx0 , Y = −1. Most of the points on P go very close to the origin, and three ‘neck’
neighbourhoods of the missing points X = 0, X = −1, X =∞ are stretched to semi-infinite
cylinders (see Figure 3). The integral of a holomorphic 1-form

Ω =
dX
X ∧

dY
Y

d(X + Y + 1)

∣∣∣∣∣
X+Y+1=0

on a section over the interval [x0, x1] in the x-axis is approximately the length of the interval
multiplied by (− log t).∫

[x0,x1]
s∗Ω ≈

∫
[x0,x1]

dX

XY

∣∣∣∣
X=tx,Y=−1

= (− log t)(x1 − x0).

Example 4.2. Next we consider a tropicalization of an elliptic curve. Let Et be the affine
elliptic curve:

Et = {(X,Y ) ∈ (C×)2 : t(X + Y +
1

XY
) = 1}

This is a compact elliptic curve minus 3 points. The limit of Logt(Et) as t → 0 (tropical
amoeba) and the approximate torus fibration are depicted in Figure 4. The tropical amoeba
is the singular locus of min(0, x + 1, y + 1, 1 − x − y). We see from this picture that E is
composed of three ‘pairs of pants’ in the previous example. This is an instance of pairs-of-
pants decomposition by Mikhalkin [16]. The approximate fibration given by Logt is “singular”
at three vertices, but we can make it a smooth fibration by adding three missing points (at
infinity) to Et and contracting the unbounded edges by a linear projection around each vertex.
For example, around the vertex (−1,−1) of the tropical amoeba, we can use the projection
x − y = logt |X| − logt |Y | along the ray R≥0(−1,−1) to define the fibration. Then we get a
smooth S1-fibration over the boundary ∂∆2 ∼= S1 of the 2-simplex (shown in blue colour).

Figure 4. Tropical elliptic curve

The integral of the holomorphic 1-form

Ωt =
d logX ∧ d log Y

d(t(X + Y + 1/(XY )))

∣∣∣∣
Et

over the compact cycle C0,t (shown in Figure 4) is asymptotically the same as the affine length
(= 9 = 3× 3) of the cycle in the tropical base (shown in blue colour) multiplied by (− log t).
This elliptic curve Et is mirror to a cubic curve Y in P2. A precise choice of the cubic curve
Y does not matter, but Y can be for example:

Ys = {[z0, z1, z2] ∈ P2 : s(z30 + z31 + z32) + z0z1z2 = 0}.
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The dual SYZ fibration for Ys is approximately given by the restriction of the moment mapping
µ : P2 → R2 (with respect to the anticanonical class −KP2 on P2) to Ys.

µ([z0, z1, z2]) =

(
3|z1|2

|z0|2 + |z1|2 + |z2|2
,

3|z2|2

|z0|2 + |z1|2 + |z2|2

)
Note that the image of µ is the 2-simplex {(x, y) : x ≥ 0, y ≥ 0, x+y ≤ 3} and µ(Ys) approaches
its boundary as s → 0. The affine length of the tropical cycle equals the symplectic volume∫
Ys
c1(P2) = 9.

Example 4.3. Now we consider the case where the SYZ fibration has singularities. In
dimension two, the following local model of singularities appears in the Gross-Siebert program
(see [5, 14]).

Z = {(X1, X2, Y ) ∈ C2 × C× : X1X2 = 1 + Y } = C2
x \ {X1X2 = 1} = P2 \ (line ∪ conic)

Ω =
d logX1 ∧ d logX2 ∧ d log Y

d
(

1+Y
X1X2

) =
dX1dX2

1−X1X2
=
dX1

X1
∧ dY
Y

=
dX2

X2
∧ dY
Y

ω =
i

2
(dX1 ∧ dX1 + dX2 ∧ dX2)

This is a log CY variety, in the sense that Ω has log poles along the boundary divisor P2 \Z =
line ∪ conic. The Lagrangian4 torus fibration on Z is given as follows. We first consider the
sympletic reduction by the S1-action (X1, X2, Y ) 7→ (eiθX1, e

−iθX2, Y ) at the level λ. The
symplectic reduction is identified with the Y -plane C×.

{(X1, X2, Y ) ∈ Z : |X1|2 − |X2|2 = λ}/S1 ∼= {Y ∈ C×}

By pulling back the standard Lagrangian torus fibration {(|Y | = r)}r>0 on C×, we see that
Z is foliated by the family of Lagrangian tori

Tλ,r = {(X1, X2, Y ) ∈ Z : |X1|2 − |X2|2 = λ, |Y | = r}

parametrized by λ ∈ R and r > 0. This gives a torus fibration on Z. Here T0,1 is a unique
singular fibre (pinched torus) with singularity at (0, 0,−1) ∈ T0,1.

