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Let S smooth projective surface over C
Hilbert scheme of points:
S[n] = Hilbn(S)={zero dim. subschemes of length n on S}
S[n] is smooth projective, of dimension 2n
Related to symmetric power S(n)

Hilbert-Chow morphism

ω : S[n] → S(n),Z 7→ supp(Z )

is a resolution of singularities
Can also view S[n] as a moduli space of sheaves: S[n] is via
correspondence Z 7→ IZ isomorphic to the moduli space of
stable rk 1 sheaves on S with Chern classes c1 = 0, c2 = n
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Why care about it?
1 Simple example of moduli spaces of sheaves

model case for all one wants to study about them
2 Building block of moduli spaces, used to study them

many questions about moduli spaces of sheaves can be
reduced to Hilbert schemes of points (e.g. wallcrossing,
instanton counting).

3 Important example of higher dimensional varieties
e.g. if S is K3 surface, then S[n] is hyperkähler

4 Enumerative applications, counting point configurations,
curves and other things
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Verlinde and Segre formulas

S[n] is a fine moduli space:
Universal subscheme:

Zn(S) =
{

(x , [Z ])
∣∣ x ∈ Z

}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections
Fibre p−1([Z ]) = Z

Tautological sheaves:
V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ) = V ⊗C OZ
These tautological bundles are useful for many applications of
Hilbert schemes
Determinant bundles: det(V [n]) ∈ Pic(S[n]) generate Pic(S[n])
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Verlinde and Segre formulas

Zn(S) =
{

(x , [Z ])
∣∣ x ∈ Z

}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections

Tautological sheaves: V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ), in particular O[n]
S ([Z ]) = H0(OZ )

Extends to Grothendieck group K 0(S) by (V −W )[n] = V [n] −W [n]

Line bundles on S[n]: det(V [n]) ∈ Pic(S[n]), these generate Pic(S[n])
Want formulas for

χ(S[n], det(V [n])) Verlinde formula∫
S[n]

c2n(V [n]) =

∫
S[n]

s2n(−V [n]) Segre formula

Verlinde formula: Via the correspondence Z 7→ IZ have
S[n] = MH

S (1,0,n) (moduli sp. of rk 1 stable sheaves E with
det(E) = 0, c2(E) = n)
Verlinde formula is rk 1 case of surface analogue of the celebrated
Verlinde formula for curves.
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Generating functions and multiplicativity

Aim: For V ∈ K 0(S) want formula for generating functions

IVerlinde
S,V (x) =

∑
n≥0

xnχ(S[n], det(V [n])), Verlinde formula

IChern
S,V (x) =

∑
n≥0

xn
∫

S[n]
c2n(V [n]), Segre formula

For series of related numbers should study generating functions
They bring hidden relations between the numbers to the
surface and can hint at structures behind them, e.g. Betti
numbers of Hilbert schemes of points are explained by
Nakajima’s Heisenberg action.
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Inductive structure

Recall universal subscheme Zn(S) ⊂ S × S[n]

can show: blowup of S × S[n] along Zn(S) is

S[n,n+1] =
{

(Z ,W ) ∈ S[n] × S[n+1] ∣∣ Z ⊂W
}

With projections to S, S[n], S[n+1]. This allows to compute
intersection numbers on S[n] recursively
Pull back class α ∈ H∗(S[n]) to S[n−1,n], push forward to
S × S[n−1], pull back to S × S[n−2,n−1], etc until you arrive at Sn
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Inductive structure

This gives the following:

IVerlinde
S,V (x) =

∑
n≥0

xnχ(S[n], det(V [n])), Verlinde formula

IChern
S,V (x) =

∑
n≥0

xn
∫

S[n]
c2n(V [n]), Segre formula

Universality (Ellingsrud-G-Lehn)

IVerlinde
S,V (x) = Aχ(det(V ))

1 A
1
2χ(OS)

2 A
c1(V )KS− 1

2 K 2
S

3 A
K 2

S
4 ,

IChern
S,V (x) = Bc2(V )

0 Bχ(det(V ))
1 B

1
2χ(OS)

2 B
c1(V )KS− 1

2 K 2
S

3 B
K 2

S
4

A1, . . . ,A4,B0, . . . ,B4 ∈ Q[[x ]] universal power series
(depending only on k = rk(V ))
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Verlinde and Segre series

IVerlinde
S,V (x) = Aχ(det(V ))

1 A
1
2χ(OS)

2 Ac1(V )KS− 1
2 K 2

S
3 AK 2

S
4

Verlinde Series IVerlinde
S,V (x) (EGL (2001)): With the change of

variables x = −t(1− t)r2−1 (r = rk(V )) have

A1(x) = (1− t), A2(x) =
(1− t)r2

1− r2t
.

and A3(x) = A4(x) = 1 for |r | ≤ 1
Segre Series:
Lehn conjecture (1999): formula for IChern

