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Affine Springer fibers

Let G be a connected reductive group with Lie algebra g. Our main
character is the affine Springer fiber associated to an element v € g((t)):

Sp,={g<G((t)) :g g G[[t]]}/G[[t]
which is a subvariety of affine Grassmannian Grg = G((t))/G[[t]].

If v is compact, regular and semisimple then Sp, is finite-dimensional, but
usually singular and can have infinitely many irreducible components.
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Affine Springer fibers in type A

In type A, the geometry of affine Springer fiber Sp,, is controlled by the
characteristic polynomial f(t, \) = det(Al —~(t)) and the spectral curve
C,={f(t,\) =0} cC3,.

Sp,, is closely related to the compactified Jacobian of C, and the Hilbert
scheme of points on C,.

The spectral curve C, defines an n-strand braid 3 which describe the
behavior of eigenvalues of y(t) as t goes around the origin. The
remarkable conjectures of Oblomkov, Rasmussen and Shende relate the
homology of Sp., to triply graded Khovanov-Rozansky homology of 3.
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Examples

0 2
The matrix v = (t 0

corresponds to a cuspidal curve in C2. The corresponding two-strand braid
is 3 = 0> which closes to the trefoil knot. The affine Springer fiber Sp, is
isomorphic to CP?.

) has characteristic polynomial A% — t3 and

The matrix v = (é o

corresponds to a pair of lines in C2. The corresponding two-strand braid is

3 = 0 which closes to the Hopf link. The affine Springer fiber is the
infinite chain of CP?.

0 ) has characteristic polynomial A% — t? and




Homology of Sp,

The centralizer of v naturally acts on Sp,. If v is quasihomogeneous, then
Sp., admits as additional C* action.

The equivariant Borel-Moore homology of Sp., was studied by
Bezrukavnikov, Hikita, Lusztig, Varagnolo, Vasserot, Yun and others. In
particular:

o H.(Sp,) is a finitely generated module over C[ T~ TV]" where TV is
the Langlands dual torus. For G = GL,,, we get a module over
CIX{ s s Xy Y1y - . Yn]>"

@ Hence, it defines a coherent sheaf on T* TV/W which for G = GL,, is
simply (C* x C)"/S,,. It is supported on a certain Lagrangian
subvariety.

@ If v is quasihomogeneous, then Hf*(SpV) is a representation of the
spherical trigonometric Cherednik algebra associated to G.



Infinite family

We will be interested in a family of affine Springer fibers

SpPys SPys SPe2y - -

In type A, going from ~y to ty corresponds to a blowdown of the spectral
curve. For example, if the characteristic polynomial of 7 is £, = A" — "
then the characteristic polynomial of t¥v is

n m+kn
ftk,y =A\"-t .

Topologically, going from ~ to ty adds a full twist to the corresponding
braid, so we are interested in a family of braids

B,FTB,FT24. ..
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Main theorem

Theorem (G.,Kivinen,Oblomkov)

There is a graded algebra Ag = Ag® A1 ® A2 @ ... (depending only on G)
with the following properties:

e For any v the direct sum of homologies M., = @y Hx(Sp.) is a
graded module over Ag.

o Ag=C[T*TV]W.

o A; ~C[T*TVY]® where € denotes the sign representation of W .
@ Forall d >0, we have

Ag=eg\(1-a",y)? cC[T*T"]

where « runs over the roots of g and ey is the projector to the
ed-isotypic component.
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As a corollary, v defines a quasicoherent sheaf ¥, on the variety
X = Proj Ag. Changing v to ty corresponds to twisting F with O(1).

The variety X¢ is normal and admits a natural projection to T*TY/W, so
one can think of it as a partial resolution of the commuting variety for G".
However, for general G we expect that X¢ is not smooth and Ag is not
generated by Ag and A;. This is not a problem for G = GL,:

Theorem (BFN; G.,Kivinen,Oblomkov)

For G = GL,, the algebra A¢ is generated in degrees 0 and 1, and
XGL,, = Hilb((C* X C)

To sum up, to any v € gl,((t)) we associate a sheaf ., on Hilb(C* x C).



Examples: GL,

If v is a diagonal scalar matrix with distinct eigenvalues, then F, is the
Procesi bundle P on Hilb(C* x C) restricted to a certain Lagrangian
subvariety L.

More generally, if v = diag(sltk, e ,s,,tk) with s; distinct and nonzero
then F, =P ® O(k) restricted to L.

v

Example

Suppose that det(A/ —7) = A" — t*™*1 Then F., is isomorphic to the
restriction of O(k) to the punctual Hilbert scheme at (1,0) € C* x C.

\




Examples: beyond GL,

Let v be an equivalued element of valuation k € Zsg, and G arbitrary.
Then the results of Kivinen imply that

M, =J,[yJ, where sz@ﬂ(l—av,ya)k“'
j o4

as a module over

Ag = @edm(l _Oéva}/a)d
J (e}

The module structure is clear, and therefore M, yields a sheaf F, on
Xg = Proj Ag which generalizes P ® O(k) to arbitrary type.

It would be very interesting to understand the variety Xg and this
Procesi-like sheaf on it geometrically, and relate it to the work of Losev.
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Main theorem

The above theorems admit a quantization:

Theorem (G.,Kivinen,Oblomkov)

There is a Z-algebra .A'Z; =@ ;AJ'-’ with multiplication ,-.AJ’Q7 ® j.AZ - ,-AZ
such that:

@ For any quasihomogeneous ~ the direct sum Mé’ =@ HE (Speky) is
a graded module over A%
° ,-.A,f’ is a spherical trigonometric Cherednik algebra for G with
parameter depending on i
o ;AP | is the shift bimodule between ;A" and ;1. A"
At h=0, we get ,-.A;':O ~ A;_; and the Z-algebra degenerates into graded
algebra.

