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ABSTRACT. In this paper, we show that for any critically periodic unicritical
polynomial of degree d can be tuned by an arbitrary polynomial of degree d
with connected Julia set and without parabolic fixed points. This partially
answers a question raised by Douady [2].

1. INTRODUCTION

Renormalization is an important and powerful tool in dynamical systems. Roughly
speaking, renormalization is a rescaling of a first return map. Tuning is an inverse
procedure of renormalizations for dynamics of complex polynomials in one variable.
Let M denote the celebrated Mandelbrot set, that is, the set of parameters ¢ for
which Q. = 2%+ ¢ has a connected Julia set. Douady-Hubbard [3] and Haissinsky[6]
proved that any critically periodic quadratic polynomial fy can be tuned by any
Q. for c € M\ {1/4}. More precisely, there exists an embedding

6= g, s M\ {1/4) » M

such that Qg(c) has a quadratic-like restriction that is hybrid equivalent to Q. for
all ¢ € M\ {1/4}, where n is the period of 0 under fy. Such an embedding is called
a tuning and the inverse operator of ¢ is called a straightening. Douady raised a
general problem on tuning for post-critically finite polynomials with superattracting
cycles [2]. For every integer d > 2, let C4 denote the set of monic and centered
polynomials of degree d with connected Julia set. In this paper, we consider the
tuning problem for unicritical polynomials. More precisely, we consider that for a
given critically periodic unicritical polynomial fy € C4, whether fy can be tuned by
any g € Cq without parabolic fixed points or not. Note that the maps in C; may be
multi-critical, so this problem is more complicated than Douady-Hubbard’s result.

In [§], the first author and Kiwi mostly generalized Douady-Hubbard’s result to
polynomials of an arbitrary degree. Fix an integer d > 2, for any f € Cq, the rational
lamination Ay of f is an equivalent relation in Q/Z that identifies s and ¢ if and
only if the external rays for f with angle s and ¢ land at a common point. For any
critically periodic unicritical polynomial fo € Cq, let C(Ag,) ={f € Ca | Ay D Ay}
They define a subset R(As,) of C(Ag,) consisting of renormalizable maps in some
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certain sense. Moreover, they construct a map
X = Xfo: R()‘fo) — Cg,

which we call straightening map, and they showed such a map is injective and onto
the set of hyperbolic maps in Cq4. In [I6], Shen and the second author proved x is a
bijection and R(Ay,) is connected when fy is primitive, that is, the closures of any
two Fatou component of f; are disjoint.

In this paper, we mainly deal with the case when f; is not primitive. Then by
combining with the surjectivity for primitive case in [I6], we show that for any
g € C4 without parabolic fixed points, x~!(g) is non-empty.

Main Theorem. Let fy € Cy be a critically periodic uncritical polynomial of degree
d for some integer d > 2. The straightening map

X =Xfo : R(Ag) = Ca
is almost surjective, that is, for any g € Cq without parabolic fived points,
X" '(g) #0.

This partially answers Douady’s question. The proof is based on so-called inter-
twining surgery []. Although straightening maps are normally discontinuous [7],
the main theorem explains some self-similarity of C,.

This paper is organized as follows. In section 2 and 3, we recall some results
about generalized polynomial-like maps and straightening maps. In section 4, we
prove a criterion on existence of rotatory intertwining, which is a main tool for us
to deal with the case when fj is immediately renormalizable. In section 5, we show
that rotatory intertwnings are unique up to affine conjugacies. The main theorem
will be proved in section 6.

Acknowledgement. The authors would like to thank Mitsuhiro Shishikura, Akira
Kono and Weixiao Shen for helpful discussions and valuable suggestions. The first
author is partially supported by JSPS KAKENHI Grant Number JP18K03367.

2. N-PL maPs

In this section, we summarize some results on N-PL maps, which are special
generalized polynomial-like maps introduced in [I5] [§].

2.1. N-polynomial maps.

Definition 2.1. Let N be a positive integer. An N-polynomial map is a skew
product F': Zy x C — Zy x C such that
F(k,z)=(k+1 mod N, Fi(2))
where F} is a monic centered polynomial.
We also denote an N-polynomial map F' : Zy X C — Zn x C simply by F =

(Fi)kez -
Observe that
deg FN = H deg F.
k
We call it the degree of return of F'. The total degree of F' is defined as follows:

t-deg F' = Z (deg F, — 1) + 1.
keZn
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In the following, we only consider non-affine N-polynomials; i.e., we always
assume the degree of return deg F'V is greater than one (or equivalently, there
exists some k € Zy such that deg F, > 2). The filled Julia set K(F) of F
is the set of all points whose forward orbits by F' are bounded. The Julia set
J(F) of F is the boundary of K(F'). The k-th small filled Julia set is defined by
Ki(F) ={z|(k,z) € K(F)} and the k-th small Julia set J,(F) = 0K(F). We
say the (filled) Julia is fiberwise connected if k-th small (filled) Julia set is connected
for some (hence any) k.

