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Abstract

Renormalization can be considered as an operator extracting from a given poly-
nomial a skew map on ZyXC over k — (k+1) on Zy whose restriction on each fiber
is a polynomial. By using a quasiconformal surgery, we construct some inverse
branches of this renormalization operator. Namely, from a given N-polynomial
with fiberwise connected Julia sets, gluing N-sheets of the complex plane together
and construct a polynomial having a renormalization of period N which is hybrid
equivalent to it and whose small filled Julia sets have a repelling fixed point of the
constructed polynomial.

1 Introduction

In this paper, we introduce a new method to construct a new polynomial from given
polynomials by quasiconformal surgery. This construction, which we call “rotatory
intertwining surgery”, is considered as an inverse branch of renormalization.

Roughly speaking, a renormalization of period N for a polynomial f is a polynomial-
like restriction fV : U — V with connected filled Julia set (the precise definition is
given in Section 2). In this paper, we decompose a renormalization f¥ : U — V into
N restrictions of f and consider it as an N-tuple of proper maps (f : Uy = Vis+1)kezy
such that Uy is a relatively compact subset of V; and that its filled Julia set is fiberwise
connected (that is, the filled Julia set on each V; is connected). Then it is uniquely (up
to affine conjugacy) hybrid equivalent to some N-tuple of polynomials G = (Gy)kez,
which acts on Zy X Cby G(k,2) = (k + 1, Gi(2)).

On the contrary, for a given N-tuple of polynomials G = (Gy)rez, With fiberwise
connected filled Julia set, can we construct a polynomial f having a renormalization of
period N hybrid equivalent to G?
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Such f is not unique. For example, consider three polynomials:

fi(z) = 22 — 0.1225611... + 0.7448617...1,
fo(z) = 22 — 1.754877...,
fi(2) = 2 + (=0.5178286... + 0.396073... i) z — 0.3177042... — 0.5544967....i.

Then f; has a period three renormalization hybrid equivalent to (2, z,7)fork=1,2,3.

R ¢ T

Figure 1: The Julia sets of fi, f>, and fi.

In this paper, we only treats the case like f;. More precisely, we construct a polynomial
having a renormalization hybrid equivalent to given G = (Gy, ..., Gy-1) whose filled
Julia set contains a fixed point of this polynomial, and no critical point outside the filled
Julia set of the renormalization.

The idea of construction is based on the intertwining surgery [EY], but we cycli-
cally rotate sectors by the map defined on them. And its uniqueness follows from the
combinatorial property and the fact that the set of points in the Julia set whose for-
ward orbit does not hit the Julia set of the renormalization has zero Lebesgue measure
(Theorem 5.1).

We can also consider renormalization as an operator from some subset of the con-
nectedness locus of a family of polynomials to the connected locus of another family of
polynomials (or tuples of polynomials). It is known that this renormalization operator
is not continuous, when the degree is greater than two [DH]. But our result implies that
it is a bijection when the filled Julia set of renormalization contains a fixed point. So
this can be considered as a part of the self-similarity of the connectedness locus for a
family of polynomials.

Acknowledgement. I would like to thank Mitsuhiro Shishikura for helpful comments,
especially on the proof of Theorem 5.1. I also thank Akira Kono for valuable sugges-
tion.

2 N-polynomial maps

We first give a notion of N-polynomial maps. An N-polynomial map is simply a skew
map from a union of N sheets of the complex plane Zy x C to itself, whose restriction
of each sheet is a polynomial and mapped to the next sheet. We can easily generalize



the theory on dynamics of usual polynomials to N-polynomial maps. In this section,
we give an overview of its dynamical properties. Furthermore, we consider a renor-
malization of a given polynomial as an N-polynomial-like restriction. So we can also
consider it as the operator extracting an N-polynomial map from a given polynomial.

Definition. Let N > 0. An N-polynomial map is an N-tuple of polynomials. An N-
polynomial map F = (Fy,...,Fy-1) is considered as a map on Zy X C to itself as
follows:

F(k,z) = (k+ 1, Fi(2).

The filled Julia set K(F) is the set of all points whose forward orbits by F are
bounded. The Julia set J(F) is the boundary of K(F). The k-th small filled Julia set is
defined by K .(F) = {z| (k,2) € K(F)} and k-th small Julia set Ji(F) = 0K(F).

C(F) = {(k,2)| Fx(z) = 0} is the set of critical points of F and

P(Fy = || Frcary)
n>0
is called the postcritical set of F.

Definition. An N-polynomial-like map is an N-tuple of holomorphic proper maps F =
(Fk : Ux = Visi)kez,, such that:

e U; and V; are topological disks in C.
o [y is arelatively compact subset of V.

We also consider an N-polynomial-like map F as a map between disjoint union of

disks:
F:|_|Uk—>|_|Vk Fly, = Fy.

keZy keZy

The k-th small filled Julia set Ki(F) is defined by
Ki(F) = {z€ U F'(@) € Uy

and the k-th small Julia set Ji(F) is defined by the boundary of K (F). The (resp. filled)
Julia set is defined by the disjoint union of the k-th small (resp. filled) Julia sets. We
say the (filled) Julia set is fiberwise connected if k-th small (filled) Julia set is connected
for any &.

For an N-polynomial or an N-polynomial-like map F = (Fy), we write
Fy = Fip-10---0 Fqp 0 Fi,

so that F"(k, z) = (k + n, F(2)).

