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Abstract. In this paper, we show that for any critically periodic unicritical

polynomial of degree d can be tuned by an arbitrary polynomial of degree d
with connected Julia set and without parabolic fixed points. This partially

answers a question raised by Douady [2].

1. Introduction

Renormalization is an important and powerful tool in dynamical systems. Roughly
speaking, renormalization is a rescaling of a first return map. Tuning is an inverse
procedure of renormalizations for dynamics of complex polynomials in one variable.
Let M denote the celebrated Mandelbrot set, that is, the set of parameters c for
which Qc = z2 +c has a connected Julia set. Douady-Hubbard [3] and Haissinsky[6]
proved that any critically periodic quadratic polynomial f0 can be tuned by any
Qc for c ∈M \ {1/4}. More precisely, there exists an embedding

φ = φf0 :M\ {1/4} →M

such that Qnφ(c) has a quadratic-like restriction that is hybrid equivalent to Qc for

all c ∈M\{1/4}, where n is the period of 0 under f0. Such an embedding is called
a tuning and the inverse operator of φ is called a straightening. Douady raised a
general problem on tuning for post-critically finite polynomials with superattracting
cycles [2]. For every integer d ≥ 2, let Cd denote the set of monic and centered
polynomials of degree d with connected Julia set. In this paper, we consider the
tuning problem for unicritical polynomials. More precisely, we consider that for a
given critically periodic unicritical polynomial f0 ∈ Cd, whether f0 can be tuned by
any g ∈ Cd without parabolic fixed points or not. Note that the maps in Cd may be
multi-critical, so this problem is more complicated than Douady-Hubbard’s result.

In [8], the first author and Kiwi mostly generalized Douady-Hubbard’s result to
polynomials of an arbitrary degree. Fix an integer d ≥ 2, for any f ∈ Cd, the rational
lamination λf of f is an equivalent relation in Q/Z that identifies s and t if and
only if the external rays for f with angle s and t land at a common point. For any
critically periodic unicritical polynomial f0 ∈ Cd, let C(λf0) = {f ∈ Cd | λf ⊃ λf0}.
They define a subset R(λf0) of C(λf0) consisting of renormalizable maps in some
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certain sense. Moreover, they construct a map

χ = χf0 : R(λf0)→ Cd,
which we call straightening map, and they showed such a map is injective and onto
the set of hyperbolic maps in Cd. In [16], Shen and the second author proved χ is a
bijection and R(λf0) is connected when f0 is primitive, that is, the closures of any
two Fatou component of f0 are disjoint.

In this paper, we mainly deal with the case when f0 is not primitive. Then by
combining with the surjectivity for primitive case in [16], we show that for any
g ∈ Cd without parabolic fixed points, χ−1(g) is non-empty.

Main Theorem. Let f0 ∈ Cd be a critically periodic uncritical polynomial of degree
d for some integer d ≥ 2. The straightening map

χ = χf0 : R(λf0)→ Cd
is almost surjective, that is, for any g ∈ Cd without parabolic fixed points,

χ−1(g) 6= ∅.

This partially answers Douady’s question. The proof is based on so-called inter-
twining surgery [4]. Although straightening maps are normally discontinuous [7],
the main theorem explains some self-similarity of Cd.

This paper is organized as follows. In section 2 and 3, we recall some results
about generalized polynomial-like maps and straightening maps. In section 4, we
prove a criterion on existence of rotatory intertwining, which is a main tool for us
to deal with the case when f0 is immediately renormalizable. In section 5, we show
that rotatory intertwnings are unique up to affine conjugacies. The main theorem
will be proved in section 6.

Acknowledgement. The authors would like to thank Mitsuhiro Shishikura, Akira
Kono and Weixiao Shen for helpful discussions and valuable suggestions. The first
author is partially supported by JSPS KAKENHI Grant Number JP18K03367.

2. N-PL maps

In this section, we summarize some results on N -PL maps, which are special
generalized polynomial-like maps introduced in [15, 8].

2.1. N-polynomial maps.

Definition 2.1. Let N be a positive integer. An N -polynomial map is a skew
product F : ZN × C→ ZN × C such that

F (k, z) = (k + 1 mod N,Fk(z))

where Fk is a monic centered polynomial.
We also denote an N -polynomial map F : ZN × C → ZN × C simply by F =

(Fk)k∈ZN .

Observe that
degFN =

∏
k

degFk.