Let C(F) = { (k, z) | F}.(2) = 0} be the set of critical points of F' and define the
posteritical set of F as

P(F) = | J F*(C(F)).
n>0

Let F = (Fy)rezy be an N-polynomial map with a fiberwise connected Julia
set. Similarly as in the case of a single polynomial, we can define external rays and
Green functions for F. Indeed, for each k € Zy there exists a unique conformal
¢k : C\ Ki(F) — C\ D such that ¢ (z)/z — 1 as z — oo and these maps satisfy

Or1(Fir(2)) = pr(2)98k for all z € C\ Ki(F).
The Green function of F is defined as
_ [ loglor(2)], if z & Ki(F);
Gr(k,2) = { 0, otherwise.
For t € R/Z, the k-th external ray Ry (F;t) of angle t is defined as
Ri(Fit) =g ({re”™ | r > 1),
If the limit
T = lim1 o H(rexp(2mif))
r—

exists, then we say Ry (F;0) lands at x and 0 is the landing angle for (k,x).
Let R > 1 and € > 0. We also define

Ri(F;0,R) = {(p,;l(rexp(Qﬂ'iG)) ‘ l<r<R},
Ri(F;0,R,€) = {galzl(rexp@ﬁin(e,s,r))) ’ 1<r<R},
where n(0,e,7) = 0 + elogr. If R(F;0) lands at x, by Lindel6f’s theorem, then
R(F; 0, R, ¢€) also converges to x. It is easy to check that
F(Ri(F;0)) = Riy1(F;deg(Fy) - 6),
F(R(F:0, R)) = Ry (F; deg(Fy) - 0, RI(),
F(Rip(F;0,R,€)) = Rypp1(F; deg(Fy) - 0, R8I ¢),

We say the ray is periodic if F™(Ry(F';0)) = R (F;0) for some n > 0. The least
such n is called the period of this ray. Clearly, the period of every periodic ray is
divisible by .

Let © = (k, z) be a periodic point of period n for F. If x is repelling or parabolic,
then there are finite number of rays landing at x and they have the same period
(see [I0, Theorem 2.1] for example). Assume that the common period of these
rays is ¢ € Z4. Choose 6§ € Q/Z so that the external ray with angle 6 lands
at z. Let g,...0,_1 be the angles of the external rays {F'"(Ry(F;0)) | j € N}
ordered counterclockwise. Since F™ permutes the rays landing at # and it preserves
the cyclic order of them, there exists an integer p such that F™(Ry(F;0;)) =
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F"(Ri(F;6,1p)) for every j € Z,. We say that the (combinatorial) rotation number
of the periodic point  is p/q. It does not depend on the choice of 6.

2.2. N-PL maps. Let N € Z,. We say U is a topological N-disk in Zy x C if
there exist topological disks {Uy }rez,y such that U N ({k} x C) = {k} x Uy, for all
keZy.

Definition 2.2. Let N be a positive integer. An N-polynomial-like map (N-PL
map for simplicity) is a skew product

F:U-YV, (kz)—(k+1, Fy(2))
with the following properties:
e U/ and V are topological N-disks and Uy € V, for all k € Zy;
e Fy : U — Viy1 is a holomorphic proper map for each k.
We also denote F' = (Fy, : Ux — Viy1)kezy for an N-PL map F: U — V.

The degree of return of F is defined by deg FN = 1, deg F}, and the total degree
of F is defined by t-deg F' = >, (deg F;, — 1) + 1. As in the case of N-polynomials,
we assume every N-PL map satisfies deg FV > 2.

The filled Julia set K(F') of F is the set of all points whose forward orbits by F'
lie in U. The Julia set J(F) of F is the boundary of K (F).

The k-th small filled Julia set Ki(F) is defined by

Ki(F)={z€ Uk | {F"(k,2)}nen CU}

and the k-th small Julia set Ji(F) is defined by the boundary of Ky (F').
We say the (filled) Julia set is fiberwise connected if k-th small (filled) Julia set
is connected for some (hence any) k.

Let F' = (Fy, : Uy — Viq1) and G = (Gy : Uy, — V) be N-PL maps. We say
F and G are hybrid equivalent if there exist quasiconformal homeomorphisms ¢y
(k € ZN) between some neighborhoods of Ky (F) and Ky (G) such that Gy o ¢y, =
bry1 0 Fr and Oy, = 0 on Kj(F).

The Douady-Hubbard straightening theorem [3] extends in a straightforward
way.

Theorem 2.1 (The straightening theorem for N-polynomial-like maps). For any
N -polynomial-like map F, there exists an N-polynomial map G of the same degree
as F hybrid equivalent to F.

Furthermore, if the Julia set of F is fiberwise connected, then G is unique up to
affine conjugacy.

Proof. See [8l Theorem A] for a proof. O

3. STRAIGHTENING MAPS

In this section, we recall the definition of straightening maps [8]. Let us fix a
critically periodic unicritical polynomial f, € C; throughout this section. Let Uy
denote the Fatou component of fy that contains the unique critical point 0. It is
well known there exists a homeomorphism h : 90Uy — R/Z such that

ho f§ =mgoh,
where p is the period of Uy and my is the multiplication map by d on R/Z, that is,
mg:R/Z —R/Z, x+ dx mod 1.
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Such a homeomorphism can be required to be quasisymmetric since any two ex-
panding circle covering maps of the same degree are quasisymmetrically conjugate,
see [I1, The proof of Lemma 3.8] for example. We call such a conjugacy h an
internal angle system of fy. Notice that there exists a unique cycle of external rays
(with period p) of fy landing at h=1(0). Let 6 be an angle for which R(fo;60)
lands at h=1(0).

Let F': U — V be a polynomial-like map with connected filled Julia set. We say
a smooth arc v : (0,1] - C\ K(F) is an ezternal marking for F if F(yNU) = 7.
Clearly, every external marking ~ for F' lands on K (F'), that is,

lim () € K(F).

Let F; : U; — V; be a polynomial-like map and let ; be an external marking for F;
(i =1,2). We say (F1,v1) is hybrid equivalent to (Fz,72) if there exists a hybrid
conjugacy between F; and Fj that sends 7; to vs.