Note that the degree of an N-polynomial map (or an N-polynomial-like map) F is
not well-defined (deg(F;) may be different). So we define the multi-degree of F by
m.deg F = (deg Fy,...,deg Fy_1). The degree of F" is well-defined (it is equal to
[T deg(F})). In this paper, we always assume deg FV > 1.



Definition. Let I/ = (F; : Uy = Viqp) and G = (G : U, — V/,|) be N-polynomial-
like maps. We say F and G are hybrid equivalent if there exist quasiconformal home-
omorphisms ¢y (k € Zy) between some neighborhoods of Ki(F) and K;(G) such that

Gy 0 ¢y = Pys1 © Fy and d¢y = 0 on Ki(F).

Theorem 2.1 (Straightening theorem for N-polynomial-like maps). For any N-
polynomial-like map F, there exist an N-polynomial map G of the same multi-degree
as F hybrid equivalent to F.

Furthermore, if the Julia set of F is fiberwise connected, then G is unique up to
affine conjugacy.

Proof Let d;, = degF) and d = []di(= deg FV). Take a C'-simple closed curve
vx C Vi \ Uy which encloses all critical values of Fi_; and K;(F). Then §; = F,‘T‘ (Yi+1)
is also a simple closed curve and encloses all critical point of Fj and Ky(F). Let A be
the closed annulus between y; and 6. Let Dy be the bounded component of C \ Ay and
E; = int(D; U Ay) (note that E, = Fi—1(Dj—1)).

Fix R; with RZk > Riyq for all k € Zy and let R,’( = R,l(idlk. We can take C'-
diffeomorphisms ¢ : Ay — {R} < [zl < R} (k € Zy) with (@)% = drs1 © Fr(z) on
Ox. Let o be the standard complex structure and define an almost complex structure o
on | | Vy by:

$o0  onA,
o=(F"0c on F(JAy) for some n > 0,
o) on K(f).

Then F*o = o and since ¢ is quasiconformal and F is holomorphic, o is of bounded
dilatation ratio, so it is in fact a complex structure by the Riemann mapping theorem.
Lety : Vi = Cbe a quasiconformal map with ;0 = o. Then Gr = Y10 Fpo lﬁ;,l :
!ﬁk(Uf) —>~¢//k+1(Vk~+1) is holomorphic, ¥y o ¢>,“,1 :{R, < lzl < Ry} — Cis conformal,
and G = (Gy, . ..,Gy-1) is an N-polynomial-like map hybrid equivalent to F.

For k € Zy, consider a Riemann surface S = (x(Ux) U {lzl = R} U 00)/ (i 0 ¢,:1).
We can identify S conformally to C = C U {oo}. Define a map Gy : Sy — Sj41 by

Fi(z) itz € yn(Up),
Gi(z) =
“@ {zdk ifze ([ > RY).

Then Gy is a polynomial of degree d;. Therefore, the N-polynomial map G = (G, ...,Gn-1)
is hybrid equivalent to F.
When the Julia set of F is fiberwise connected, uniqueness follows from the fact
that the Teichmiiller space of a superattractive basin without critical points other than
the superattractive periodic point is trivial. O

Usually, we consider a renormalization as a polynomial-like map with connected
Julia set which is a restriction of some iterate of a polynomial. But here, we consider it
as an N-polynomial-like map;

Definition. A polynomial f is renormalizable for period N if there exist disks Uy and
Vi (k € Zy) such that:



o G =(f: Ur = Vi+1)kez, is an N-polynomial-like map with fiberwise connected
Julia set.

e Uy N Uy contains no critical point of fif k # k.
e When N = 1, U, does not contain all the critical points of f.

We call G a renormalization of period N.

The small filled Julia sets of a renormalization are “almost disjoint” (they intersects
only at a repelling periodic orbit [Mc], [In]). So we define the (resp. filled) Julia set of
a renormalization by the union (not the disjoint union) of the small (resp. filled) Julia
sets.

We may assume an N-polynomial map F is monic (that is, each F is monic). Let
A = {|z] < 1}. Easy calculation shows:

Proposition 2.2 (The existence of the Bottcher coordinates). For a given monic N-
polynomial map F, there exist conformal maps ¢ : (C\ A) — (C\ Ki(F)) such that
Pis1 (29815 = F o 9r(2).

In fact, we may take ¢, the Bottcher coordinate for the monic polynomial F 11{\/ =
Fryo--+0Fps 0 Fy.
So, we can define external rays for F just as the usual polynomial case.

Definition. Let F and ¢, as above. The k-th external ray Ry(F;6) of angle 8 for an
N-polynomial map F is defined by:

Re(F:0) = { pi(rexprif)) | 1 < r < oo}

If the limit
X = hIIll w(r exp(2mi6))

exists, then we say Ri(F; 6) lands at x and 6 is the landing angle for (&, x).
Let R > 1. We also define
Ri(F:0.R) = { oi(rexp2mif)) | 1 < r < oo},
R(F;6,R,€) = {gok(rexp(Zﬂin)) | l<r<oo,n=6+c¢€log r}.
If R(F; 6) lands at x, then R(F; 6, R, €) also converges to x. By the proposition above,
F(R«(F:0)) = R1 (F deg(Fy) - 6),

F(R(F;0,R)) = Ry 1 (F: deg(Fy) - 6, REIV),
F(R(F;6,R, €)) = Res1 (F deg(Fy) - 6, R, ¢).
We say the ray is periodic if F"(Ry(F;0)) = Ry(F; 6) for some n > 0. The least such

n is called the period of this ray. Clearly, the period of every periodic ray is divisible
by N.



