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INntro:

“Bows form only the first step in generalizing quivers.”

® [nstanton on ALE <—> Quiver Kronheimer - Nakajima 90
® |[nstanton on ALF <—> Bow

® [nstanton on ALG <—> 3Sling

® |nstanton on ALH <—> Wall

Comment: 4 real dim. hyperkahler space with L2 Riemann curvature = Tesseron
All tesserons come in ALE, ALF, ALG, ALG*, ALH, and ALH”* types.

ALF spaces: A1 ALF = TNk Dk ALF are asymptotic to Aoks/ Z»
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= 21—y,

Yang-Mills Instanton: Hermitian bundle with connection (& — TN7, A) satisfying:

1. *Fa=-Fa &  ImDiD,=0 Dirac operator D,
2. Faisl?



Bows

A bow is a collection of A bow representation R is
1.oriented intervals and 1. collection A of A-points on the bow,
2. arrows connecting their ends 2. hermitian line bundles E on (Bow —A)
(respecting the orientation). (matching at 4 points)
3. space W, for each constant rank 4 point.
p+ P+ A
p— ’VVWWVVVW;_
Bow representation data Dat(®R) consists of
1. Nahm data: 2. Bifundamental data: 3. Fundamental data:
connection Vdi on E and For each arrow for each const. rank
three endomorphisms B, E, — SRk, /1—pc.>|nt:
T,,T,,T; of E. N | Q,: W, > SQE,
2-dim rep. of quaternions.

Bow solution:

Dat(®}R) is hyperkahler and the gauge group & of R acts triholomorphically.
lts bow moment map equations (at level v) are

iVaTy =Ty, Ts], T(p—) +ImiB B = v, T+ — TA-) = ImiQ,0
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Bow Moduli Space

c.f. all ALE tesserons
as quiver moduli spaces:

HKQ level set: pu'w) = {r—Imbb" =1} » G Kronheimer ‘89
Hyperkahler Dat(3) > (Vai’t’ b)
affine space S P

A (small) b 1 . Moduli space / ;
small) bow e VN G° TNy =u= W/ of the bow rep. 3
representation 9

H . line bundl|
(Herm. line bundle) ® Moduli space of a bow rep. is hyperkahler:

M, = Dat (8)///€*
Bow @ Performing HKQ in stages, presents /%é
U M as a finite HKQ.

. —1/2 S 1/2
point s

® Focussing on one complex structure:
Mg = P‘EI(VC)/??:



One can cut the bow into pieces to present M
as a finite HK quotient.

This can be used to study its asymptotic, Ch ‘10

or realize it as a quiver variety in any given complex structure,
Nakajima & Takayama ‘16

or adjust the level to obtain a non-commutative deformation of A ¢

R. Bielawski, Y. Borchard and S. A. Ch ‘22

in which case the Bow construction delivers Instantons on non-commutative A «.



TNk as a Bow Rep. Moduli Space

Taub-NUT (Ag ALF)

Dk ALF
multi-Taub-NUT (Ax ALF) i

Note: there are other bows with representations with the same moduli space.

E.g. Cheshire bow rep: and Ray bow rep.
T
Ch-Blair ‘10 Ch-Kapustin ‘98

all have TNk as their moduli space.



L evel set as a Poincaré bundle

e For any point on the bow s € Bow, one has exact sequence 1 = &, — % — Ule) — 1
where &, := {g € G| g(s) =1}
and the partial quotientﬂ_l(l/)/ﬁ?s forms a U(e,) principal bundle over the moduli space:

W, < Uley)

\J
TN
This is the Tautological principal bundle at s.
Its associated bundle is L, — TN}, and

it comes equipped with a tautological instanton connection a,/!

e Together, the family of tautological bundles form a bundle over TN X Bow:

— K
e . 71'26

g |
1~ '(v) X Bow
TN; X Bow Biw

Section of L = &-equivariant section of e.

Note: all of the above applies to ANY bow rep. (except, its moduli space might not be TN).



Down Transform

“A space knows its bow;
an instanton knows its bow representation.”

CLHS21

Analytic results:

1. Any instanton (with asymp. holonomy) on ALF space has asymptotic form

A= @ (ﬂ*n — i+ e )a)>+0(|t|_2)
jen \ K 20tV ’

where exp(Zﬂi?) are the asymptotic values of the holonomy eigenvalues and

m, are the first Chern numbers of the corresponding eigen-linebundles.

2. Index of the associated Dirac operator is

ind.D, = Y <({,1/z} - %)(mﬂ — k| - g{mﬁ) + SL JtrF AF.