Let P € Cq4, we call the external ray R(P;0) with angle 0 the standard external
marking for P and denote it by yp. [8, Theorem A] asserts the following.

Theorem 3.1. Let F' be a polynomial-like map with connected filled Julia set. Fix
an external marking v for F'. There exists a unique monic and centered polynomial
P such that (F,~y) is hybrid equivalent to (P,~yp)

For any f € C(\y,), let

Kp:= (] S;0,0)nK(f),

O~ny, 0

where S;(6,0") is the component of C\ R(f;60) UR(f;0') with the following prop-
erty. For any t € R/Z, the external ray R(f;t) lies in S¢(6,¢’) if and only if the
external ray R(fo;t) lies in the component of C\ R(fo;0) UR(fo;6’) that contains
Up. We say f is Ay, -renormalizable if fP| i extends to a polynomial-like map with

filled Julia set K ¢. Let R(Ay,) denote the set of all the Ag, -renormalizable maps.
We proceed to define the straightening map x = xy, : R(Af,) — C4. Recall
that R(fo;60) is a periodic ray of period p under fy. For any f € R(Ap), let
D(f) = fP(R(f;6p)). Clearly, it is an external marking for any polynomial-like
extension of f? iy Fix a polynomial-like extension F' of f? iy by Theorem
there exists a unique polynomial P € C,4 such that (F,I'(f)) is hybrid equivalent to
(P,vp). We call such a polynomial P the straightening of f and denote it by x(f).

4. RENORMALIZATIONS AND INTERTWININGS

Throughout this section, we fix an N-polynomial map F' with fiberwise connected
Julia set and assume that O = {(k,zx) |k € Zy} is a repelling periodic orbit of
period N with rotation number py/qo. In this section, we will define a rotatory
intertwining of (F,©). The aim of this section is to give a combinatorial criterion
for the existence of such a rotatory intertwining.

We say a polynomial f is renormalizable for period N if there exist topological
disks Uy and V, (k € Zy) such that:

o G=(f:Uxr = Viy1)kezy is an N-PL map with fiberwise connected Julia
set.
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e For every critical point ¢ of f, there exists at most one k € Zy such that
ceUy.
e When N =1, Uy does not contain all the critical points of f.

We call G an N-PL renormalization of f.

Definition 4.1. We say a monic centered polynomial with a marked fixed point
(g, ) is a p-rotatory intertwining of (F, Q) if:
e g has an N-PL renormalization which is hybrid equivalent to F'.
e z corresponds to O by the hybrid conjugacy above.
e x has a rotation number p/(Ngp).
e degg = t-deg F'. (Or equivalently, all critical points of g lie in the filled
Julia set of the renormalization above.)

The last property implies that the filled Julia set of an intertwining is connected.

FIGURE 1. (g,2) with g(z) = 22 — 0.1225611 . .. + 0.7448617 . .
and x = 0.2762983... 4 90.47979213... is a l-rotatory of (F, ),
where F = (22,2, 2) and O=(1,1,1)

Definition 4.2. A four-tuple of integers (N, po, qo, p) is admissible if p and N are
relatively prime and p = pg mod qo.

Note that the above definition also makes sense when N and gy are integers,
Do € Zg, and p € Zyyg,. It is easy to show the following proposition.

Proposition 4.1. If a p-rotatory intertwining of (F,O) exists, then (N, po, qo, D)
is admisstble.

Our main purpose is to show the converse:

Theorem 4.1. Let F be an N-polynomial map with fiberwise connected Julia set
and O = {(k,zx)} be a repelling periodic orbit of period N with rotation number
P0/q0-

If an integer p satisfies that (N, po,qo,p) is admissible, then there exists a p-
rotatory intertwining (g, ) of (F,O) and it is unique up to affine conjugacy.

Note that we assume a rotatory intertwining is a monic and centered polynomial.
Hence it is unique up to conjugation by rotation by (degg — 1)-th root of unity.

Remark 4.1. More generally, we allow the case where several cycles land at O, in
which case we choose one cycle and ignore the others.

We may even use several (or all) of the ray cycles to intertwine under an ap-
propriate combinatorial assumption, but for simplicity we only consider one ray
cycle.
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Ezample 4.1. Figure [I] shows the quadratic polynomial called the rabbit, which is
of the form

g(z) = 2% — 0.1225611... + 0.7448617 .. .i
and have a period 3 superattracting cycle. Then g(z) has a repelling fixed point at
x = 0.2762983...440.47979213. .. of rotation number 1/3 and (g, z) is a 1-rotatory
of (F,0), where F = (22,2,2) and O = (1,1,1).

Ezample 4.2. Consider a cubic polynomial

g(z) =2* - zz - gz

The critical points :I:% are periodic of period 2 and the unique fixed point on the
imaginary axis
x =11.481997. ..

is a repelling fixed point of rotation number 1/2. There are four rays landing at z,
of angles 1/4, 5/8, 3/4 and 7/8.

FIGURE 2. The Julia set of 2% — 32 — gi. (the butterfly).

Hence there are two ways to consider g(z) as a 1-rotatory intertwining; the up—
down renormalization and the left-right renormalization.
Up—down renormalization: Consider 5/8- and 7/8-rays landing at = and
ignore the rays of angle 1/4 and 3/4. Then we have a 2-PL renormalization
hybrid equivalent to F} = (2% + 3z, 2).
Left—right renormalization: If we consider only the rays of angle 1/4 and
3/4, then we have another 2-PL renormalization hybrid equivalent to Fy =
(22 —1,22 - 1).
To obtain such a PL renormalization, we construct Yoccoz puzzles from the given
two rays in each case, and apply the standard thickening technique.
Note that both F} and F; have two superattracting cycles, and t-deg F; =
t-deg Fp = 3.