S,−L (x) for L ∈ Pic(S), he
uses Nakajima’s Heisenberg action
Proven by Marian-Oprea-Pandharipande, Voisin (2019)
MOP consider IChern

S,V (x) for general V ∈ K 0(S)
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Verlinde and Segre series

IChern
S,V (x) = Bc2(V )

0 Bχ(det(V ))
1 B

1
2χ(OS)

2 Bc1(V )KS− 1
2 K 2

S
3 BK 2

S
4

Theorem (MOP (2022))

Put k = rk(V ), r = k − 1, with change of variable x = −y(1− ry)r−1

B0(x) =
(1− y)r+1

1− ry
, B1(x) =

1− ry
(1− y)r , B2(x) =

(1− ry)2r

(1− y)(1− r2y)

Furthermore MOP determine B3(x), B4(x) as algebraic functions for
|k | ≤ 2.

(1) formulas are complicated, even when KS = 0: multiplying out
Aχ(det(V ))

1 A
1
2χ(OS)

2 or Bc2(V )
0 Bχ(det(V ))

1 B
1
2χ(OS)

2 and undoing the change of
variables gives complicated formula
(2) A1, A2; B0, B1, B2 are easier to study: can compute on K3 surface,
then S[n] is hyperkähler and there are powerful tools

A3, A4, B3, B4 which involve KS are much more difficult
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Verlinde-Segre correspondence

IVerlinde
S,V (x) = Aχ(det(V ))

1 A
1
2χ(OS)

2 A
c1(V )KS− 1

2 K 2
S

3 A
K 2

S
4 ,

IChern
S,V (x) = Bc2(V )

0 Bχ(det(V ))
1 B

1
2χ(OS)

2 B
c1(V )KS− 1

2 K 2
S

3 B
K 2

S
4

Mysterious relation: Verlinde series←→ Segre series:

Conjecture (Johnson, MOP)
Put r = k − 1, then

B(k)
3 (−y(1− ry)r−1) =A(r)

3 (−y(1− y)r2−1)

B(k)
4 (−y(1− ry)r−1) =A(r)

4 (−y(1− y)r2−1)

Here we mean that for the Segre (B) series we take rk(V ) = k
and for the Verlinde (A) series rk(V ) = k − 1 = r .

How can this be and where could shift k to k − 1 come from?



Hilbert scheme Verlinde and Segre formulas Universality Previous work Our results About the proof

Segre and Verlinde formula

Theorem
The Verlinde Segre correspondence is true:
B(r+1)

3 (−y(1 − ry)r−1) = A(r)
3 (−y(1 − y)r

2−1), B(r+1)
4 (−y(1 − ry)r−1) = A(r)

4 (−y(1 − y)r
2−1)

Therefore it is enough to determine A3, A4

Theorem

With x = −y(1− y)r2−1 we have

A(r)
3 (x) =

1
(1− y)

r
2

exp

(
−
∑
n>0

yn

2n
Coeffx0

(
x r − x−r

x − x−1

)2n
)

Alternative formula: let αi (y), i = 1, . . . , r − 1 branches of the

inverse of (x
1
2−x− 1

2 )2

(x
r
2−x− r

2 )2
= x r−1 + . . .

i.e. x = αi (y) = εir−1y
1

r−1 + . . . sol. of (x r − 2 + x−r )y = x − 2 + x−1.
Then

A3(−y(1− y)r2−1) =
y

1
2

(1− y)
r
2
∏r−1

i=1 αi (y)
1
2

.
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Segre and Verlinde formula

Conjectural formula for A4: Recall

A3(−y(1− y)r2−1) =
y

1
2

(1− y)
r
2
∏r−1

i=1 αi(y)
1
2

.

Conjecture

With x = −y(1− y)r2−1, we have(
A4(x)A3(x)r)8

=

=
(1− r2y)3

(1− y)3r2

r−1∏
i,j=1

(1− αi(y)αj(y))2
r−1∏
i,j=1
i 6=j

(1− αi(y)rαj(y)r )2

So complete Verlinde and Segre formula. Proven when K 2
S = 0

Proposition (based on computations with Don Zagier)

This conjecture is true modulo x50 (until 49-th Hilbert scheme).
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Refinement of Segre and Verlinde formula

For V ∈ K 0(S) of rank k define

IS,V (x , z) :=
∑
n≥0

(−x)nχ
(
S[n], det(O[n]

S )−1 ⊗ Λ−zV [n]) ∈ Z[[x , z]]

where Λ−zW =
∑

n≥0(−z)nΛnW

IS,V (x , z) specializes to IVerlinde
S,V (x , z) and IChern

S,V (x , z):

(−1)n(k−1)Coeffxnzkn

(
IS,V (x , z)