2
AEA
3. Harmonic spinors decay exponentially, if no A = 0.



Given an instanton (&, A), its Dirac operatoris D, : I'(S @ &) = I'(S ® &)
The spin bundle S splits into chiral parts S = ST @ S~

Hyperkéahlerity => S is trivial. Moreover, the Clifford action of the three Kahler forms I := Cl(w))
s covariantly constant and 1, I,, I; form quaternionic units!

Twisting by tautological bundles, we have a family of Dirac operators parameterized by the bow:

DS = DA®1LS+1%®as . F(S ® Cg ® LS) - F(S ® Cg ® LS)

Importantly: anti-self-duality of both A and a, is equivalent to

D52|S+ = V;k Vs ® 1S+

f (&, A) has no trivial factors, then V¥V _> 0, thus ker;, D, is entirely in S~ .



® |ndex bundle: Bounded harmonic sections:
%S = kerL2 DS Wﬂ, := keI'Loo V;tk V/l

® |[nduced Bow Solution: T, B, Q

1) Wycomeswithamap  0:w,@s*— &, equivalently, O € &, ® (ST)* ® W

J= D f
Since DD |, = VFEV ® g, such D, f is indeed in ker D,

2) Using the orthogonal projection I, : L*(S™ ® & ® L,) — ker;, D,
Multiplication by t and b induces T =Tl and B, =11bII

S JTs

Prop: The resulting (T,B,Q) solves the bow moment map equations at level v (determined by TNZ) !
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Up Transform

Bow Solution => Bow Dirac Operator => Index bundle over the level set => Instanton

Given a bow solution Quotient bundle & — TNZ
(T, B, Q) with induced connection A
of a bow rep. R is an Instanton

Dy  (SQE)>T(SQE)DE,, ®E,_DdW,
Index bundle over the level set

) . -
(- Va+ily Any (t,b) € u= ') is is & 3 equivariant:
By (p-) a solution of the small bow rep.
Dy = and has associated Bow Dirac op. D,. i
_BISTV/(p‘F) P. =g ker i‘)(t,b) AR
\ -0y (A) } Use its charge conjugate operator . l
D5 to form a family p @)

g(l‘,b) = @m ® le* + 1E® @g

( \
(—Vdi+ﬂT—it>l//

Bly(p—) — blyw(p+)
—B"w(p+) + by (p-)
\ ~Qlw(A) )

@(I,b)l// =




Instanton Class in terms of
Bow Rep. Ranks

1.k & =dimker®d] | = —indD, = |Al.

2. As |t| = oo solutions of the Bow Dirac eq. concentrate near the A-points;

so the induces connection A has the form

A( o ) = di ! <,1 n mﬂ) + 0@t
—) = diag — — ,
01' A g V 2t

where the magnetic charges are mii; = R(A+) — R(A=) + | {p|p < A} |.

3. Chern numbers of the resulting connection are

27

] A
LJ tFy = R(p+) = R(p=) = | (212> p} | + X, 7
C A

P

27

1/ i\’ 1 p k A\’
—<—> JtrFA/\FA:_Egmﬂ_Ro_l-;?mﬂ_E;<?>

M
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“Two Dirac equations know each other.”

Schematic Relation:

Instanton Dirac Operator D, Bow Dirac Operator D,

(parameterized by a s € Bow) VEVY = CT\TP (parameterized by (¢, b) € ,u;l(v))
Frame of frame of

Given an orthonormal frame of ker D ker®gp  kerD,
on the Bow on TN

DY, =0 dr + d
sta c’ = CI( ¢ a)):[Ds’id_]
Consider bounded solution y,, of Poisson egs ’
b
ViVix, =™, and V*V ., = a p

C
SIrra 2|t—l/17| a
d
2 o
Dita =i~ ¥, KC 1= () @ Pi(s) € ST Q E® e* Q Ef

(r)
d
Dy, = d_sT“ + W7, (X Lletk = || ® ‘PZ{ then
: : VAL Bl =D, T c™Y
Dyl = — 1%, + W), p 0 by S .

K solves the Bow Dirac equation

“Down harmony Eq”

Analogous calculation using Up transform give schematic relation for ¥ € ker g(t,b) :
ABowlP — )?
“Up harmony EQ”



Up - Down = |dinst

(8,A) —» (E;T,B,0) » (8,A) ~. (&, A) (E;T,B,Q) - (&,A) - (E,T,B,0)

(1)
Consider k¢ = | f

J)

Completeness

“The heaven and the Earth are in harmony.”