We leave the uniqueness part of Theorem to the next section. The proof for
the existence is based on the intertwining surgery [4], [5].
Fix R > 0 and let

Vie={ (k,2) | lon(2)] < R} U Ki(F)
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and Uy, = F7'(Vi41). Let V = | Vi and U = | |Uy. Then
(Fi : Uy = Vigr)

(or equivalently, Flys : U — V) is an N-polynomial-like map.

Fix 0 € Q/Z such that Ro(F;0) lands at (0,x0). Let bp,...,0,,—1 be all the
external angles of { V(R (F;0))} ordered counterclockwise.

Let € > 0 small and let 0 < 6 < ¢/(2N). For 0 < k < N and | € Z,,, consider

arcs
k 1
Yo(k + NI) =Ry (F;917R7 < - ) 6) ,

N 2
Yo (k+ Nl) =TRo | F; 61, R, N3 etd .

All these arcs are perturbations of the truncated external ray R (F; 0;, R) and they
are periodic under F' with the same period as Rq (F'; 0;, R). If € is sufficiently small,
then these arcs are mutually disjoint. For j € Zpy,, let

(4.1) () = Felm=a(i = p) N i),
Y () = Fe(p1( —p) NUk-1),

for k =1,...,N — 1. Let Si(j) (resp. Li(j

(5 —1) and yx(j) (resp. 7 (7 — 1) and v (

) be the open sector in Vi between

)
7))

P W By

Y0(1)

70(0)

70(Ngo — 1)

I

FIGURE 3. Sectors.

Note that F3¥ (v0(j) N Fy N (Vo)) = 70(j + Npo) since the rotation number of xq
for FV is po/qo. Therefore, by the assumption that (N, po, go,p) is admissible,
Fx-1(ww-1(G =p) N Un-1) = F¥(70(j = Np) N F~ "D (Ux 1))
=7(j — Np+ Npo)
=0(4)-

This equation also holds for fyki instead of 5. Therefore, the equations hold
for any k € Zy.

Since O is repelling, F' is linearizable at 0. Namely, there are a neighborhood Oy,
of zj and a holomorphic embedding ¥y, : O — C for each k such that ¥ (zr) =0
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and Vg1 0 Fi(2) = Ag - ¢¥x(2) on Oy, where A\, = FJ(z) and O, is the component
of F,;l(OkJrl) containing xy.

For each j € Znyg,, the quotient space (Ly(j) N Oy)/FN% is an annulus of finite
modulus. So we denote the modulus of this quotient annulus by mod L (j). Since
F maps Li(j) N Oj, univalently to Li41(j + p) N Og41, we have

mod Ly (j) = mod Li41(j + p).

To prove Theorem we are going to identify N disks Vp,...,Vy_1 quasi-
conformally and define a quasiregular map on it. Then we can use the measur-
able Riemann mapping theorem to construct a desired rotatory intertwining. For
some technical reasons, before doing this, we deform the N-polynomial-like map
F :U — V by some hybrid conjugacy.

Lemma 4.1. There exists an N -polynomial-like map F= (F’k U, — Vk+1)k€ZN
hybrid equivalent to F' such that the sector Ly (j) which corresponds to Ly (j) satisfies
that

mod Ly (j) = mod Ly (5)
for any k. k' € Zn and j € Zng,.

Proof. For | € Zg,, let A; be an annulus with mod A; = m; = mod Ly(IN). For
k=1,...,N —1, take a quasiconformal homeomorphism

pri: (Lo(IN 4 pk) N Op)/FN® — A,.

Since FV induces a conformal isomorphism between Lo (IN +pk)/FN9% and Loy ((1+
p)N + pk)/FN%  we can choose p; k. so that

(4.2) pripk o FYN = piy.

Define a complex structure o on Lo(IN + pk) N Oy by pulling back p;j and
lifting the standard complex structure oy on A;. Note that, since (N, pg, go,p) is
admissible, Lo(IN + pk) does not intersect the filled Julia set and we can push
forward a complex structure on (Lo(IN 4 pk)) N Oy to Lo(IN + pk) by FN%_ By
(4.2), o is FN-invariant. The modulus mod(Lo(IN + pk), o) with respect to the
complex structure o is equal to my.

Now we define an F-invariant complex structure ¢ on Zy x C as follows: let

(F™)*o on F~"(Lo(IN + pk)) for some k € {1,...,N —1} and n > —N.
o =
) otherwise.

Since

U Lo(IN + pk)
l€Zqy,k=1,....N—1

is forward invariant by 'Y and o is FN-invariant, & is well-defined and F-invariant.
By the measurable Riemann mapping theorem, there exists a quasiconformal
homeomorphism

¢:ZnxC—ZnxC, o¢({k} xC)={k} xC
such that ¢*og = 0. Let

Vi = 6(Vao), Ui = ¢(Up), Li(5) = ¢(Lr(4)),
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and F = poFop~! on Ug. Then F': |_|(A];€ — |_]f/k is holomorphic and by the
equation m; = m;4, and , we have

mod Lo (j) = mod Lo (j + p)
and

mod L (j) = mod Lo (j — pk)

= mOdLQ(j)
]

To simplify the notations, we replace F by F and so on and assume that

F: | |Ur — || Vi is an N-PL map such that
mod Ly(j) = mod Ly (j)
for any k, k' € Zy and j € Zyyg,.
Remark 4.2. By the proof of the above theorem, we can see that the quasiconformal
map ¢ is conformal in a small sector containing v (j) for all k € Zy and 0 < j <
Ngqo — 1. Indeed, for any k € Zy and 0 < j < Ngqo — 1, there is a invariant sector
Sk,; containing -y (j) such that
F™(Sy ;) N F~™(Lo(IN + pk')) = 0

for all ¥ € {1,2,--- ,N — 1} and | € Z,,. Thus the complex structure & = 0 on
Sk,j- Hence, ¢(vx(j))’s are smooth.