)
= χ(S[n], det((V −OS)[n])

lim
ε→0

(
IS,V

(
−(1 + ε)k

εk−2 x ,
1

1 + ε

))
= IChern

S,V (x , z)

Note that in χ(S[n], det((V −OS)[n]) the rank drops by 1
Universality says

IS,V (x , z) = Gc2(V )
0 Gχ(det(V ))

1 G
1
2χ(OS)

2 G
c1(V )KS− 1

2 K 2
S

3 G
K 2

S
4

for G0,G1,G2,G3,G4 ∈ Q[[x , z]] depending only on k = rk(V ).
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Refinement of Segre and Verlinde formula

IS,V (x , z) = Gc2(V )
0 Gχ(det(V ))

1 G
1
2χ(OS)

2 Gc1(V )KS− 1
2 K 2

S
3 GK 2

S
4

Theorem
Let k = rk(V ), r = k − 1. With the changes of variables

x =
u(1− u)r

v(1− v)r , z =
v

(1− u)r , y =
uv

(1− u)(1− v)
,

we have

G0G1(x , z) = 1− y , G0 =
(1− u − v)r+1

(1− v)r
(
(1− u)r − v

) ,
G2(x , z) =

(1− u
v )2(1− v)r2−1

(
(1− u)r − v

)
(1− u − v)r2 (1− u)r2−1

(
1− u − v − (r2 − 1)uv

)
G3(x , z) = A3(−y(1− y)r2−1), G4(x , z) = A4(−y(1− y)r2−1)

Verlinde-Segre correspondence "explained" by the fact that G3(x , z)
and G4(x , z) only depend on the variable y
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Localization

Let X be a smooth projective variety with action of T = C∗ × C∗
with finitely many fixpoints, p1, . . . ,pe, d = dim(X )
Let E be equivariant vector bundle of rank r on X
Fibre E(pi ) of X at fixp. pi has basis of eigenvect. for T -action
E(pi ) =

⊕r
k=1 Cvk , with action (t1, t2) · vk = tnk

1 tmk
2 vk , nk ,mk ∈ Z

Then the nkε1 + mkε2 ∈ Z[ε1, ε2] are called the weights of E(pi )
Denote u1,i , . . . ,ud,i the weights of Tpi X

cT
i (E(pi )) = i-th elementary symm. fctn in weights of E(pi ) ∈ Z[ε1, ε2]

Let P
(
(ci (E))i

)
be a polynomial in Chern classes of E

Theorem (Bott residue formula)

∫
[X ]

P
(
(ci (E))i , (cj (TX ))j

)
=

(
e∑

k=1

P
(
(cT

i (E(pk ))i , (cT
j (Tpk X ))j

)
u1,k · · · ud,k

)∣∣∣∣∣
ε1=ε2=0

Sum in brackets is a polynomial in ε1, ε2.
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Localization

Let S be a smooth toric surface, i.e. S has action of T with
finitely many fixpoints p1, . . . ,pe
Near each fixpoint have affine T -equivariant coordinates xi , yi
The action of T on S lifts to an action on S[n]

Z ∈ S[n] is T -invariant ⇐⇒ Z = Z1 t . . . t Ze supp(Zi) = pi ,
and the Zi are T -invariant
Zi isT -invariant ⇐⇒ IZi ∈ k [xi , yi ] is gen. by monomials i.e.

IZi = (xn0
i , yix

n1
i , ...., y r

i xnr
i , y

r+1
i ) (n0, . . . ,nr ) partition

=⇒ Fixpoints on S[n] are in bijection to e-tuples (P1, . . . ,Pe) of
partitions, adding up to n
V [n](Z ) = V [n1](Z1)⊕ . . .⊕ V [ne](Ze),
TS[n](Z ) = TS[n1](Z1)⊕ . . .⊕ TS[ne ](Ze)

The weights of the action on V [ni ](Zi) and TS[ni ](Zi) are given in
terms of the combinatorics of the partition Pi
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Localization

By Universality enough to prove for S toric surface and V toric vector
bundle on S i.e. T = (C∗)2 acts on S with finitely many fixpoints,
action lifts to V =⇒ can use localization
Denote H∗T (pt) = C[ε1, ε2] equivariant cohomology
Let p1, . . . ,pe fixpoints of T -action on S, denote t (i)1 , t (i)2 wts on TS(pi )

and v (i)
1 , . . . , v (i)

k wts on V (pi ) (each weight is of the form nε1 + mε2)
Put

Ω(x , z1, . . . , zk ,q, t) :=
∑

λpartitions

∏k
i=1
∏

�∈λ(1− qc(�)t r(�)zi )∏
�∈λ(qa(�)+1 − t l(�))(qa(�) − t l(�)+1)

x |λ|

Identify partition with graph, and put c(�) column, r(�) row, a(�) arm
length, c(�) leg length
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Localization

Put H = log(Ω)
By Riemann-Roch and localization on S[n] have

IS,V (x , z) =

(
e∏

i=1

Ω(x ,ev (i)
1 z, . . . ,ev (i)

k z,et(i)1 ,et(i)2 )

)∣∣∣∣∣
ε1=ε2=0

= exp

(
e∑

i=1

H(x ,ev (i)
1 z, . . . ,ev (i)

k z,et(i)1 ,et(i)2 )

)∣∣∣∣∣
ε1=ε2=0

So we "only" have to compute this.