We compare this fibration with the tropicalization map

Logt : Z → R3, (X1, X2, Y ) 7→ (logt |X1|, logt |X2|, logt |Y |)

for 0 < t � 1. The last coordinate logt |Y | is constant on Tλ,r, but the first two logt |X1|,
logt |X2| are not. We see however that the map Logt approximates the torus fibration away
from the singularity X1 = X2 = 0, i.e. away from the region where both |X1| and |X2| are
small. When we set x1 = logt |X1|, x2 = logt |X2|, y = logt |Y |, for positive ϵ > 0,

|y| > ϵ =⇒ xi ≈ 1
2 logt

(
±λ+

√
λ2+4r2

2

)
on Tλ,r

x1 < x2 − ϵ =⇒ |X1| � |X2| =⇒ x1 ≈ 1
2 logt |λ| on Tλ,r

x2 < x1 − ϵ =⇒ |X2| � |X1| =⇒ x2 ≈ 1
2 logt |λ| on Tλ,r.

The image Logt(Z) is approximated by the tropical amoeba, which is the singular locus of
min(0, x1 + x2, y), as in Figure 5. From this picture we can see that the above three regions

4This is not special Lagrangian since Ω ∧ Ω is not a constant multiple of ω2. But we have ω|Tr,λ = 0 and
ImΩ|Tr,λ = 0. Therefore the base of the torus fibration has a Z-affine structure (complex affine structure)

defined by fluxes of ImΩ.
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(|y| > ϵ), (x1 < x2− ϵ), (x2 < x1− ϵ) cover the region away from the singularity or the origin
(x1, x2, y) = (0, 0, 0). Therefore

the map (x1, y) approximates the torus fibration in the region (|y| > ϵ) ∪ (x1 < x2 − ϵ);
the map (x2, y) approximates the torus fibration in the region (|y| > ϵ) ∪ (x2 < x1 − ϵ).

Moreover these maps define (approximately) affine-linear coordinates in the respective regions.
The map (xi, y) contracts the face (x1 + x2 ≥ 0 = y) to the line y = 0 and send the union
(x1 + x2 = min(0, y)) of the other two faces isomorphically to R2. These coordinates (x1, y),
(x2, y) are glued together as in Figure 6: the base of the Lagrangian fibration has the focus-

focus singularity with monodromy
(
1 1
0 1

)
(see [14, 22]).

 

Figure 5. Tropical amoeba of Z

-

6

x1

y

�

6

x2

y

Figure 6. Two approximately affine-linear charts (x1, y) and (x2, y). Each
chart (xi, y) is affine-linear away from the positive xi-axis. The coordinate
change between the charts is given by x1 + x2 = min(0, y). The green line
shows the polytope corresponding to R.

Let C ⊂ Z be the positive-real cycle given by X1 > 0, X2 > 0, Y > 0. The cycle C is
homeomorphic to the image Logt(C) ⊂ R3 under the map Logt:

Logt(C) = {(x1, x2, y) ∈ R3 : x1 + x2 = logt(1 + ty)}
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The image Logt(C) is very close to the union (x1+x2 = min(0, y)) of two faces of the tropical
amoeba. We now compute the period of C with respect to the holomorphic volume form
Ω. The volume form Ω restricted to C can be identified with the affine area form in the
coordinates (xi, y):

Ω|C = (− log t)2dx1 ∧ dy = (− log t)2dx2 ∧ dy.

To make the computation finite, we consider the integral over the finite region R delimited
by the affine-linear equations (with a1, a2, b positive constant):

R = {(X1, X2, Y ) ∈ C : x1 ≤ −a1, x2 ≤ −a2, −b ≤ y ≤ b}

The corresponding polytope in the affine chart is shown in green colour in Figure 6. The affine
area of this polytope is 2(a1 + a2)b − b2/2. On the other hand, the actual shape of R in the
coordinate (x1, y) slightly differs from this polytope because of the error in tropicalization,
see Figure 7. We have∫

R⊂C
Ω =

∫
x1+x2=logt(1+ty)

xi≥−ai,|y|≤b

(− log t)2dx1dy

= (− log t)2
∫ b

−b
(a2 + logt(1 + ty)− (−a1))dy

= (− log t)2
(∫ b

−b
(a1 + a2 +min(0, y))dy −

∫ b

−b
(− logt(1 + ty) + min(0, y))dy

)
= (− log t)2(area of the polytope)− ζ(2) +O(tb).

where ζ(2) arises from the ‘error in tropicalization’ integral (area of the blue region):

(4) ζ(2) = (− log t)2
∫ ∞

−∞
(− logt(1 + ty) + min(0, y))dy.

This means that the singularity contributes −ζ(2) to the period integral.