Now we construct quasiconformal maps 7, : Vo — Vi (k € Zn) to identify
Vo, ..., VN_1 together.
Lemma 4.2. There exist quasiconformal maps 1, : Vo — Vi (k € Zy) with the
following properties. For any 0 < j < qoN,
® Tilyo(s) is a diffeomorphism onto vy (j) such that FY o7y, ;) = Ti|yg ()0 FN
when both sides are defined;
o 7:(S0(j)) = Sk(j) and Tx|L,(j) is a conformal map onto Ly (j).

We postpone the proof of this lemma to the end of this section and utilize it to
show the existence part of Theorem

Proof of Theorem [4.1] (Existence part). Let V =V, and
U= U ot (Sk(jN+kp) ﬂUk).
J€Zqgy k=0,..., N—1

Note that since (N, po, go, p) is admissible and (4.6, jN + kp runs over all elements
of Zng, and U is a Jordan disk. Define a quasiregular map g : U — V as follows.
When z € So(jN + kp) N U for some j € Zy,, let

g(z) = 'rk__:l o Fy o 11.(2).
By (4.4), g extends continuously on U.
We define an almost complex structure on V' as follows. For any j € Z,4, and
k € Zy, let us denote So(jN + kp) \ Lo(j N + kp) by Y}, and define
oly; . = T (00|, (iN+hp)\Li (GN+kp) )5

where ¢ is the standard complex structure on Vj. Let Y = |JY} . Note that g
is holomorphic on Y N U with respect to o. In other words, o is g-invariant, that
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is, g0 = c on Y NU. Indeed, for any j € Z, and k € Zy, F maps each sector
Tk(Y; x N U) onto the sector 7441 (Y; x+1) and thus

~% * Tk —1 \%
g'o = TF (Tk+1) o
= 1. F%0
*
= Tp00=0

Then we define o on |Jg~"(Y) by pulling back o]y via g and let o = ¢ every-
where else. Note that o is a well-defined complex structure on V' and the maximal
dilatation of o equals to that of o]y since §*o = o on Y and g is conformal outside
Y.

By the measurable Riemann mapping theorem, there exists a quasiconformal
mapping h : V — C such that h*cp = 0. Then § = ho go h~! is a polynomial-like
map, so there exists a polynomial ¢ hybrid equivalent to §g. By taking an affine
conjugacy, we may assume ¢ is monic and centered, and it is easy to check this g
is a p-rotatory intertwining of F' by using the thickening technique. [

Now we finish the proof of Lemma to complete this section. For the proof,
we first construct C! diffeomorphisms

Tk : U'YO(j) - U%(j)

such that
e 7, maps vo(j) diffeomorphically onto ~;(j) for all k € Zxy and 0 < j <
Ngo - 1;

o .o FN =FNor forall k € Zy.

To this end, we construct C' diffeomorphisms
s Jw () = Jmn ()
J J

which maps v (j) onto yx11(j) for any j and F o7y = 7410 F for all k € Zy. The
construction is based on induction.

Lemma 4.3. There exists a diffeomorphism
7o : [ Jw() = UnG)
J J

such that
o 7o FN = FN o 7.
o (Fto PN =FN,
Proof. Let y{(j) be the end point of vj(j) other than zx. For n > 0, let y7(j) be
the point in ~x(j) which satisfies that F™(y;(j)) = ¥4 (J + pn).
All rays v (j) are periodic of the same period goN under F. The quotient
space (U; vx(4)) JF®©N s diffeomorphic to the disjoint union of circles and each

component is of the form n,(j) = v, (j)/F%®~. The points {y}(j)} corresponds to

the goN points {[y}'(j)] }k=0,....qoN—1 (the equivalent class [y}'(j)] = [yZJrqu(j)] i
7x(4)). F induces a diffeomorphism

a:ne(j) = Mes1(j +p)
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(for simplicity, we omit indices k and j for ). Then a([y(j)]) = [y}+; (j +p)] and

o™ m(j) = me(j + pN)
is the identity map on (U, e (5))/FN.
Furthermore, we identify each 79(j) with R/(qoNZ) diffeomorphically so that
{lyd(4)]} corresponds to {[n]}. Define R : R/(qoNZ) — R/(qoNZ) by R(z) = z—1.
Since R®N = %N = id, we may assume that the following diagram commutes:

aN .
no(j) ——=1n0(j + pN)

| |

R/(qoNZ) o R/(qoNZ).

Let 7 : 19(7) — n1(j) be the diffeomorphism defined by:

(i) = R/(90NZ) £ R/(oNZ) = no(j — p) = m ().

Then the following diagram commutes:

R/(qoNZ) —>R/(qoNZ) *— —FR/(qNZ)
n0(J) \ﬂo(j‘f'p) \77()(j+PN)
m(Jj) m(j+p)\ m(j +pN),

(4.3) (77t oa)N = RN =,

Let 7 : 0(j) — 71(j) be the diffeomorphism which is a lift of #. Then 7yo FY =
FN o #y. Furthermore, since F is a lift of «, (4.3) implies (7" o F)N = FN. O

Now define 7% for Kk =1,..., N — 1 inductively by the equation
(4.4) FroTp_1 =70 Fp_1.
Then this equation is also valid for £ = 0. Indeed,
fooFn_1oFN =50 FN =FNo5
— FyoFy_10---0F 0%

=IFgoFN_10---0oT 0ly

:F()O7~'N710FN_1.