Let x = (k, z) be a periodic point of F with period n. If x is repelling or parabolic,
then there are finite number of rays landing at x and they have same period. Let ¢
be the number of rays landing at x and let 6y, ... 6, be the angle of these rays ordered
counterclockwise. Since F" permutes the rays landing at x and it preserves the cyclic
order of them, there exist p such that F"(R(F; 6;)) = F"(Ry(F; 6;1p)) for every i € Z,,.
We say that the (combinatorial) rotation number of the periodic point x is p/q.

We also consider external rays for an N-polynomial-like map. They are defined by
the inverse images of external rays for an N-polynomial map hybrid equivalent to it by
the hybrid conjugacy given in Proposition 2.1.

3 Results

Let F be an N-polynomial map with fiberwise connected Julia set and O = { (k, x;) | k €
Zy} be a repelling periodic orbit of period N with rotation number pgy/qo-

Definition. We say a polynomial (g, x) with a marked fixed point x is a p-rotatory
intertwining of (F,0) if:

o g has a renormalization of period N hybrid equivalent to F.
e x corresponds to O by the hybrid conjugacy above.

e x has a rotation number p/(N¢qyo).

deg(g) = X (deg(Fy)— 1)+ 1. (Equivalently, all critical points of g lie in the filled
Julia set of the renormalization above.)

Note that the filled Julia set of such a polynomial is connected.
To construct a p-rotatory intertwining of (¥, O), we need some combinatorial prop-
erty of the dynamics near the fixed point x.

Definition. A 4-tuple of integers (N, po, o, p) is admissible if p = py mod gy and p
and N are relatively prime.

Note that the above definition also makes sense when N and g are integers, py €
Zg4, and p € Zy,,. The following proposition is easy:

Proposition 3.1. If a p-rotatory intertwining of (F, O) exists, then (N, po, qo, p) is ad-
missible.

Theorem 3.2. Let F be an N-polynomial map with fiberwise connected Julia set and
O = {(k, xp)} is a repelling periodic orbit of period N with rotation number po/qo.

When an integer p satisfies that (N, po, qo, p) is admissible, then there exists a p-
rotatory intertwining (g, x) of (F,O) and it is unique up to affine conjugacy.

The following two sections are devoted to prove this theorem.
Let Mp(p/q, N) be the set of all pairs (F,0), where F is a N-polynomial map of
multi-degree D = (dy, . .., dy-1) with connected filled Julia sets and O is a repelling



periodic point of period N with rotation number p/q. Let My(p/q) = M (p/g, 1). By
the theorem above, we can define the map

Mp(po/qo) > (F,0) = (g, x) € My(p/q0)-

The following corollary is easy to prove.

Corollary 3.3. When (N, po, qo, p) is admissible, the map (F,O) — (g, x) is a bijection
Mp(po/qo, N) into its image, which is a subset of My(p/(Nqo)), where d = T dy. Its
inverse is given by renormalization.

4 Construction

In this section, we prove the existence part of Theorem 3.2. We use the idea of the
intertwining surgery [EY].

Let (F,0) be an N-polynomial map with a marked periodic point satisfying the
assumption of Theorem 3.2, Fix R > 0 and let

Vi ={(k,2) | loi(@)] < R} U Ki(F)

and Uy = F'(Vigr). Let V = [ |V and U = || Uy. Then (Fi : Uy = Viyy) s an
N-polynomial-like map (we also use the word F for it and simply write F : U — V).
Let 6y, . ..,0,,-1 be all the external angles for (0, xo) ordered counterclockwise.

Lete>0and 0 <6 < €/(2N). For 0 < k < N and [ € Z,, consider arcs

k1
yO(k+Nl)_R0(F30kaR’ (ﬁ - 5)6)’

. ko1
70(k+Nl)=R0(F;Hk,R, (ﬁ—i)eié).

When e is sufficiently small, these arcs are mutually disjoint. For j € Zy,,, let

(D) = Fii-1(G— p) N Up-r),

Vi) = FE G- p) 0 Uy M

fork=1,...,N—1. Let S¢(j) (resp. Li(j))) be the open sector in V; between y;(j — 1)
and y,(j) (resp. v, (j — 1) and y, ().

Then, since the rotation number of xq for F’ év is po/qo, we can easily verify F év (Yo(HN
F(;N(Vo)) = Yo(j+ Npo). Therefore, by the assumption that (N, pg, qo, p) is admissible,

Fyoi(yn-1(G = p) N Un-1) = FY (oG = Np) 0 Fg¥ 1 (Un-1)
=7vo(j — Np + Npo)
= vo(j)-

This equation also holds for y; instead of y;. Therefore, the equation (1) holds for any
keZy.
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Figure 2: Sectors.

Since O is repelling, F is linearizable at O. Namely, there are a neighborhood Oy, of
x; and a map ¥y : O, — C for each k such that Y (x;) = 0 and Y41 0 Fi(2) = Ak - Yi(2)
on O}, where 4; = F(x;) and O, is the component of F;1(0k+ 1) containing x.