We call it the degree of return of F . The total degree of F is defined as follows:

t-degF =
∑
k∈ZN

(degFk − 1) + 1.
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In the following, we only consider non-affine N -polynomials; i.e., we always
assume the degree of return degFN is greater than one (or equivalently, there
exists some k ∈ ZN such that degFk ≥ 2). The filled Julia set K(F ) of F
is the set of all points whose forward orbits by F are bounded. The Julia set
J(F ) of F is the boundary of K(F ). The k-th small filled Julia set is defined by
Kk(F ) = { z | (k, z) ∈ K(F )} and the k-th small Julia set Jk(F ) = ∂Kk(F ). We
say the (filled) Julia is fiberwise connected if k-th small (filled) Julia set is connected
for some (hence any) k.

Let C(F ) = { (k, z) |F ′k(z) = 0} be the set of critical points of F and define the
postcritical set of F as

P (F ) =
⋃
n>0

Fn(C(F )).

Let F = (Fk)k∈ZN be an N -polynomial map with a fiberwise connected Julia
set. Similarly as in the case of a single polynomial, we can define external rays and
Green functions for F . Indeed, for each k ∈ ZN there exists a unique conformal
ϕk : C \Kk(F )→ C \ D such that ϕk(z)/z → 1 as z →∞ and these maps satisfy

ϕk+1(Fk(z)) = ϕk(z)degFk for all z ∈ C \Kk(F ).

The Green function of F is defined as

GF (k, z) =

{
log |ϕk(z)|, if z 6∈ Kk(F );
0, otherwise.

For t ∈ R/Z, the k-th external ray Rk(F ; t) of angle t is defined as

Rk(F ; t) = ϕ−1
k ({re2πit | r > 1}).

If the limit
x = lim

r→1
ϕ−1
k (r exp(2πiθ))

exists, then we say Rk(F ; θ) lands at x and θ is the landing angle for (k, x).
Let R > 1 and ε > 0. We also define

Rk(F ; θ,R) =
{
ϕ−1
k (r exp(2πiθ))

∣∣ 1 < r < R
}
,

Rk(F ; θ,R, ε) =
{
ϕ−1
k (r exp(2πiη(θ, ε, r)))

∣∣ 1 < r < R
}
,

where η(θ, ε, r) = θ + ε log r. If R(F ; θ) lands at x, by Lindelöf’s theorem, then
R(F ; θ,R, ε) also converges to x. It is easy to check that

F (Rk(F ; θ)) = Rk+1(F ; deg(Fk) · θ),

F (Rk(F ; θ,R)) = Rk+1(F ; deg(Fk) · θ, Rdeg(Fk)),

F (Rk(F ; θ,R, ε)) = Rk+1(F ; deg(Fk) · θ, Rdeg(Fk), ε).

We say the ray is periodic if Fn(Rk(F ; θ)) = Rk(F ; θ) for some n > 0. The least
such n is called the period of this ray. Clearly, the period of every periodic ray is
divisible by N .

Let x = (k, z) be a periodic point of period n for F . If x is repelling or parabolic,
then there are finite number of rays landing at x and they have the same period
(see [10, Theorem 2.1] for example). Assume that the common period of these
rays is q ∈ Z+. Choose θ ∈ Q/Z so that the external ray with angle θ lands
at x. Let θ0, . . . θq−1 be the angles of the external rays {F jn(Rk(F ; θ)) | j ∈ N}
ordered counterclockwise. Since Fn permutes the rays landing at x and it preserves
the cyclic order of them, there exists an integer p such that Fn(Rk(F ; θj)) =
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Fn(Rk(F ; θj+p)) for every j ∈ Zq. We say that the (combinatorial) rotation number
of the periodic point x is p/q. It does not depend on the choice of θ.

2.2. N-PL maps. Let N ∈ Z+. We say U is a topological N -disk in ZN × C if
there exist topological disks {Uk}k∈ZN such that U ∩ ({k} × C) = {k} × Uk for all
k ∈ ZN .

Definition 2.2. Let N be a positive integer. An N -polynomial-like map (N -PL
map for simplicity) is a skew product

F : U → V, (k, z) 7→ (k + 1, Fk(z))

with the following properties:

• U and V are topological N -disks and Uk b Vk for all k ∈ ZN ;
• Fk : Uk → Vk+1 is a holomorphic proper map for each k.

We also denote F = (Fk : Uk → Vk+1)k∈ZN for an N -PL map F : U → V.
The degree of return of F is defined by degFN =

∏
k degFk and the total degree

of F is defined by t-degF =
∑
k(degFk − 1) + 1. As in the case of N -polynomials,

we assume every N -PL map satisfies degFN ≥ 2.
The filled Julia set K(F ) of F is the set of all points whose forward orbits by F

lie in U . The Julia set J(F ) of F is the boundary of K(F ).
The k-th small filled Julia set Kk(F ) is defined by

Kk(F ) =
{
z ∈ Uk

∣∣ {Fn(k, z)}n∈N ⊂ U
}

and the k-th small Julia set Jk(F ) is defined by the boundary of Kk(F ).
We say the (filled) Julia set is fiberwise connected if k-th small (filled) Julia set

is connected for some (hence any) k.

