28 Aug 2024, Uni Hotel Jeju, Jeju, South Korea2024 BICMR-IBSCGP, Conference on Gromov-Witten Theory and Related Topics

Quantum cohomology of blowups

Hiroshi Iritani

(based on arXiv:2307.13555)

Related joint work:

[I-Koto] *Quantum cohomology of projective bundles*, arXiv:2307.03696

[I-Sanda] in preparation

Talk Plan:

- 1. Decomposition of quantum cohomology from birational geometry
 - decomposition associated with an extremal ray
- 2. Decomposition theorem for blowups
- 3. Teleman's conjecture (*D*-module version)
- 4. Proof via Fourier analysis of equivariant quantum cohomology

Usage of Colours

- Blue: keywords
- Red: important
- Magenta: to be explained on the whiteboard
- Yellow: notes for myself

§1. Decomposition of quantum cohomology from birational geometry

(See [Galkin-I-Hu-Ke-Li-Su, §6] *Counter-examples to Gamma conjecture I, arXiv:2405.16979*)

Small quantum cohomology

$$QH(X) = (H^*(X) \otimes \mathbb{C}\llbracket Q \rrbracket, \star)$$

sometimes decomposes as a ring (after an extension of the Novikov ring $\mathbb{C}[\![Q]\!]$). Example:

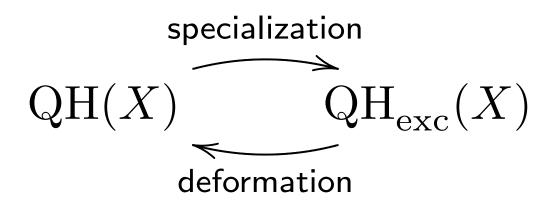
$$\operatorname{QH}(\mathbb{P}^{r-1}) \cong \operatorname{QH}(\operatorname{pt})^{\oplus r}$$

Mori cone: $NE(X) \subset H^2(X, \mathbb{R})$ **Extremal ray** is a 1-dimensional face (edge) $R \subset \overline{NE}(X)$ whose generator $d_0 \in R$ satisfies $c_1(X) \cdot d_0 > 0$ (we choose d_0 to be primitive integral). \exists extremal contraction $f: X \to Y$ such that $C \subset X$ is contracted to a point $\iff [C] \in R$. Exceptional quantum product \star_{exc} is defined by

$$(\alpha \star_{\text{exc}} \beta, \gamma) = \sum_{n \ge 0} \langle \alpha, \beta, \gamma \rangle_{0,3,nd_0}^X Q^{nd_0}$$

— the sum in the right-hand side is finite.

The exceptional quantum cohomology $QH_{exc}(X) = (H^*(X) \otimes \mathbb{C}[q], \star_{exc})$ can be defined over the polynomial ring $\mathbb{C}[q]$, where $q = Q^{d_0}$.



decomp of $QH_{exc}(X)|_{q=1}$ (finite dimensional \mathbb{C} -algebra) \rightsquigarrow induces a decomp of QH(X). Question: What is a geometric meaning of each summand of the decomposition of QH(X) (associated with an extremal ray)?

Example 1 [Gonzalez-Woodward, Lee-Lin-Wang, I]. Let $\overline{X} \dashrightarrow X^+$ be a toric flip. QH(X) contains big- $QH(X^+)$ as a direct summand.

 $\begin{array}{l} \underline{\mathsf{Example 2}}_{\text{of rank } r.} \ \text{[I-Koto] Let } V \to Y \ \text{be a vector bundle} \\ \hline \mathsf{of rank } r. \ \text{The projective bundle } \mathbb{P}(V) \to Y \ \text{is} \\ \texttt{an extremal contraction and we have} \\ \mathrm{QH}(\mathbb{P}(V))_{\tau} \cong \bigoplus_{i=1}^{r} \mathrm{QH}(Y)_{\sigma_{i}(\tau)}. \end{array}$

§2. Decomposition theorem for blowups.

$\begin{array}{l} X\colon {\rm smooth\ projective\ variety}\\ Z\subset X\colon {\rm subvariety\ of\ codimension\ }r\\ \widetilde X={\rm Bl}_Z(X)\colon {\rm blowup\ of\ }X {\rm\ along\ }Z \end{array}$

Theorem:

$$\operatorname{QH}(\widetilde{X})_{\widetilde{\tau}} \cong \operatorname{QH}(X)_{\tau(\widetilde{\tau})} \oplus \bigoplus_{i=1}^{r-1} \operatorname{QH}(Z)_{\sigma_i(\widetilde{\tau})}$$

This decomposition lifts to (formal) quantum *D*-modules. (*F*-manifold decomp, Euler eigenvalues).

Problems/Applications

• Relative $\widehat{\Gamma}$ -conjecture: relate this result to an SOD of derived categories such as:

$D^{b}(\widetilde{X}) \cong \left\langle D^{b}(X), D^{b}(Z), \dots, D^{b}(Z) \right\rangle$

- announced by [Katzarkov-Kontsevich-Pantev-Yu]
 - Application to rationality question:
 irrationality of generic cubic fourfolds
 - Birational Calabi-Yaus have the same (quantum) cohomology (Batyrev, McLean)

§3. Teleman's conjecture (D-module version) Let W be a smooth proj variety with T-action.

