Affine Springer fiber – sheaf correspondence

Eugene Gorsky University of California, Davis joint with Oscar Kivinen and Alexei Oblomkov

Gauge Theory, Moduli Spaces and Representation Theory Kyoto 2023 Let G be a connected reductive group with Lie algebra \mathfrak{g} . Our main character is the **affine Springer fiber** associated to an element $\gamma \in \mathfrak{g}((t))$:

$$\operatorname{Sp}_{\gamma} = \left\{ g \in G((t)) : g^{-1} \gamma g \in G[[t]] \right\} / G[[t]]$$

which is a subvariety of affine Grassmannian $Gr_G = G((t))/G[[t]]$.

If γ is compact, regular and semisimple then Sp_{γ} is finite-dimensional, but usually singular and can have infinitely many irreducible components.

2 / 20

In type *A*, the geometry of affine Springer fiber Sp_{γ} is controlled by the characteristic polynomial $f(t, \lambda) = \det(\lambda I - \gamma(t))$ and the **spectral curve** $C_{\gamma} = \{f(t, \lambda) = 0\} \subset \mathbb{C}^2_{t,\lambda}$.

 Sp_{γ} is closely related to the **compactified Jacobian** of C_{γ} and the Hilbert scheme of points on C_{γ} .

The spectral curve C_{γ} defines an *n*-strand **braid** β which describe the behavior of eigenvalues of $\gamma(t)$ as *t* goes around the origin. The remarkable conjectures of Oblomkov, Rasmussen and Shende relate the homology of Sp_{γ} to triply graded **Khovanov-Rozansky homology** of β .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

Example

The matrix $\gamma = \begin{pmatrix} 0 & t^2 \\ t & 0 \end{pmatrix}$ has characteristic polynomial $\lambda^2 - t^3$ and corresponds to a cuspidal curve in \mathbb{C}^2 . The corresponding two-strand braid is $\beta = \sigma^3$ which closes to the trefoil knot. The affine Springer fiber Sp_{γ} is isomorphic to \mathbb{CP}^1 .

Example

The matrix $\gamma = \begin{pmatrix} t & 0 \\ 0 & -t \end{pmatrix}$ has characteristic polynomial $\lambda^2 - t^2$ and corresponds to a pair of lines in \mathbb{C}^2 . The corresponding two-strand braid is $\beta = \sigma^2$ which closes to the Hopf link. The affine Springer fiber is the infinite chain of \mathbb{CP}^1 .

The centralizer of γ naturally acts on Sp_{γ}. If γ is quasihomogeneous, then Sp_{γ} admits as additional \mathbb{C}^* action.

The equivariant Borel-Moore homology of Sp $_{\gamma}$ was studied by Bezrukavnikov, Hikita, Lusztig, Varagnolo, Vasserot, Yun and others. In particular:

- *H*_{*}(Sp_γ) is a finitely generated module over C[*T*^{*}*T*[∨]]^W where *T*[∨] is the Langlands dual torus. For *G* = *GL_n*, we get a module over C[*x*₁[±],...,*x*_n[±], *y*₁,...,*y_n*]^{S_n}.
- Hence, it defines a coherent sheaf on T^*T^{\vee}/W which for $G = GL_n$ is simply $(\mathbb{C}^* \times \mathbb{C})^n/S_n$. It is supported on a certain Lagrangian subvariety.
- If γ is quasihomogeneous, then H^{C*}_{*}(Sp_γ) is a representation of the spherical trigonometric Cherednik algebra associated to G.

We will be interested in a family of affine Springer fibers

$$\mathsf{Sp}_{\gamma}, \ \mathsf{Sp}_{t\gamma}, \ \mathsf{Sp}_{t^2\gamma} \dots$$

In type A, going from γ to $t\gamma$ corresponds to a **blowdown** of the spectral curve. For example, if the characteristic polynomial of γ is $f_{\gamma} = \lambda^n - t^m$ then the characteristic polynomial of $t^k\gamma$ is

$$f_{t^k\gamma} = \lambda^n - t^{m+kn}$$

Topologically, going from γ to $t\gamma$ adds a **full twist** to the corresponding braid, so we are interested in a family of braids

$$\beta$$
, FT β , FT² β ...

Theorem (G., Kivinen, Oblomkov)

There is a graded algebra $A_G = A_0 \oplus A_1 \oplus A_2 \oplus \ldots$ (depending only on G) with the following properties:

- For any γ the direct sum of homologies $M_{\gamma} = \bigoplus_{k} H_{*}(\operatorname{Sp}_{t^{k}\gamma})$ is a graded module over \mathcal{A}_{G} .
- $\mathcal{A}_0 \simeq \mathbb{C}[T^*T^{\vee}]^W$.
- $\mathcal{A}_1 \simeq \mathbb{C}[T^*T^{\vee}]^{\epsilon}$ where ϵ denotes the sign representation of W.
- For all $d \ge 0$, we have

$$\mathcal{A}_d \simeq \mathbf{e}_d \bigcap_{\alpha} (1 - \alpha^{\vee}, y_{\alpha})^d \subset \mathbb{C}[T^* T^{\vee}]$$

where α runs over the roots of \mathfrak{g} and \mathbf{e}_d is the projector to the ϵ^d -isotypic component.