—gauge

(t;5) @ Wi(t'; s) is valued in (ST @ & @ L¥) | ® EX

a

its charge conjugate k is valued in ST @ &* @ L, ® E,

and thus givesamapk : &|, — ST ® E @ ¢* with image in & := ker D 1.b)

Down harmony eq => Fiber isometry and covariantly constant.

It maps a fiber of & at [(t,b)] to a fiber of & at (t,b).

Bow index theorem => K is bijective.

Down - Up = |dBow

—gauge
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(E;T,B, Q)



Down harmony eq;:

Monopole case: Nakajima ‘93

Aspn r T .7
Vix = fb(t,b)lﬂc b

Its variation is

{ oL VAL _ Tt roortaTg
A+ Vyx=TLY+ D, Lc™Y

directly relates the tangent vector A to M 11stanton
to the corresponding tangent vector T of A g,

Using 1) the fact that W is a frame of ker D,
2) ¢ is a frame of ker D, ), and

3) some quaternionic identities

leads to the isometry relation

1A12, - = (T, B, Q)||%,,

16



. . . Witten 0902.09481
Wh|Ch BOW IS BeSt? ?via br;ngrg:onsiderations)

e Distinct holonomy eigenvalues {e™ 1, e?™#2 .. %)

split the instanton bundle (on a complement of a compact set) € =W @ W, & ... @ W,

Lemma: The eigenvalues have the form

A; 9.
O =2L+—L—+o0(7™
W ETH | 7]

. _ _ mj dT + W '
comparing to the asymptotic form of our connection — a; = (4; + 2t) 7T @ .
4

19, = m; + Tk

This combination is Independent of any gauge choice!

e Consider the neighborhood of infinity: ~ TNk \ B contracts to the lens space S3/zk

Pullback Bundle: W}* —— — — —— > W,
s trivial { J
Covering space: S3 —— — — —— > S8/zx

Thus, what distinguishes different line bundles W is zx action on the fiber.
There are only k types of line bundles Wi,

. o o A+l
Changing the trivialization of S3acts by e : ( J) >

e Moral: line bundles Wj are determined by k numbers {ri;| 1it; = m;mod k,0 < rit; < k}
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Choice of Twisting Family

2.
trF = 27]‘(°6+”§’6)’ 8,€Z
j

R

“Stiefel-Whitney classes” (obstructions of PSU(n) to SU(n) lifting)

e First Chern class: k real numbers ¢{ = _2m'[
c

o

c, € {0,1,...,n—1}

Relabel the NUTs sothat 0<¢; <¢, <...¢, <n

This labels the rows of a Young diagram that fits into an kxn rectangle

For example, for k=4, n=5 and (¢, ¢, ¢3,¢4) = (1,1,3,4)

YBal=

X
!
|
|
I
I
I

S —

e View it as a closed path on an kxn torus.
Mark This gives the balanced bow representation

- horizontal segments A and As (the rank is continuous at each p-point):
- vertical segments po - 0=
A P4
— |
¥p2 ||
dp-l |
DN L




The set of magnetic charges also gives a Young diagram in nxk rectangle.

{ml,mz,...,mnmje (12, k— 1}}

YCob=

Interior: YRal Infinity: Ycob
(Chern numbers) (monopole charges)

19



Instanton Number

Since TNk is not compact, Chern character value cho[E,A] does NOT have to be integer.
Need another definition of the instanton number.

Let us focus on a single TN=TNj:
TN=R4 is contractible, so any bundle over it is trivial,
and connection one-form A is globally defined.

1. On a complement of a compact set, a gauge transformation g : TN\B — U(n)
transforms A to the diagonal form

()«1 + mll )

dr + 1
A% = — i diag Ay + my va+0(t—2).

\ /1n+mnl)

TN\B is contractible to S8, thus the homotopy class of g is in #3(Un)) = Z.

Instanton Number is mg :=deg[g] € m;(U(n)).

2. Alternatively, holonomy splits the instanton bundle into orthogonal line bundles,
givingamap §3 — Un)/U(1)" = N,
Flag space

Instanton Number is an element of #(Um)/U(1)") = Z.



Quivers, Bows, Slings, and Walls give constructions of Instantons on
ALE, ALF, ALG, and ALH tesserons.

Down transform: Instanton Dirac index bundle on the bow.
(The main problem is to identify ALL the necessary data to have a complete construction.)

Up transform: Bow Dirac index bundle.
Completeness: UpeDown = Idinst and Down eUp = |deow

Isometry: My, = M.
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