Since F¥~1 maps the subarc of yo(j — (N — 1)p) from xy to y3' ~*(j — (N — 1)p))
diffeomorphically onto yn_1(j), we have FyoTny_1 = Tp o Fn_1.
Similarly, we can also show that

FN = (77 o F)N

=Fn_10--0Fyo FN,
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S0

(4.5) TN_10---0Ty =id.
And it is easy to see that

(4.6) Tk (5) = Y (4)

Now let 7, = Tx—10---07 on |Jy0(j). Clearly, 71 is our desired diffeomorphism.

Proof of Lemmal[{.2 The proof is due to Bielefeld [I, Lemma 6.4, 6.5].
Let

Tk U“Yo(j) - U%(j)

be the diffeomorphisms we constructed as above and let 7¢|r,(;) : Lo(j) — Lx(J)
be the conformal isomorphism which sends zg to z, ¢ (j — 1) to 7 (j — 1), and
Yo (4) to v (j). Taking Ly(j) smaller (that is, taking 0 greater) if necessary, we
may assume that 7x|r,(j) extends smoothly on ¢ (j — 1) and g (j).

It remains to extend 7, on (J(Sk(j) \ Lk(j)) quasiconformally. For k € Zy and
J € Zngy, let Sy (j) (resp. S (j)) be the open sector between v, (j) and i (j)
(resp. 7(j) and 7 (7). Then U(Sk() \ Ze(7)) = UGS{ (7) U Sy (7))- So we need
to extend 73, quasiconformally on Sy (j), which maps to S, (j) (the case for S (j)
is quite similar). Furthermore, since 73 is smooth on 'y(jf (j), and we need only show
the extendability of 7, on Op, where F' is linearizable. So we consider Sy (5) N Og
instead of Sy (5).

To this end, we will use the log-Koenigs coordinate. Recall that the Koenigs
coordinate is a univalent map 5 : O — C such that ¢ (F, % (2)) = A0y (2),
where A is the multiplier of the orbit @. Set A = A\%. Let hg(z) = log () on
(Sy (J) U Li(j)) N Ok. Then we have

(4.7) hi(F(2)) = hi(2) + log A.
Let Ty () = hi(Sy (7) N Oo), Mi(j) = ha(Li(j) N Op) and

X =P om0 byt OFTy () U Mo(5) — 0FTy (7) U M (j)-
where 01T, (j) = hix(v () and 07T}, (j) = hi(yg (j)) are the upper and lower
boundaries of the strip 7} (j). Then, by , for z € 01T (),
Xk(z +log\) = hy o7y, 0 hg ' (2 + log \)
= hy o 0 FN® (kg ' (2))
= hy oF,di0 oo hyt(2)
= hg(m 0 hy 1(2)) + log A
= xx(2) +log A

We call such a diffeomorphism on curves in C a near translation. More precisely,
we say a diffeomorphism on a curve in C onto its image in C is a near translation
if it is of the form z+ O(1) and its derivative is uniformly bounded away from zero
and infinity.

Claim. Xk|a—T(j () 1s a near translation.
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_>
Sk
_>
0
FicUurE 4. Conjugacy to translations and linear expansion.

Since 7L, ;) is conformal, xx|az, ;) @ Mo(j) — Mg(j) is conformal and it maps
the upper boundary 0" My(j) (= 0~ To(5)) to 0T My(j) (= 0~ Tk(j)) diffeomorphi-
cally. Let m = mod(My(j)/(z — z+log A)) = mod L (j). Then by the assumption,
m is independent of k.

Let H, = {zlogA|0 < Imz < v}. Then there exists some v > 0 such that
for any k € Zy, there is a conformal map s; from My(j) into H, which maps
the upper and lower boundary to the upper and lower boundary respectively, and
which gives a conjugacy from z — z + log A to itself. (v is given by the equation
mod(H, /(z — z+1log\)) = m.) Since si(z +1log\) = sr(2) +log A, sklo+ () 18
a near translation. Let

)Zk:eoskoxkoso_loe_l

™
h (z) = .
where e(z) = exp <1/10g>\z>

Then Y can be extended to some neighborhood of 0 by the reflection principle.
Hence it is of the form 7z + O(z?). Thus

Sk O Xk osgl(z) =e loxpoe(z)
—s100),

so it is a near translation. Since the composition of near translations is also a near
translation, yj is also a near translation.
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Just as in the case of My(j), let ¢ be a conformal map from T}, (j) into H,,
which gives a conjugacy from z — z + log A to itself. (Note that in this case, v
may depends on k.) Let t; = fx/(rolog ) : T}, () — {0 < Im=z < v /v1}. Then
)Zf =tgoxkoty ! restricted to the upper and lower boundary respectively are both
near translations. We define xy, : to(T, (j)) — tx (T}, (j)) as follows:

Tl +iy) =y (@ +1) — ) + (1 - )% (@) + —’“y

(Although it may not be mapped into ¢ (7}, (j)), it makes no problem because we
only need to construct this map near the left infinity.) It is easy to check xi is a
quasiconformal diffeomorphism. Therefore, 7, = h,;lot,zlo Xkotooho on Sy (§)NOy
is a quasiconformal extension. O

5. UNIQUENESS FOR THE ROTATORY INTERTWNING

In this section, we show that rotatory intertwnings are unique up to rotational
conjugacies. It suffices to show that two p-rotatory intertwinings (g, ) and (¢', z’)
of (F,0) are affinely conjugate. Uniqueness of intertwinings are first proved by
Epstein and Yampolsky for intertwinings (not rotatory) of two quadratic polyno-
mials [4]. Their proof is based on the properness of the straightening map in the
paremeter space, which is true only for quadratic renormalizations. Here, we prove
uniqueness of rotatory intertwinings for any degree d > 2.