< □ > < □ > < □ > < □ > < □ > < □ >

As a corollary, γ defines a **quasicoherent sheaf** \mathcal{F}_{γ} on the variety $X_{\mathcal{G}} = \operatorname{Proj} \mathcal{A}_{\mathcal{G}}$. Changing γ to $t\gamma$ corresponds to twisting \mathcal{F}_{γ} with $\mathcal{O}(1)$.

The variety X_G is normal and admits a natural projection to T^*T^{\vee}/W , so one can think of it as a partial resolution of the commuting variety for G^{\vee} . However, for general G we expect that X_G is not smooth and \mathcal{A}_G is not generated by \mathcal{A}_0 and \mathcal{A}_1 . This is not a problem for $G = GL_n$:

Theorem (BFN; G., Kivinen, Oblomkov)

For $G = GL_n$, the algebra \mathcal{A}_G is generated in degrees 0 and 1, and $X_{GL_n} = \operatorname{Hilb}(\mathbb{C}^* \times \mathbb{C})$.

To sum up, to any $\gamma \in \mathfrak{gl}_n((t))$ we associate a sheaf \mathcal{F}_{γ} on $\operatorname{Hilb}(\mathbb{C}^* \times \mathbb{C})$.

・ロト ・ 一日 ト ・ 日 ト ・ 日

Example

If γ is a diagonal scalar matrix with distinct eigenvalues, then \mathcal{F}_{γ} is the **Procesi bundle** \mathcal{P} on $\operatorname{Hilb}(\mathbb{C}^* \times \mathbb{C})$ restricted to a certain Lagrangian subvariety *L*.

Example

More generally, if $\gamma = \operatorname{diag}(s_1t^k, \ldots, s_nt^k)$ with s_i distinct and nonzero then $\mathcal{F}_{\gamma} = \mathcal{P} \otimes \mathcal{O}(k)$ restricted to L.

Example

Suppose that $\det(\lambda I - \gamma) = \lambda^n - t^{kn+1}$. Then \mathcal{F}_{γ} is isomorphic to the restriction of $\mathcal{O}(k)$ to the punctual Hilbert scheme at $(1,0) \in \mathbb{C}^* \times \mathbb{C}$.

Let γ be an **equivalued** element of valuation $k \in \mathbb{Z}_{\geq 0}$, and G arbitrary. Then the results of Kivinen imply that

$$M_{\gamma} = J_{\gamma} / \mathbf{y} J_{\gamma} \quad ext{where } J_{\gamma} = \bigoplus_{j} \bigcap_{\alpha} \left(1 - \alpha^{\vee}, y_{\alpha} \right)^{k+j}$$

as a module over

$$\mathcal{A}_{G} = \bigoplus_{j} \mathbf{e}_{d} \bigcap_{\alpha} \left(1 - \alpha^{\vee}, y_{\alpha}\right)^{d}$$

The module structure is clear, and therefore M_{γ} yields a sheaf \mathcal{F}_{γ} on $X_G = \operatorname{Proj} \mathcal{A}_G$ which generalizes $\mathcal{P} \otimes \mathcal{O}(k)$ to arbitrary type.

It would be very interesting to understand the variety X_G and this Procesi-like sheaf on it geometrically, and relate it to the work of Losev.

Main theorem

The above theorems admit a quantization:

Theorem (G., Kivinen, Oblomkov)

There is a \mathbb{Z} -algebra $\mathcal{A}_{G}^{h} = \bigoplus_{i} \mathcal{A}_{j}^{h}$ with multiplication $_{i}\mathcal{A}_{j}^{h} \otimes_{j}\mathcal{A}_{k}^{h} \rightarrow _{i}\mathcal{A}_{k}^{h}$ such that:

- For any quasihomogeneous γ the direct sum $M^{\hbar}_{\gamma} = \bigoplus_{k} H^{\mathbb{C}^{*}}_{*}(\operatorname{Sp}_{t^{k}\gamma})$ is a graded module over \mathcal{A}^{\hbar}_{G}
- *i*A^ħ_i is a spherical trigonometric Cherednik algebra for G with parameter depending on i

• ${}_{i}\mathcal{A}_{i+1}^{\hbar}$ is the shift bimodule between ${}_{i}\mathcal{A}_{i}^{\hbar}$ and ${}_{i+1}\mathcal{A}_{i+1}^{\hbar}$

At $\hbar = 0$, we get $_{i}A_{j}^{\hbar=0} \simeq A_{j-i}$ and the \mathbb{Z} -algebra degenerates into graded algebra.