For each j € Zy,,, the quotient space (Ly(j) N Ok)/Fivq‘) is an annulus of finite
modulus. So we denote the modulus of this quotient annulus by mod Li(j). Since F}
maps Ly (j)N 02, univalently to L1 (j+ p)N O+, we have mod Ly (j) = mod Ly (j+ p).

We want to identify N disks Vj, ..., Vy_1 quasiconformally and define a quasireg-
ular map on it. Before doing this, we deform the N-polynomial-like map F : U — V
by some hybrid conjugacy.

Lemma 4.1. There exists an N-polynomial-like map F= (F O > Vk+1)kEzN hybrid
equivalent to F such that the sector Ll J) which corresponds to Li(j) satisfies that

mod £4(j) = mod ()
forany k,k' € Zy and j € Zyg,.

Proof. For | € Z,,, let A; be an annulus with modA; = m; = mod Lo(IN). For k =
I,...,N — 1, take a quasiconformal homeomorphism

Puic : (Lo(IN) N Og)/Fy™ — Ay,
Since F)) induces a conformal isomorphism (F,))" between Lo(IN + pk)/FéV % and
Lo((I + p)N + pk)/ Fév % we can choose p; so that
N _
Prpk © Fy = pix- )

Define a complex structure o on Lo(IN + pk) by pulling back by p;x and lifting
the standard complex structure oy on A;. Note that, since (N, po, qo, p) is admissible,



Lo(IN + pk) does not intersect the filled Julia set and we can push forward a complex
structure on (Lo(IN + pk))N Oy to entire Lo(IN + pk) by F (])V ® By(@2),0is F 6\' -invariant.
The modulus mod(Ly(IN + pk), o) with respect to the complex structure o is equal to
mj.

Now we define an F-invariant complex structure & on Zy X C as follows: We
identify Ly(j) and {0} X Ly(j) and let

. (FM*o on F7"(Lo(IN + pk)) forsome k € {I,...,N—1}and n > —N.

g =
o) otherwise.

Since

Lo(IN + pk)
1€Z 40 k=1,...N~1

is forward invariant by F év and o is F év -invariant, & is well-defined and F-invariant.
By the measurable Riemann mapping theorem, there exists a quasiconformal map

¢ : u Vk - u ‘A/k
such that ¢*og = 0. Let £ = ¢ o F o ¢~" and L;(j) = ¢(L(j)). Then £ is holomorphic
and by the equation m; = my,, and (2), we have mod Lo(j) = mod Ly(j + p) and
mod Ly(j) = mod Lo(j — pk))
= mod Lo(j).

O

Denote the point and the sets which correspond to xx, Yx(j), ¥; (), Sk(j), O and
O, respectively by the hybrid conjugacy in the above lemma by %, $x(/), ¥; (), S,
Oy and O

Now we construct quasiconformal maps 7, : Vo — Vi (k € Zy) to identify
Vo, ..., Vy_1 together. Let 7 be the identity. Take C' diffeomorphisms

om0 = [ waG)
J J
which maps ¥,(j) to 94+1(j) for any j as follows. First of all, take 7y be a diffeomor-
phism such that
e It gives the conjugacy between FY and F. That is, 7o o F = FV o 7.
o (Bl o F)V = F).
Lemma 4.2. Such a diffeomorphism Ty exists.

Proof. Let yg( J) be the edge point of #;(j) other than £;. For n > 0, let y}(j) be the
point of ¥;(j) which satisfies that F7/(v}(j)) = y? a U pn).

All rays #(j) have the same period ¢N. The quotient space (U; ¥x(/)/F’ ,{V is dif-
feomorphic to the disjoint union of circles and each component is of the form 7,(;) =



Yi( j)/F"N . The points {yZ( )} corresponds to the ¢N points {[y}(N]}r=o...cn~1 (the
equivalent class [y;(j)] [y’”‘N (N in (7). Fy induces a diffeomorphism « :
M(j) = Mi+1(j+ p) (for 51mphclty, we neglect indices k and j for a). Then a([y Hh =

i, = 1G + p)l and & 2 mi(j) = mi(j + pN) is identity map on (U; #(/)/ F; y.

Furthermore, we identify each () and the circle R/(¢cNZ) diffeomorphically SO
that {[y;(/)]} corresponds to {[n]}. Define R : R/(cNZ) — R/(cNZ) by R(x) = x — 1.

Since RN = oV = id, we may assume that the following diagram commutes:

GfN .
no(j) ——— mo(j + pN)

| |

/

R/(eNZ) —— R/(cND).

Let 7 : 170(j) — 11(j) be the diffeomorphism defined by:
. R . a .
no(j) = R/(¢NZ) — R/(c¢NZ) = no(j — p) = m()).
Then the following diagram commutes:
R/(cNZ) —2— R/(cNZ) 2— . — K R/(eNT)

[ |

\

no(7) 770(] +p) e \0(1 + pN)
mG) mj +\ m(j+ pN),

S0,
(‘T'_l oa)N =RV = oV,

Let 7o : 0(j) = %1(j) be the diffeomorphism which is a lift of 7. Then 7 o 3

FY o 7). Furthermore, since Fy is a lift of @, (3) implies (77! o Fo) = F}.

Define 74 for k = 1,..., N — 1 inductively by the equation
Frofi g =% 0 Fry.
Then this equation is also valid for & = 0. Indeed,

FooFy10F) 2 =10 F) =F) 0%,
=FpoFy_10---0F| 0T

=FooFy-j0---0T 0k

—F % [FN=2
—FOOTN_10F0 .