-4 -2 2 4

-2

-1

1

2

x1

y

Figure 7. The region R in coordinates (x1, y). It is given by −a1 ≤ x1 ≤
a2 + logt(1 + ty), |y| ≤ b. This differs from the green polytope in Figure 6 by
the blue region.
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Example 4.4. Let (Zt,Ωt) be the family of affine K3 surfaces

Zt = {(W1,W2,W3) ∈ (C×)3 : t(W1 +W2 +W3 +
1

W1W2W3
) = 1}

Ωt =
d logW1 ∧ d logW2 ∧ d logW3

d(t(W1 +W2 +W3 +
1

W1W2W3
))

This can be compactified to a K3 surface Zt so that Ωt extends to a nowhere vanishing
holomorphic 2-form. This family is mirror to a quartic K3 surface Y ⊂ P3 equipped with a
symplectic form in the class (− log t)c1(P3). The tropical amoeba of Zt is given by the singular
locus of min(w1 + 1, w2 + 1, w3 + 1, 1 − w1 − w2 − w3, 0) as in Figure 8. Observe that the
compact chamber

∆ = {(w1, w2, w3) ∈ R3 : w1 ≥ −1, w2 ≥ −1, w3 ≥ −1, w1 + w2 + w3 ≤ 1}

bounded by the tropical amoeba is the same as the moment polytope of P3 with respect to
c1(P3). By collapsing5 all the unbounded faces of the tropical amoeba (not contained in ∆),
we should get a torus fibration on Zt over the sphere ∂∆ ∼= S2. This fibration has singularities,
since there is no uniform direction to collapse the unbounded faces, unlike the case of Example
4.2. (In fact, we have many ways to collapse, yielding different fibration structures on Zt.)

 

Figure 8. Tropical K3 surface. This is composed of the boundary of the 3-
simplex ∆ and 6 unbounded faces. The green regions are the Logt-images of
neighbourhoods of singularities (as in Figure 5) and the red crosses represent
singular points of the affine structure on ∂∆.

As before, we consider the period of the positive real cycle Ct = {(W1,W2,W3) ∈ Zt :W1 >
0,W2 > 0,W3 > 0}. It is homeomorphic to its image under Logt:

Logt(Ct) = {(w1, w2, w3) ∈ R3 : tw1+1 + tw2+1 + tw3+1 + t1−w1−w2−w3 = 1}.

As t → +0, Logt(Ct) rapidly approaches ∂∆. We compute the period integral locally over
the tropical base ∂∆, reducing the computation to the local model from Example 4.3. Since

5See [22] for collapsing tropical hypersurfaces.
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the fibration has 24 singular points (see below), we expect to have the following asymptotics

(5)

∫
Ct

Ωt = (− log t)2(affine area of ∂∆)− 24ζ(2) +O(tϵ).

The number −24ζ(2) also arises from the Γ̂-class of a quartic Y :
∫
Y Γ̂Y = −ζ(2)

∫
Y c2(Y ).

We shall explain the details below. We introduce a Z-affine structure (with singularities) on
∂∆ as follows (see [8]).

• on the interior of 2-dimensional faces of ∂∆, we consider the subspace affine structure;
• on a neighbourhood of a lattice point v on edges (1-dimensional face) of ∂∆, we
consider the affine structure induced from the projection R3 → R3/〈v〉 and;
• we need to have a singularity (shown in red cross) somewhere between adjacent lattice
points v1, v2 on an edge because the affine structures induced by the projections R3 →
R3/〈vi〉, i = 1, 2 are not compatible with each other; we have 4 singularities on each
edge, and thus 24 = 4× 6 singularities in total.

The reason for this affine structure is as follows. Near the interior of the 2-dimensional face
given by (w1 = −1) for example, the cycle Ct

∼= Logt(Ct) is approximated by the affine-linear
subspace

tw1+1 ≈ 1

since the other terms tw2+1, tw3+1, t1−w1−w2−w3 are much smaller than tw1+1, and the volume
form Ωt|Ct is approximated by the affine volume form (mulitplied by (− log t)2):

Ωt|Ct =
d log tw1+1 ∧ d log tw2+1 ∧ d log tw3+1

d(tw1+1 + tw2+1 + tw3+1 + t1−w1−w2−w3)

≈ (− log t)3dw1 ∧ dw2 ∧ dw3

d(tw1+1)
(near the face (w1 = −1) ∩∆)

= (− log t)2dw2 ∧ dw3.

Next, around the interior of the edge given by (w1 = w2 = −1) for example, the cycle Ct is
approximated by

(6) tw1+1 + tw2+1 ≈ 1

since the other terms tw3+1, t1−w1−w2−w3 are exponentially small. The volume form Ωt|Ct is
similarly approximated by the affine volume form on R2/〈v〉 for a lattice point v on the edge.