Proposition
We can expand

H(x , z1, . . . , zk ,eε1 ,eε2) =
∑

d1,d2≥−1

Hd1,d2(x , z1, . . . , zk )εd1
1 ε

d2
2

(not trivial could have deep pole in ε1, ε2)
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Localization

Trick (first saw this in work with Nakajima-Yoshioka on instanton
counting): Rewrite previous formula for IS,V (x , z): Inside exponential apply
localization formula on S

IS,V (x , z) = exp

(
e∑

i=1

H(x , ev(i)
1 z, . . . , ev(i)

k z, et(i)1 , et(i)2 )

)∣∣∣∣∣
ε1=ε2=0

= exp

((
e∑

i=1

1

t (i)1 t (i)2

(
H−1,−1(x , e

v(i)
j z) + (t (i)1 + t (i)2 )H−1,0(x , e

v(i)
j z)

+ t (i)1 t (i)2 H0,0(x , e
v(i)

j z) + ((t (i)1 )2 + (t (i)2 )2)H−1,1(x , e
v(i)

j z)
))∣∣∣∣∣

ε1=ε2=0

)
= exp

(
c2(V )C2 + c1(V )2C11 + KSc1(V )D1 + e(S)F + (K 2

S − 2e(S))E
)

Put Hd1,d2,k (x , z) = Hd1,d1(x , z, . . . , z), write Dz = z ∂
∂z

Then F (x , z) = H0,0,k (x , z), E(x , z) = H−1,1,k (x , z),
D1(x , z) = −kDzH−1,0,k (x , z) and C2(x , z), C11(x , z) given by second partial
derivatives of H−1,−1,k

So we need to understand
H−1,−1,k (x , z), H−1,0,k (x , z), H0,0,k (x , z), H−1,1,k (x , z).
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Regularity and Symmetry

Want to understand
H−1,−1,k (x , z), H−1,0,k (x , z), H0,0,k (x , z), H−1,1,k (x , z)

Use two properties: regularity and symmetry
1 f (x , z) ∈ C[[x , z]] is d-regular (wrt k ) if

f
(

xε2−k (1 + ε)k , 1
1+ε

)
∈ εdC[[x , ε]],

2 f (x , z) is called symmetric if f (x , z) = f (x−1, xz).

Theorem
1 Hd1,d2,k (x , z) is −d1 − d2 regular for d1 + d1 ≤ 0

2 Hd1,d2,k (x , z) +
Bd1+1Bd2+1

(d1+1)!(d2+1)!(Li1−d1−d2(x) + kLi1−d1−d2(z))

is symmetric (Lid (x) =
∑

n>0 xn/nd polylog).

First part follows from the fact that IChern
S,V is limit of IS,V
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Regularity and Symmetry

Second part is input from symmetric function theory:
1 Express Ω(w , z1, . . . , zk ,q, t) in terms of generalized

generalized MacDonald’s polynomials H̃µ(X ; q, t)
2 Identities of MacDonald’s polynomials give functional

equation for Ω(w , z1, . . . , zk ,q, t). Put

Ω̃(w , z1, . . . , zk ; q, t) := Exp
[ w +

∑
zi

(1− q)(1− t)

]
Ω(w , z1, . . . , zk ; q, t)

then Ω̃(w , z1, . . . , zk ; q, t) = Ω̃(w−1,wz1, . . . ,wzk ; q, t).
3 Take logarithm to get symmetry for H.
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Regularity and Symmetry

Symmetric and regular functions fulfill very strong constraints:

Theorem
Let f (x , z) be a symmetric d-regular function (wrt k).

1 if d > 0, then f (x , z) = 0.

2 if d = 0, there exists a unique h(y) ∈ C[[y ]], such that

f
(

u(1− u)k−1

(1− v)k−1 ,
v

(1− u)k−1

)
= h

(
uv

(1− u)(1− v)

)
.

The functions F (x , z), E(x , z), D1(x , z), C2(x , z), C11(x , z) can be
expressed in terms of symmetric regular functions
A symmetric regular function is determined by few of its coefficients,
Trick: assume g(x , z) is 1-regular, then f (x , z) := Dzg(x , z) is
regular. If furthermore f (x , z) is symmetric, then g(x ,0) determines
f (x , z)
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Regularity and Symmetry

Happy birthday Hiraku.
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