10
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Since £)~! maps the subarc of %A( j—-(N=-2)p) frf)m B 0 ) A — (N - 2p)) diffeo-
morphically to yn-2(j), we have Foo Ty_1 = Topo Fy_1.

Similarly, we can also show that

ﬁg’ = (‘7'61 (¢} ﬁo)N
=%fy_j0---0%oFy,
SO
:I"N_lo"'o%o:id. (5)
And it is easy to see that 7;(y;(/)) = ¥, (/). Let 74 = Ty o - -+ o To on U Fx()).

Let 7y Loy - Lol - Li( J) be the conformal isomorphism which sends Xy to Xy,
i/g(j— 1)to i/g(j— 1), and ¥, (j) to ¥, (). Taking I:k(j) smaller (that is, taking € greater)
if necessary, we may assume x|z ; extends smoothly on Yo (i =1 and y5 ().

The following lemma is due to Bielefeld [Bi, Lemma 6.4, 6.5].

Lemma 4.3. We can extend 1y quasiconformally to Ty : Vo — Vi fork=1,...,N - 1.

Proof. 1y is already defined on J(x(j) U Lx(j)). So we must define 74 on J(S(j) \

Le(h)) quasiconformally.

For k € Zy and j € Zy,,, let S, (j) (resp. S AT( 7)) be the open sector between ¥, (/)
and §x(j) (resp. #i(j) and #{(j)). Then UGS () \ L(j) = US; () U S (). So we
should extend 7 quasiconformally on S (), which maps to §, (/) (the case on Sg @)
is quite similar). Furthermore, Since 74 is smooth on yg'( J), we need only show the
extensibility of 7; on Oy, where F is linearizable. So we consider S o N O, instead
of S;().

Let Ii(z) = logyu(2) on (S ()Y L(j) N Or and A = ([T A)%. Then, since
Y(FY0(2) = Wi(2),

hk(ﬁﬁqo(Z)) = I(z) + log A. (6)

Let T; () = he(S () 0 Op), Mi(j) = hi(Ex(j) N Op) and
Xk = ot o byt 1 OFTH () U Mo(j) — 0T (j) U My(j).
where 0" T, (j) = hi(9x(j) and 0"T; (j) = m(¥; () are the upper and lower bound-
aries of the strip T, (j). Then, by (4), (5) and (6), for z € 3+Tk_(j),
Xi(z +1ogd) = hy o 1y 0 byl (z + log A)
=y o140 By ®(hy' (2)
=hyofy_yo0---07Fpo0 ﬁé\’qn o hal(Z)

:hko%k—l O"'O%l OF{VC]O O‘T'Oohal(z)
=g o FY® o1 015" (2)
= h(ti o hal(z)) +logAd

= xi(2) + log 4.
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Figure 3: Conjugacy to translations and linear expansion.

We call such a diffeomorphism on curves in C a near translation. More precisely, we
say a diffeomorphism on curve is a near translation if it is of the form z + O(1) and its
derivative is bounded away from zero and infinity.

Claim. y|s- T5() is a near translation.

Since 74| G) is conformal, xilay @ Mo(j) — Mi(j) is conformal and it maps
the upper boundary 0" My(j) (= 0~ To())) to 0" M(j) (= 0~ T())) diffeomorphically.
Let m = mod(My(j)/(z = z+ logd)) = modI:k(j). Then by the assumption, m is
independent of k.

Let H, = {zlog 1|0 < Imz < v}. Then there exists some v > O such that for any k €
Zy, there is a conformal map s; from M (j) into H, which maps the upper and lower
boundary to the upper and lower boundary respectively, and which gives a conjugacy
from z — z + log A to itself. (v is given by the equation mod(H, /(z — z +log 1)) = m.)
Since s¢(z +1log A) = 5¢(z) + log A, sila+my(j) i a near translation. Let

o -1, -1
Xk = €085k OXkOSy o€

where e(z) = exp ( ” 1(7)Tg /lz) .
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Then ¢y can be extended to some neighborhood of 0 by the reflection principle. Hence
it is of the form rz + O(z%). Thus

skoxko s, @ =e"ofroe
=z+0(1),

so it is a near translation. Since the composition of near translations is also a near
translation, y; is also a near translation.

Just as in the case of M(j), let # be a conformal map from T, (j) into HV; which
gives a conjugacy from z > z + log 4 to itself. (Note that in this case, v, may depends
onk.) Lett = fk/(v’l logd) : T (j) = {0 < Imz < w/v1}. Then)Z,f =1 O Xk Ol
restricted to the upper and lower boundary respectively are both near translations. We
define iy : to(Mo()) — tr(Mi())) as follows:

T+ iy) = (@i e+ ) — D)+ (1= (o) + ij—j’y.

(Although it may not be mapped into (M (), it makes no problem because we only
need to construct this map near the left infinity.) It is easy to check ¥y is a quasicon-
formal diffeomorphism. Therefore, 7, = h,j,l o l;l o Xk ©ty © hy on S o N Oy is a
quasiconformal extension. O

LetV = \70 and
U= LJ q*@ﬂﬂv+mnmﬁd.
Note that since (N, po, qo, p) is admissible, jN + kp moves all elements of Zy,,. Define

a quasiregular map g : U — V as follows. When z € $o(jN +kp)N U for some j € Z
let

q0°

8@ =7y © Fro ().
By (4), g extends continuously on U.