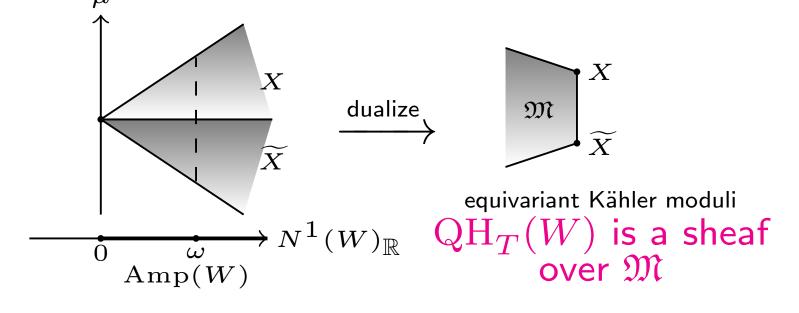
- Shift op = Seidel rep = Stability para
- We apply this to $W = \operatorname{Bl}_{Z \times \{0\}}(X \times \mathbb{P}^1)$

Shift operator:

- The action $\operatorname{Hom}(\mathbb{C}^{\times}, T) \curvearrowright \mathcal{L}W$: free loop space $\gamma(e^{i\theta}) \mapsto k(e^{i\theta})\gamma(e^{i\theta}) \ (k \in \operatorname{Hom}(\mathbb{C}^{\times}, T), \gamma \in \mathcal{L}W)$ induces $\operatorname{Hom}(\mathbb{C}^{\times}, T) \curvearrowright \operatorname{QH}_{T}(W)[Q^{-1}]$ (shift op)
- More precisely, we have the action $H_2^T(W,\mathbb{Z}) \curvearrowright \operatorname{QH}_T(W)[Q^{-1}]$:

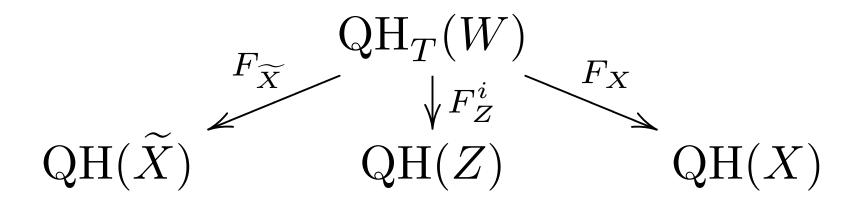
"Equivairant" Kähler moduli space \mathfrak{M} :

- Equivariant Mori cone $\overline{\operatorname{NE}}^T(W)$ is dual to the *T*-ample cone [Dolgachev-Hu, Thaddeus] $C_T(W) = \{\omega \in N_T^1(W) : W_{\mathsf{st}}(\omega) \neq \emptyset\}$
- $C_T(W_{\mu})$ has the wall and chamber structure



§4. Proof via Fourier analysis of equivariant quantum cohomology

Construct Fourier transformations:



 $(i = 1, \ldots, r - 1)$ and show that

- $F_{\widetilde{X}}$ is an isomorphism
- $F_X \oplus F_Z^1 \oplus \cdots \oplus F_Z^{r-1}$ is an isomorphism

Discrete Fourier Transformation for GIT quotients

Reduction conjecture [I-Sanda]: The discrete Fourier transformation I of the equivariant J-function J_W of W lies in the Givental cone of the smooth GIT quotient $W/\!\!/_t T$.

$$I := \sum_{k \in \operatorname{Hom}(\mathbb{C}^{\times}, T)} \kappa(\mathcal{S}^{-k}(J_W)) q^k$$

Example: $\mathbb{P}^{r-1} = \mathbb{C}^r / / \mathbb{C}^{\times}$, $\mathrm{pt} = \mathbb{P}^1 / / \mathbb{C}^{\times}$.

Continuous Fourier transformations for fixed components

Prop (follows from [Coates-Givental]). Let $F \subset W$ be a \overline{T} -fixed component and set $G_F := \prod_{\varrho} \frac{1}{\sqrt{-2\pi z}} (-z)^{-\varrho/z} \Gamma(-\varrho/z) \in H^*(F)$ (where ϱ ranges over Chern roots of $\mathcal{N}_{F/W}$). The formal stationary phase asymptotics \mathscr{I} (as $z \to 0$)

$$\int J_W|_F \cdot G_F \, e^{\lambda \log q/z} d\lambda \sim \sqrt{2\pi z} \, e^{u/z} \mathscr{I}$$

lies in the Givental cone of F.

Example: $W = \mathbb{C}^r$ with scalar $T = \mathbb{C}^{\times}$ -action. $J_W = 1$. The continuous Fourier transformation associated with the fixed point $0 \in \mathbb{C}^r$ is the Mellin-Barnes integral

const.
$$\int \mathbf{1} \cdot (-z)^{-r\lambda/z} \Gamma(-\lambda/z)^r e^{\lambda \log q/z} d\lambda$$

This has r many asymptotic expansions corresponding to r many critical points.

 $\rightsquigarrow \operatorname{QH}(\mathbb{P}^{r-1}) \cong \operatorname{QH}_T(\mathbb{C}^r) \cong \operatorname{QH}(\operatorname{pt})^{\oplus r}.$

Comparison between discrete and continuous Fourier transformations:

Example: $\mathbb{C}^r /\!\!/ \mathbb{C}^{\times}$. By residue calculations, $\frac{1}{-2\pi i z} \int (-z)^{-r\lambda/z} \Gamma(-\lambda/z)^r e^{\lambda \log q/z} d\lambda$ continuous FT $= \left(\widehat{\Gamma}_{\mathbb{P}^{r-1}}, (-z)^{c_1} (-z)^{\frac{\deg}{2}} J_{\mathbb{P}^{r-1}}(q,z)\right)$ discrete FT $\left(= \int e^{W(x)/z} \frac{dx_1 \cdots dx_{r-1}}{x_1 \cdots x_{r-1}} \right)$

Thank you for your attention!