Similar Z-algebras built from shift bimodules for rational Cherednik
algebras were studied by Gordon and Stafford. We define the shift
bimodule in the trigonometric case (since studied by Wille Liu).
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Action of antisymmetric polynomials

Since A; is isomorphic to the space of W-antisymmetric polynomials, any
antisymmetric polynomial defines an operator from H.(Sp,) to H.(Sp;,).
Such an operator can be constructed explicitly as follows:

@ Consider the affine Springer fiber §5; in affine flag variety Flg
@ The homology H*(’ST);) has an action of C[T*TV] x W

— W — €
° One haS [H*(Sp'y)] = H*(Sp’y)7 [H*(Sp’y)] = H*(Spt’y)[N]
@ An antisymmeric polynomial defines an operator
H*(Sp'y)W - H*(Sp'y)g'

However, constructing Ay for k > 1 and verifying relations for A;j - A1 c As
seems to be out of reach with this approach.
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Coulomb branch algebras

Instead, we construct both A and A" as graded Coulomb branch
algebras following Braverman, Finkelberg and Nakajima (BFN).

Consider the space

R; ={[g.s1€ G(()) x U ¥ig[[e] : gs e t/g[[e]]},

then we define ,-.AJ'Z’ = Hf[[t”X(CX (iR;j). The multiplication

,-AJ'-’ ® ;AN - ;AN is defined by the BFN convolution product.

Theorem (Braverman, Finkelberg, Nakajima; Webster)

The Z-algebra A" is associative, and commutative for h = 0. Furthermore,
for all i and j the component ,-.AJ'-’ is a free module over HS*C" (pt).

Theorem (Kodera, Nakajima)

For all i the algebra ,-.Af’ is isomorphic to the spherical trigonometric
Cherednik algebra with parameter depending on i.

‘
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BFN Springer theory

The algebra A acts on M, = @y H.(Spy,) (or AP acts in C*-equivariant
homology in quasihomogeneous case) by virtue of the BFN Springer
theory developed by Hilburn-Kamnitzer-Weekes and Garner-Kivinen.

The action is defined using a certain convolution between ;R; and Sp,i,,
which is compatible with BFN convolution on ;R;. Thus, the
multiplication in the algebra is compatible with the action on the module.

In other words, the action of A on M, is similar in spirit to the BFN

Springer theory, but generalizes it to the Z-algebra level. One still needs,
though, to identify the algebra A explicitly.
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Localization

The components ;A4; can be embedded into difference operators on
C[t"*8] using localization techniques. Furthermore, the homology of ;R;
has a basis [,-Rf/\] corresponding to Schubert cells in the affine
Grassmannian. Thus, we get an explicit basis of ;.A;.

Theorem (G.,Kivinen, Oblomkov)

For arbitrary G the localization maps [;Rf’\] to the difference operator

Mo)sic a7 (yo + (@(X) +j + Oh+c)
Ny H Hmax(O Ja(A))- l(y +£h)

uy +...

where u”" is the translation by h\" and ... are lower order terms with

respect to some filtration.

15 /20



Localization for GL,,

For G = GL,, and h =0 the localization formula simplifies to

[,RJ)‘] ~ +Sym (Aji

(yr — YS)U7I|7|AI7)\S| U)\)
f<57\>\r—/\s\<U—"\

where A is the Vandermonde determinant in the y;.

Again for G = GL,, assume that j =i+ 1, then at h =0 we get

[;R;\+1] — j:AAlt( H (yvr —ys)uA)

r<s,Ar=X\s

Up to +A, this is antisymmetrization of a certain monomial in ys and us,
which agrees with the description of A; as the space of antisymmetric
polynomials.

v
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Generation for GL,

We have an easy combinatorial lemma:

Suppose that A is an arbitrary integral coweight for GL,, and d > 0. Then
there exist d coweights 11(®, ..., (9D such that (@ + ...+ p(dD = )
and for all i and j the following holds:

1) /f|)\, = )‘Jl < d then

d—|Ai-A\j|= Z 1.
k,ufk)wfk)

2) IF I\ = \jl > d then p() = S for all k.

By using the above formulas for the basis in ;.4;, one can use this lemma
to prove that the graded algebra A (resp. Z-algebra A") is generated in
degrees 0 and 1 for G = GL,,.
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Further directions

The module M, = @ H.(Spy«.,) is finitely generated over Ag and the
sheaf F., on X¢ is coherent.

The conjecture is known in several cases but open in general.

Problem

BFN define Coulomb branch algebras Ag n for arbitrary representations N
of the group G. One can also define generalized affine Springer fiber for
v e N((t)). What could one say about graded algebras and modules in
this generality?




Further directions

The work of G.-Negut-Rasmussen, G.-Hogancamp and
Oblomkov-Rozansky relates Khovanov-Rozansky homology to sheaves on
Hilb"(C?). In particular, for any braids «, 3 there is a natural
multiplication

HHH(a) ® HHH(3) - HHH(ap3).

Given a braid /3, one can form a graded module @, HHH(3 FT¥) over the
graded algebra @7, HHH(FTX), and a sheaf on Proj Do HHH(FT*).

Theorem (G.,Hogancamp)

The variety Proj@®}>, HHH(FTX) is isomorphic to the isospectral Hilbert
scheme X,(C?) of n points on C?.

v

Problem

Given v € gl,,((t)), we can construct a sheaf F, on Hilb"(C* x C) using
the methods in this talk, and another sheaf on X,(C?) using link
homology. How are they related?

— — = &
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Happy birthday, Professor Nakajima!
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