Lemma 4.4.

1. Let E = USo() \ Lo(j). Then 3(E N U) C E. In other words, E is forward
invariant by 3.

2. 1,08Vo0 ‘1'_,l is conformal on S (jN + kp) \ Ly(jN + kp).

Proof. The first property is clear because Fy((S4(j) \ LA(])) N0 = S,\(] + )\ Le(j).
For z € So(jN + kp) \ Lo(jN + kp) N U, &(z) = Tk+1 o Fy o (2) € So(iN + (k +
Dp) \ Lo(N + (k + 1)p). Thus

~N ~ 1p
g ()=g Yo1)) 0 Fr o).

-1 » -1 »
O Ty O Fpy1 0 Thr1 0Ty © Fi 0o T(2)

N=2 -1 _ p2
=g ot 0 FioT(2)

— 1 BN
=1, oF, oTy.

Therefore, 74 0 gy o 7} = ﬁ;{v and it is conformal on S (jN + kp) \ L«(jN + kp). O

13



Let 0 be the standard complex structure. On S o(JN + kp) \ io( JN + kp),
7o = (k0" 0 1) (00)
= (@) 0 ") (r;00).
by the previous lemma. Therefore,
@) (r300) = 1070 (N

on So(jN +kp) \ Lo(iN + kp).
So define an almost complex structure o on V as follows:

(k08N o on g So(Nj+kp)).
o=
0o elsewhere.

Lemma 4.5. o is well-defined and it is really a complex structure.

Proof. OnSo(Nj+kp)\ Lo(jN + kp) (1 < k < N),

~ 1A
g'o = (1 o Fi 011 (Th00)
= T (Fis100)
=T, ,00

=0.

Therefore, together with (7), o is invariant under g on E. (Note that E is forward
invariant by g.) Since o # o only on |J §7*(E), o is well-defined.

Furthermore, g is conformal except on §~'(E). So the maximal dilatation of o on
V is equal to that of o on 37! (E), which is bounded. So o is a complex structure. O

Therefore, there exists a quasiconformal mapping # : V — C such that #*oy = 0.
Then ¢ = h o g o h is a polynomial-like map, so there exists a polynomial g hybrid
equivalent to g.

It is easy to check this g is a p-rotatory intertwining of F.

5 Uniqueness

In this section, we show that two p-rotatory intertwinings (g, x) and (g’, x') of (F,O)
are affinely conjugate.

5.1 Puzzles

Let (g, x) be a p-rotatory intertwining of an N-polynomial map (F,O) with marked
periodic point of period N. Denote by K the filled Julia set of the renormalization
G = (g : Ur = Vis1)kez, corresponding to F. Let wo, .. ., wyg-1 be the landing angles
of x ordered counterclockwise.
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Lety: (C\ Z) — (C\ K(g)) be the Béttcher coordinate of g. Fix R > 0 and small
€ > 0 so that sectors

SOJ = {ga(rexp(Zm'H)) | 1 <r<R, [0-wj< elogr}.

are mutually disjoint. Let Dy = ¢({|zl < R}) U K(g) and D, = g7*(Dy) for n >_O
Let 130,1- be the component of Dy \ | So,j between SO,j—l and Soyj. Let So; = So,j,
PO,j = ]30’] and

P, = {the closures of components of g™ (P, DECAS ZN,])}

S, = {the closures of components of g™"(S, D(e ZNq)} .

We call an element of P, a piece of depth n and an element of S,, a sector of depth n.
Then #,, and S, have the following properties. Let n > 0.

1. P, US, is a partition of D,,.

2. Forany z € K(g)\ U j g7/(x), there exists a unique piece P,(z) of depth n which
contains z. In particular, , covers K(g).

3. For any P € P, there exists some P’ € P, with P C P’.
4. For P € P,+1, we have g(P) € P,.

5. When S € S, either there exists some S’ € S, with S = S’ N D,41, or there
exists some P € P, with § C int P.

6. Forany X € P, US,, int X N g7"*1(K) # 0 or there exists a unique y € g~"(xp)
withy € X.

7. For any P € P,, there exists a unique component E of g7*(K \ g"(xp)) with
E c P. This map P — E is a bijection between $,, and the set of components of
g (K \ g7"(x0)).

The following theorem says that K attracts almost every point in K(g).
Theorem 5.1. The set K(g) \ U,»0 &7(K) has zero Lebesgue measure.

Proof. Letzo € K(g) \ U,50 £7"(K). Our proof is divided into three cases:

Case L: lim sup d(K, g"(z0)) > 0.
Since P(g) ¢ K(g) and d(P(g), g"(z)) — O for almost every z € J(g) (see [Mc, Theo-
rem 3.9]), the set of such zy has measure zero.

Case II: lim d(K, g"(z0)) = 0 and lim inf d(x, g"(z9)) > 0.

When # is sufficiently large, g"(zo) is close to Ki(G) for some k € Z;. Then g""'(zp)
must close to Ky, 1(G) because Ko(G), . . ., Ky_1(G) meet only at x. Inductively, g"*(zo)
is close to K;1;(G), so it lies in Uy;. This implies g"(zo) lies in Kj41(G) C K, this is a
contradiction. Therefore, this case does not occur.
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Case III: lim sup d(K, g"(z0)) = 0 and lim inf d(x, g"(z0)) = 0.
We show that the Lebesgue density of K(g) at zg is not equal to one. Then since the set
of all such zj is contained in K(g), It is of measure zero.