Ωt|Ct ≈
(− log t)3dw1 ∧ dw2 ∧ dw3

d(tw1+1 + tw2+1)
= (− log t)2(affine volume form on R3/〈v〉).

In fact, if we complete v to a Z-basis v = v1, v2, v3 of Z3 and write (a1, a2, a3) for the linear

coordinates on R3 dual to (v1, v2, v3), we have wi(a1v) = −a1; thus ∂w1
∂a1

= ∂w2
∂a1

= −1 and

(− log t)3dw1 ∧ dw2 ∧ dw3

d(tw1+1 + tw2+1)
=

(− log t)3da1 ∧ da2 ∧ da3
d(tw1+1 + tw2+1)

=
(− log t)3da2 ∧ da3
∂(tw1+1 + tw2+1)/∂a1

= (− log t)2da2 ∧ da3.

Note that the affine structure depends on the choice of v, but the volume form does not.
Finally, around the vertex v = (−1,−1,−1) of ∂∆, Ct is approximated by

tw1+1 + tw2+1 + tw3+1 ≈ 1

and Ωt|Ct is also approximated by the affine volume form on R3/〈v〉.
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We next examine the cycle Ct near the singularity. Let v1, v2 be adjacent lattice points on
the edge w1 = w2 = −1. Choose an integral vector v3 such that (v1, v2, v3) is a Z-basis of Z3

and let (a1, a2, a3) be the linear coordinates on R3 dual to (v1, v2, v3). We may assume that
v3 is parallel to the face w1 = −1 (i.e. w1(v3) = 0) by adding a linear combination of v1 and
v2 if necessary. The coordinates w1, w2, w3 can then be written as a Z-linear combination of
a1, a2, a3; examining the values at v1, v2, v3 we find that the coordinate change is of the form:

w1 = −a1 − a2
w2 = −a1 − a2 +ma3

w3 = ja1 + ka2 + la3

for some j, k, l,m ∈ Z. Moreover, since w1 − w2 is a non-zero primitive covector, we have
m = ±1. By flipping the sign of a3 (or equivalently v3), we may assume that m = 1. Recall
from (6) that Ct is given by tw1+1 + tw2+1 ≈ 1 around the edge. This can be rewritten as:

1 + ta3 ≈ ta1+a2−1 = ta1−
1
2 · ta2−

1
2 .

Setting X1 = ta1−
1
2 , X2 = ta2−

1
2 , Y = ta3 , this equation can be identified with the local model

from Example 4.3. The holomorphic volume form (− log t)2da1 ∧ da2 = d logX1 ∧ d log Y
is also the same as in Example 4.3. If we introduce a Lagrangian fibration near {v1, v2} by
locally identifying Zt with the local model in Example 4.3 by this identification (i.e. W1 =

(tX1X2)
−1,W2 = Y (tX1X2)

−1,W3 = Xj
1X

k
2Y

lt(j+k)/2), we see that the singularity appears
at (a1, a2, a3) = (12 ,

1
2 , 0) on the base, which corresponds to the mid-point of v1 and v2. At

each singular point, we have the error term −ζ(2) as we saw in Example 4.3 and arrive at the
asymptotics (5).

We note that the choice of an (approximate) torus fibration, in particular, the choice
of positions of singularities on ∂∆ has certain arbitrariness in the above discussion. We
introduced singularities on ∂∆ for the purpose of computing periods (and we had to since we
cannot cover ∂∆ by compatible affine charts) and the error terms in tropical approximation
occurred from those singularities.

Example 4.5. We have seen that ζ(2) arises from 2-dimensional singularities through the
‘error in tropicalization’ integral (4). In dimension three, ζ(3) arises from the following ‘error
in tropicalization’ integrals (see [1, Eqn (22), Proposition 4.5]):

ζ(3) =
1

2
(− log t)3

∫ ∞

−∞

(
(logt(1 + ty))2 − (min(0, y))2

)
dy

and

(− log t)3
∫
U
(− logt(1 + ty1 + ty2) + min(0, y1, y2))dy1dy2

= (− log t)ℓζ(2) + χU (0)ζ(3) +O(1/(− log t))

where U is a bounded domain in R2 such that ∂U intersects every stratum of the tropical
curve L = Sing(min(0, y1, y2)) transversally, ℓ is the total affine length of U ∩ L and

χU (0) =

{
1 if 0 ∈ U ,

0 otherwise.

Remark 4.6. In dimension one, the relationship between periods and affine-length of tropical
curves was studied in [17, 13]. For toric Calabi-Yau hypersurfaces, the relationship between
periods and the radiance obstruction was studied in [22]. Ruddat and Siebert [18] computed
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periods of cycles fibering over 1-dimensional curves on the SYZ base, in the framework of
Gross-Siebert program.
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