Let (g,z) be a p-rotatory intertwining of an N-polynomial map (F,O) with
marked periodic point of period N. Let ¢ : C\ K(g) — C\ D be the Béttcher
coordinate of g. Set Dy := {z | |p(2)] < 1} U K(g). There are Nqy external rays
Ro,R1, -, Rng—1 landing at the repelling fixed point . They are ordered by
g(R;) = Riyq for all i = 0,1,---,Ngy — 1. We are going to use the thickening
technique as follows. For each external ray R;, set a sector S; contained in Dy with
the following properties:

e 5;D (Rz ﬂDo),

o f(Sinf~H(Do)) = Sit1,

e the components of 95; \ ({x} U9dDy) are smooth.
By the thickening procedure, we can obtain a N-PL map

G =(9:Ukx = Vit1)kezy
with the following properties:
e The N-PL map G is hybrid equivalent to (F, O).
e For every k € Zy, Vi is a Jordan disk with smooth boundary that is

contained in Dy. o
e The components of Vi \ (IJS;) are mutually disjoint Jordan disks.

Let h be a hybrid conjugacy between G and (F, Q). Denote by K the filled Julia
set of the N-PL map G.

Let (¢',2") be another p-rotatory intertwining of an N-polynomial map (F, O)
with marked periodic point of period N. For ¢’, we attach a prime to each notation
(e.g., D, G',K'). Our aim is to show (g, z) and (¢, 2’) are affinely conjugate. Since
the Julia sets of g and ¢’ are connected, it suffices to show that g and ¢’ are hybrid
equivalent.

Theorem 5.1. There exists a qc map ¢ : C — C such that
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« og=goponC,
e 0 =0 a.e. on K(g).

Proof. Let W}, denote the union of the components of V3, \ ( |J S;) that intersects

1E€ELN
Ky, for each k € Zy. Set ® = h/"Yohon |J Wj. Clearly, ® can be extended
kEZn
continuously to |J Wj, and the corresponding boundary map satisfies ®og = g’o®.

k€ln
Since z is repelling and each component of 95; \  is smooth, it is well known that ®
can be extended to a qc map ® form Dy onto Dj. See [9, Lemma 5.3] for example.
Consequently, we can get a qc homeomorphism ® : C — C such that ®(K) = K’
and ®og = g’ o ® on K. Since the post-critical set P(g) of g lies in K, we can
lift ® through branched coverings g and ¢’ to get a q¢c homeomorphism ¥ : C — C
such that ¥ is homotopic to ® rel £ D P(g). By the proof of [I4, Theorem A.1],
there is a qc conjugacy ¢ between g and ¢’ such that ¢ = ® on K. It follows that

dp=0on |J g7 "(K) since 9p = 9® = 0 on K. Note that K(g) \ [.j g~ "(K) has

n=0 n=0
zero Lebesgue measure (see [8] Key Lemma 6.1] for example). Thus ¢ is actually a
hybrid conjugacy between g and ¢'. O

6. TUNING FOR UNICRITICAL POLYNOMIALS

The aim of this section is to prove the Main Theorem. More precisely, fix an
integer d > 2 and a critically periodic unicritical polynomial f, € C4, we show that
fo can be tuned by any polynomial in C4 that does not have parabolic fixed points.

Throughout this section, we fix such an fy # 2% with an internal angle system
h. Note that fy has d distinct repelling fixed point. Among these fixed point, there
exists a unique dividing fized point a(fy), that is, K(fo) \ {a(fo)} is disconnected.
Furthermore, there exists a unique cycle of external rays landing at «(fy). Assume
that the period of the critical point 0 is ¢’. Let g denote the number of external
rays landing at «(fp).

6.1. Immediate renormalization. Let us begin a naive but essential case.
If ¢ = q, then we call fy immediately renormalizable.

Theorem 6.1. If fy is immediately renormalizable, then for any g € Cq without
parabolic fized points, X;ol (9) #0.

Proof. Assume that the rotation number of «(fy) is p/q. Let
G:(Gk)kezq :ZqXC%ZqXC

be a g-polynomial such that Gy = g and Gy, = id for k = 1,...,¢g — 1. Let
be the fixed point of g at which the external ray for g with angle 0 lands. Set
O ={(k,B)| keZ,} It follows from Theorem that there exists a p-rotatory
intertwining (f,z) of (G,0). Here, we apply Theorem with pg = 0, go = 1,
N = ¢q. By a conjugacy via a rotation, we may assume that R(f;6) lands at
x whenever R(fy;0) lands at a(fy). By [8, Corollary 4.11], we have Ay D Ay,.
Finally it is easy to check that g is a Ay -renormalization for f by the definition of
p-rotatory intertwining. Hence f € XjTol (g)- O
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6.2. General cases.

Lemma 6.1. Let f = 2% + ¢ be a critically periodic polynomial. Let G be the grand
orbit of the external rays landing at o(f) under f and let

© = {(s,t) | R(f;s) and R(f;t) € G land at a common point}.

Assume that Ay coincides with the smallest rational lamination that contains ©.
Then either f is immediately renormalizable or primitive.