Let Pi; € P1 (j € Zygy) be the piece of depth 1 with x € P;; C Py ; and let
Y . O — C be the linearizing coordinate of x for g defined on a neighborhood O of
x. Let E; = O N Py;. Take E; and E;.’ so that E;.' € E; € E; and E;.’ contains a
fundamental domain of (K(g) N Ej)/gN. Let E; = w(Ej), E; = w(E;.) and E}’ = g[/(E;').

Figure 4: E;, E' and E7.

If z € K(g) is sufficiently close to x (say d(x,z) < ), then there exist some s =
s(z) > 0and j = j(z) € Zy such that g*(z) € E}’. So

XY(2) = y¥(g' (@) € E7,

where A = ¢’(x). The map YA maps E; univalently to a neighborhood E = E(z)
of z. Let E'(z) = 41/‘1(/1“"E;.) and E" () = w‘l(/l“‘E;.’). Clearly,

m(E QUKGD)
m(E})

where m is the Lebesgue measure.

Take an € > 0 sufficiently small so that d(g(z), x) < 6 when z ¢ |J Py j and d(z, K) <
€. This can be done because each P € P \ {P, ;} are attached to K only at some point
yeg .

Since z0 ¢ g7"(K), g"(z0)  nlJ Py; for infinitely many n. Let {m}i-0 be a se-
quence of n > 0 which satisfies that g"(z9) € O and g"'(z0) ¢ U P, j- We can take ng
sufficiently large so that we have d(g"(zo), K) < € whenever n > n;.
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For each k, let
L = min{l > 0| g"*(z0) ¢ UPI,j}~

Then, since d(g" "% (z0), K) < €, d(g" "+ (z0), x) < 6. Since g"*(z9) ¢ |J Py ; D P(g),
g"**! is univalent on Py, 4,41(20). Let yx = g% (z0) and &y : Po(v) = Pryss+1(20)
be the inverse of the univalent map. Let j(yi), s(v), E(vi), E'(yx) and E” (y;) as before
(note that d(yi, x) < ). Then

Vi € E"(vi) € E'(yi) € E(y) C Po(yp).

Define ¢ : Ejqy,) = Ppsi+1 by
W@ =G oy (A7)

and let z; = L,:l(Zo) (= 09 (y).
By the Koebe distortion theorem, there exist 0 < r; < r, and 0 < C3 < 1 such that

B(zo, r1y(zi)) € w(E’(z)) € B(z0, r24(2i))s
m(u(E' () N K(f))

m(u(E’ (yi)

where B(z, r) is the ball of radius r centered at z. Therefore,

m(B(zo, ra2t;(z1) N K(f))
m(B(zo, rat; (k)

3

®)

for some C < 1 independent of /.

Since the forward orbit of zy by g does not intersect P(f), ||(g")’ (zo)ll tends to co with
respect to the hyperbolic metric on C \ P(f) (see [Mc, Theorem 3.6]). Furthermore,
the piece P)(g"**(zp)) is disjoint from P(f) and A**Yy o g is a univalent map from
g”k””k (t(E(yr)) to Ejgy,), so the inverse of this map does not expand the hyperbolic
metric on Ej,) and C \ P(f), respectively.

Therefore the differential

'Y Gl = I(AOPy o gY (& (zo))Il - 118" Y (o)l

with respect to the hyperbolic metric on C\ P(f) and Ej,) tends to infinity as k — oo.
Since x; € E}Em € Ejy,, this implies that ILZ,(xk)I — 0 as [ — oo. By (8), the Lebesgue
density of K(f) at zo is at most C < 1. |

For a later use, we give a canonical form of the renormalization G. Take small r > 0
and i > 0. For j € Zy,, let 130,.,- be the union of B(x, r) and the domain in Dy \ B(x, r)
between R(g: wj—1 — 1, R) and R(g; w; + 1, R).

Let Q; be the component of g’l(f’o, ;) which is contained in IA’O, j- Let Uy and Vi
are disks obtained by smoothing the boundary of | J jez, Qk+nj and U i€z, Porin j- Then
G = (g : Uy = Vi) is a renormalization hybrid equivalent to F.
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R(g;wj+mn,R)

R(gwj-1 —1n.R)

Figure 5: Thickened piece P, ;j and smoothing its boundary.

5.2 Proof of the uniqueness

Let (g, x) and (g’, x") be two p-rotatory intertwinings of an N-polynomial map (F, O)
with a marked periodic point of rotation number py/q. We use the notation in sec-
tion 5.1 for g. For g’, we attach a prime to each notation (e.g., X', D, P, S}, ...).

In this section, we show that g and g’ are affinely conjugate. Since K(g) and K(g")
are connected, we need only show that g and g’ are hybrid equivalent. To do this, we
first construct a standard hybrid conjugacy between the renormalizations G and G’.
Then by pulling back it repeatedly, we construct a quasiconformal conjugacy between

g and g’. By means of Theorem 5.1, we show that it is actually a hybrid conjugacy.
Lemma 5.2. There exists a quasiconformal map @y : Dy — D_6 satisfies the following:
o A0y =0 a.e. on K(G).
e Ogog=2g o®yon|J(P;USo;)UoD.