Similar \mathbb{Z} -algebras built from shift bimodules for rational Cherednik algebras were studied by Gordon and Stafford. We define the shift bimodule in the trigonometric case (since studied by Wille Liu).

Since A_1 is isomorphic to the space of *W*-antisymmetric polynomials, any antisymmetric polynomial defines an operator from $H_*(Sp_{\gamma})$ to $H_*(Sp_{t\gamma})$. Such an operator can be constructed explicitly as follows:

- Consider the affine Springer fiber $\widetilde{\mathsf{Sp}_{\gamma}}$ in affine flag variety $\mathrm{Fl}_{\mathcal{G}}$
- The homology $H_*(\widetilde{\operatorname{Sp}_{\gamma}})$ has an action of $\mathbb{C}[T^*T^{\vee}] \rtimes W$
- One has $\left[H_*(\widetilde{\operatorname{Sp}_{\gamma}})\right]^W = H_*(\operatorname{Sp}_{\gamma}), \ \left[H_*(\widetilde{\operatorname{Sp}_{\gamma}})\right]^{\epsilon} = H_*(\operatorname{Sp}_{t\gamma})[N]$
- An antisymmetric polynomial defines an operator *H*_{*}(Sp_γ)^W → *H*_{*}(Sp_γ)^ε.

However, constructing \mathcal{A}_k for k > 1 and verifying relations for $\mathcal{A}_1 \cdot \mathcal{A}_1 \subset \mathcal{A}_2$ seems to be out of reach with this approach.

(日)

Coulomb branch algebras

Instead, we construct both \mathcal{A} and \mathcal{A}^{h} as graded **Coulomb branch** algebras following Braverman, Finkelberg and Nakajima (BFN).

Consider the space

 $_{i}\mathcal{R}_{j} = \left\{ [g,s] \in G((t)) \times^{G[[t]]} t^{i}\mathfrak{g}[[t]] : gs \in t^{j}\mathfrak{g}[[t]] \right\},$

then we define ${}_{i}\mathcal{A}_{j}^{\hbar} = H_{*}^{G[[t]] \rtimes \mathbb{C}^{\times}}({}_{i}\mathcal{R}_{j})$. The multiplication ${}_{i}\mathcal{A}_{j}^{\hbar} \otimes {}_{j}\mathcal{A}_{k}^{\hbar} \rightarrow {}_{i}\mathcal{A}_{k}^{\hbar}$ is defined by the BFN convolution product.

Theorem (Braverman, Finkelberg, Nakajima; Webster)

The \mathbb{Z} -algebra \mathcal{A}^{\hbar} is associative, and commutative for $\hbar = 0$. Furthermore, for all *i* and *j* the component $_{i}\mathcal{A}_{i}^{\hbar}$ is a free module over $\mathcal{H}_{*}^{G \times \mathbb{C}^{*}}(\text{pt})$.

Theorem (Kodera, Nakajima)

For all *i* the algebra $_{i}A_{i}^{h}$ is isomorphic to the spherical trigonometric Cherednik algebra with parameter depending on *i*.

The algebra \mathcal{A} acts on $M_{\gamma} = \bigoplus_{k} H_{*}(\operatorname{Sp}_{t^{k}\gamma})$ (or \mathcal{A}^{\hbar} acts in \mathbb{C}^{*} -equivariant homology in quasihomogeneous case) by virtue of the **BFN Springer theory** developed by Hilburn-Kamnitzer-Weekes and Garner-Kivinen.

The action is defined using a certain convolution between $_i\mathcal{R}_j$ and $\operatorname{Sp}_{t^i\gamma}$, which is compatible with BFN convolution on $_i\mathcal{R}_j$. Thus, the multiplication in the algebra is compatible with the action on the module.

In other words, the action of \mathcal{A} on M_{γ} is similar in spirit to the BFN Springer theory, but generalizes it to the \mathbb{Z} -algebra level. One still needs, though, to identify the algebra \mathcal{A} explicitly.

The components ${}_{i}\mathcal{A}_{j}$ can be embedded into difference operators on $\mathbb{C}[\mathfrak{t}^{reg}]$ using localization techniques. Furthermore, the homology of ${}_{i}\mathcal{R}_{j}$ has a basis $[{}_{i}\mathcal{R}_{j}^{\leq\lambda}]$ corresponding to Schubert cells in the affine Grassmannian. Thus, we get an explicit basis of ${}_{i}\mathcal{A}_{j}$.