Proof. Assume that f is not immediately renormalizable. We will show that f is
primitive. For otherwise, there exist two periodic Fatou component U, U’ and a
periodic point x such that
reUnU.
Note that there are two external angles a # b such that R(f;a) and R(f;b) lands
at x.
We first show that (a,b) ¢ ©. This is a consequence of the following claim.

Claim. For any (s,t) € O, the corresponding landing point z. of R(f;t) is
a buried point. In other words, z, does not lie on the boundary of any Fatou
component.

For otherwise, there exists a periodic Fatou component V' such that a(f) € V.
It follows the period of V is the ray period of a(f). See the proof of [16, Lemma 2.1].
Hence, f is immediately renormalizable.

Since Ay is the smallest rational lamination that contains ©, there exist a se-
quence {(an,b,)} C © such that nan;O\an —al = nler;o|bn —b = 0. Let W,

denote the simply connected domain that is bounded by R(f;a) UR(f;b) and
R(f;an) UR(f;by). Then either U € W,, or U’ C W,,. Without loss of generality,
we may assume that U C W, for all n € N. Let 6 be an external angle such that
R(f;0) lands on OU. Then either |§ — a| < |a, — a| or |6 — b] < |b, — b for all
n € N. This implies that § must equal to a or b. So only R(f;a) and R(f;b) can
land on QU. This is impossible since U is a Jordan disk. (]

Lemma 6.2. There exists a finite sequence (F;)P_, C Cq of critically periodic
unicritical polynomial with internal angle system H; satisfying the following.

o For each 0 < i < n, F, is either primitive or immediately renormalizable.
® Xf, = Xn © -0 Xo, where x; is the straightening map induced by F; and
H;.

Proof. Recall that h is the internal angle system for f; and the period of the critical
point 0 under fy is ¢’. Let Go be the grand orbit of the external rays landing at
a(fp) under fy and let

©0 = {(s,t) | R(fo;s) and R(fo;t) € Go land at a common point}.

By [8, Theorems 5.17,5.18], there exists a unique critically periodic unicritical poly-
nomial Fy € C4 such that A, is the smallest rational lamination that contains ©y.
If Fy is not immediately renormalizable, then it follows that Fj is primitive from
Lemma Assume that the period of the critical point 0 under Fy is pg. If pg = ¢,
then we choose the internal angle system Hy = h and let n = 0. Otherwise, we
choose an arbitrary internal angle system Hj of Fj.
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Now we proceed to construct (Fy) inductively. Assume that Fp,---, Fy and
Hy,--- ,Hg_1 has been constructed. Let p; be the period of the critical point 0
under F; (0 <1i<k).

Case 1. If ¢ > TI¥_p;, then we choose an arbitrary internal angle system Hj,
of Fy, and we let fr41 = xx -0 xo(fo). Let agy1 be the unique dividing fixed
point of fr41 and let Gi1 be the grand orbit of the external rays landing at a1

under fr41. Let
Ort+1 = {(s,%) | R(fr+1;s) and R(fr+1;t) € Gr+1 land at a common point}.

Again by [8, Theorem 5.17,5.18], there exists a unique critically periodic unicritical
polynomial Fj 1 € Cy such that Ag,,, is the smallest rational lamination that con-
tains Op41. By Lemma either Fj 1 is immediately renormalizable or primitive.

Case 2. If ¢ = IT¥_ p;, we let n = k and choose Hj such that H, '(0) corre-
sponds to h~1(0) in the following sense. Make a convention that x_; = id. Indeed,
since ¢’ > Hi—‘:()lpi, Fy = fr, = Xk—1 00 xo0(fo) by the construction. Let ¢; be a
hybrid conjugacy between f* = (y;—10---0x0(f0))?" and fix1 = xi 0o xo0(fo)-
Let v, = ¢p—1 00 ¢o(R(fo;00)). Note that ~y, is Fp*-invariant and so it lands
at a periodic point z; € QU of period py under Fj, where Uy is the Fatou com-
ponent of F}, containing 0. Now choose an internal angle system Hj of Fy so that
H,;l(O) = Zk-

It remains to check the second property. For each 0 < k& < n, let a; be the
dividing fixed point of fx = xx—1 00 Xxo(fo) and let Ok be a cycle of external
rays landing at ay. Let @k = (¢r_10---0¢0) 1 (O). Note that all the rays in @k
land at a common periodic point o}, of fy. Let S be the collection of external rays
landing at |J o, and let

O = {(s,t) | R(fo;s) and R(fo;t) € S land at a common point}.
For any f € R(\y,), let
Kp= () Si(st)

(s,t)€®

where S¢(s,t) is the component of C\R(f;s) UR(f;t) with the following property.
For any u € R/Z, the external ray R(f;u) lies in Sy(s,t) if and only if the external

ray R(fo;u) lies in the component of C\ R(fo;s) U R(fo;t) that contains Uy. By
the constructions of y, fq/ | ) extends to be a polynomial-like map that is hybrid

equivalent to x, o -0 xo(f). Since Kf C K} and both fq/|f<f and f9 |f(} extends
to a polynomial-like map of a same degree d, it follows from [I3, Theorem 5.11]
that Kf = X} Thus

Xfo(f) :Xno"'OXO(f)'

Now we prove the Main Theorem to complete this paper.

Proof of the Main Theorem. Let x; = xp, (k=0,---,n) be given by Lemma [6.2}
By Theoremand [16, Main Theorem], xx is almost surjective for all k = 0, - - - , n,
and hence xy, = xn 0 -+ 0 X is almost surjective. (]
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