Proof. For each k € Zy, take a C'-diffeomorphism ®; : V, \ Uy — Vi \ U} which
satisfies the following:

1. ®(8Vy) = V] and D (OUy) = AU,

2. For j € Zy, with Py; C Vj (equivalently, j = k mod N), we have ®x(d(Po,; \
U)) = d(PG ; \ Up) and By (Po; \ Up) = Py, \ U,

3. For z € 80Uy, @p41(8(2)) = g (Dp(2)).
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Figure 6: Puzzles (the case degree two and p/q = 1/3. @y o g = g’ o @y on D; except
on the interior of the painted area).

Asin [DH~], we can extend @y to a diffeomorphism on Vi \ Ki(G) to VIZ \ Ki(G") by
the equation ®@;(g(z)) = £’ (Py(z)). Furthermore, since G and G’ are hybrid equivalent
(they are both hybrid equivalent to F), this ®; extends to a hybrid conjugacy of G to
G'. (To do this, we use [DH, Proposition 6]. So we need to check (Do, ¥, g,@) =0
in Zyegry where i is a given hybrid conjugacy of G and G’ considered as classical
polynomial-like maps. But it is trivial because of the property 2 above.)

We define @ first on |J So, ;. For each S¢ j, define a quasiconformal map ®g|s, ; :
So,j-—>S(')ﬁjsothat(l)oogzg’oq)oand '

Q) = (i)j_l on a neighborhood of R(g; wj, R, —€),
Q= D; on a neighborhood of R(g; wj, R, €).

Let &y : Vi \Up — Vi\U,beaC I_diffeomorphism which satisfies the same
condition as for ®; and for k, k¥’ € Zy and J»J € Zyy with j =k mod N,

o (IA)k = (i)k on 6(P0,j \ Uk).
o g’ o dy(z) = Dy o g(z) when z lies in PojNnoD N g‘l(Po,j/).
o g’ o dy(z) = Dy o g(z) when z lies in Po;jNdD N g‘l(Soyj).

As in the case of @, we can extend ®; quasiconformally to Vj; and obtain hybrid
equivalence between G and G'.
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Now let @y = &, on Poj where k = j mod N. It is easy to check this ®¢ has the
desired properties. O

Then we define @, : Dy — D_6 inductively. Suppose @, is defined and satisfies:
e 0D, = 0on g(K).
e D,0g=g oD, 0on(Di\ D) UU;8™"(P1jUSL).

(Clearly, @ satisfies this condition for n = 0.)

To define @1, first let Q411555 = Py For P € Py, when int PN gMK) £ 0,
define @,41|p = ©,. Otherwise, by the property 6 in page 15, there exists a unique
y € g"(x) € P. Let P" NP,y be the piece of depth n + 1 which combinatorially
corresponds to P’, i.e. which satisfies that ®,(g(P)) = g(P’) and ®,(y) € P’. Note that
when y is not a critical point of g, such P’ is unique. When y is a critical point, P’
is determined by the cyclic order of pieces and sectors at y to make @, continuous.
Then, since C(g) € K c g7(K), glp is conformal and so is g’|p:. So define

D11 |P = (gllP’)_1 o ®, OglP :P— P,

Similarly, for S € S,41, when § C S’ for some S’ € S,, then define @,4,|s = D,,.
Otherwise, take S’ € S/ | combinatorially corresponds to S and define

@, 1ls = (gls) oD, 0gls: S — S,

(In other words, ®,,.[5— is defined by lifting @, by the branched covering g and g

We must check @, also satisfies the properties above. First, we show the con-
tinuity of @,,;. By the construction, @, is continuous on and outside D,,;;. For
Z € D41, since g(2) € 0D,

q)11+1(Z) = (g/|P’)7l o (Dn o g|P(Z)
=(g'lp) " 0 g'lp 0 Du(2)
= D,(2)

by the second property above for ®,. Hence ®,,,; is continuous.

For every X € P,1 N Su+1, Pur1lx is a quasiconformal homeomorphism from X to
the corresponding piece or sector for g’ and @r1lp5\p,,, = Pn is clearly quasiconfor-
mal. Hence @, is a quasiconformal homeomorphism. Furthermore, by the construc-
tion, the dilatation ratio of @, is equal to that of @, and 0®,,; =0 on_g‘”‘l(7().

Cleaﬂyv go®, =0y 10g0nkE,y = Ujg_”_l(Pl,j U Sl,j) U (D1 \ Dyy1). Let
7€ Dyy1 \ (Ens1 UD,10). Then z lies in some X € P11 US,41 withint XN g™(K) = 0.
Therefore,

g o) =g o(glp) " o®,0g()
= (Dn o g(Z)

Since g(z) € D, \ D,+1, we have @,(g(z)) = ®,+1(g(2)) and the second property holds
for @,.
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Since all @, are quasiconformal with same dilatation ratio, they form an equicon-
tinuous family. Furthermore, ®,, = ®@,,,1 except on D,41 \ g7(K). Hence ® = lim @,
exists and it is quasiconformal. Also, it satisfies that d® = 0 on | J, g™(%) and that
g o® = ®og. Since K(g)\ U g"(K) has zero Lebesgue measure (Theorem 5.1), ®
is a hybrid conjugacy between g and g’.

Therefore, a p-rotatory intertwining of (F, O) is unique up to affine conjugacy.
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