Theorem (G.,Kivinen, Oblomkov)

For arbitrary G the localization maps $[{}_i\mathcal{R}_i^{\leq\lambda}]$ to the difference operator

$$\sum_{\lambda' \in W\lambda} \frac{\prod_{\alpha(\lambda')+i < j} \prod_{\ell=0}^{i-\alpha(\lambda')-j-1} (y_{\alpha} + (\alpha(\lambda') + j + \ell)\hbar + c)}{\prod_{\alpha \in \Phi} \prod_{\ell=0}^{\max(0,\alpha(\lambda'))-1} (y_{\alpha} + \ell\hbar)} u_{\lambda'} + \dots$$

where $u^{\lambda'}$ is the translation by $\hbar\lambda'$ and ... are lower order terms with respect to some filtration.

Localization for GL_n

For $G = GL_n$ and $\hbar = 0$ the localization formula simplifies to

$$[{}_i\mathcal{R}_j^{\lambda}]\mapsto \pm \mathrm{Sym}\left(\Delta^{j-i}\prod_{r< s, |\lambda_r-\lambda_s|<|j-i|}(y_r-y_s)^{|j-i|-|\lambda_r-\lambda_s|}u^{\lambda}\right)$$

where Δ is the Vandermonde determinant in the y_i .

Example

Again for $G = GL_n$, assume that j = i + 1, then at $\hbar = 0$ we get

$$\left[{}_i\mathcal{R}_{i+1}^{\lambda}\right]\mapsto\pm\Delta\mathrm{Alt}\left(\prod_{r< s,\lambda_r=\lambda_s}(y_r-y_s)u^{\lambda}\right)$$

Up to $\pm\Delta$, this is antisymmetrization of a certain monomial in y_s and u_s , which agrees with the description of A_1 as the space of antisymmetric polynomials.

Generation for GL_n

We have an easy combinatorial lemma:

Lemma

Suppose that λ is an arbitrary integral coweight for GL_n and d > 0. Then there exist d coweights $\mu^{(0)}, \ldots, \mu^{(d-1)}$ such that $\mu^{(0)} + \ldots + \mu^{(d-1)} = \lambda$ and for all i and j the following holds: 1) If $|\lambda_i - \lambda_j| < d$ then

$$d-|\lambda_i-\lambda_j|=\sum_{k,\mu_i^{(k)}=\mu_j^{(k)}}1.$$

2) If $|\lambda_i - \lambda_j| > d$ then $\mu_i^{(k)} \neq \mu_j^{(k)}$ for all k.

By using the above formulas for the basis in ${}_{i}\mathcal{A}_{j}$, one can use this lemma to prove that the graded algebra \mathcal{A} (resp. \mathbb{Z} -algebra \mathcal{A}^{h}) is generated in degrees 0 and 1 for $G = GL_{n}$.

Conjecture

The module $M_{\gamma} = \bigoplus_{k} H_{*}(\operatorname{Sp}_{t^{k}\gamma})$ is finitely generated over \mathcal{A}_{G} and the sheaf \mathcal{F}_{γ} on X_{G} is coherent.

The conjecture is known in several cases but open in general.

Problem

BFN define Coulomb branch algebras $A_{G,N}$ for arbitrary representations N of the group G. One can also define generalized affine Springer fiber for $\gamma \in N((t))$. What could one say about graded algebras and modules in this generality?

Further directions

The work of G.-Neguț-Rasmussen, G.-Hogancamp and Oblomkov-Rozansky relates Khovanov-Rozansky homology to sheaves on $\operatorname{Hilb}^n(\mathbb{C}^2)$. In particular, for any braids α, β there is a natural multiplication

 $HHH(\alpha) \otimes HHH(\beta) \rightarrow HHH(\alpha\beta).$

Given a braid β , one can form a graded module $\bigoplus_k \text{HHH}(\beta \text{FT}^k)$ over the graded algebra $\bigoplus_{k=0}^{\infty} \text{HHH}(\text{FT}^k)$, and a sheaf on $\text{Proj} \bigoplus_{k=0}^{\infty} \text{HHH}(\text{FT}^k)$.

Theorem (G., Hogancamp)

The variety $\operatorname{Proj} \bigoplus_{k=0}^{\infty} \operatorname{HHH}(\operatorname{FT}^k)$ is isomorphic to the **isospectral** Hilbert scheme $X_n(\mathbb{C}^2)$ of n points on \mathbb{C}^2 .

Problem

Given $\gamma \in \mathfrak{gl}_n((t))$, we can construct a sheaf \mathcal{F}_{γ} on $\operatorname{Hilb}^n(\mathbb{C}^* \times \mathbb{C})$ using the methods in this talk, and another sheaf on $X_n(\mathbb{C}^2)$ using link homology. How are they related?

Happy birthday, Professor Nakajima!