Let F = (Fk : Uk → Vk+1) and G = (Gk : U ′k → V ′k+1) be N -PL maps. We say
F and G are hybrid equivalent if there exist quasiconformal homeomorphisms φk
(k ∈ ZN ) between some neighborhoods of Kk(F ) and Kk(G) such that Gk ◦ φk =
φk+1 ◦ Fk and ∂̄φk ≡ 0 on Kk(F ).

The Douady-Hubbard straightening theorem [3] extends in a straightforward
way.

Theorem 2.1 (The straightening theorem for N -polynomial-like maps). For any
N -polynomial-like map F , there exists an N -polynomial map G of the same degree
as F hybrid equivalent to F .

Furthermore, if the Julia set of F is fiberwise connected, then G is unique up to
affine conjugacy.

Proof. See [8, Theorem A] for a proof. �

3. Straightening maps

In this section, we recall the definition of straightening maps [8]. Let us fix a
critically periodic unicritical polynomial f0 ∈ Cd throughout this section. Let U0

denote the Fatou component of f0 that contains the unique critical point 0. It is
well known there exists a homeomorphism h : ∂U0 → R/Z such that

h ◦ fp0 = md ◦ h,
where p is the period of U0 and md is the multiplication map by d on R/Z, that is,

md : R/Z→ R/Z, x 7→ dx mod 1.
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Such a homeomorphism can be required to be quasisymmetric since any two ex-
panding circle covering maps of the same degree are quasisymmetrically conjugate,
see [11, The proof of Lemma 3.8] for example. We call such a conjugacy h an
internal angle system of f0. Notice that there exists a unique cycle of external rays
(with period p) of f0 landing at h−1(0). Let θ0 be an angle for which R(f0; θ0)
lands at h−1(0).

Let F : U → V be a polynomial-like map with connected filled Julia set. We say
a smooth arc γ : (0, 1] → C \K(F ) is an external marking for F if F (γ ∩ U) = γ.
Clearly, every external marking γ for F lands on K(F ), that is,

lim
t→0

γ(t) ∈ K(F ).

Let Fi : Ui → Vi be a polynomial-like map and let γi be an external marking for Fi
(i = 1, 2). We say (F1, γ1) is hybrid equivalent to (F2, γ2) if there exists a hybrid
conjugacy between F1 and F2 that sends γ1 to γ2.

Let P ∈ Cd, we call the external ray R(P ; 0) with angle 0 the standard external
marking for P and denote it by γP . [8, Theorem A] asserts the following.

Theorem 3.1. Let F be a polynomial-like map with connected filled Julia set. Fix
an external marking γ for F . There exists a unique monic and centered polynomial
P such that (F, γ) is hybrid equivalent to (P, γP )

For any f ∈ C(λf0), let

K̂f :=
⋂

θ∼λf0 θ
′

Sf (θ, θ′) ∩K(f),

where Sf (θ, θ′) is the component of C \ R(f ; θ) ∪R(f ; θ′) with the following prop-
erty. For any t ∈ R/Z, the external ray R(f ; t) lies in Sf (θ, θ′) if and only if the

external ray R(f0; t) lies in the component of C \R(f0; θ) ∪R(f0; θ′) that contains
U0. We say f is λf0-renormalizable if fp|K̂f extends to a polynomial-like map with

filled Julia set K̂f . Let R(λf0) denote the set of all the λf0-renormalizable maps.
We proceed to define the straightening map χ = χf0 : R(λf0) → Cd. Recall

that R(f0; θ0) is a periodic ray of period p under f0. For any f ∈ R(λf0), let
Γ(f) = fp(R(f ; θ0)). Clearly, it is an external marking for any polynomial-like
extension of fp|K̂f . Fix a polynomial-like extension F of fp|K̂f , by Theorem 3.1,

there exists a unique polynomial P ∈ Cd such that (F,Γ(f)) is hybrid equivalent to
(P, γP ). We call such a polynomial P the straightening of f and denote it by χ(f).

4. Renormalizations and intertwinings

Throughout this section, we fix anN -polynomial map F with fiberwise connected
Julia set and assume that O = { (k, xk) | k ∈ ZN} is a repelling periodic orbit of
period N with rotation number p0/q0. In this section, we will define a rotatory
intertwining of (F,O). The aim of this section is to give a combinatorial criterion
for the existence of such a rotatory intertwining.

We say a polynomial f is renormalizable for period N if there exist topological
disks Uk and Vk (k ∈ ZN ) such that:

• G = (f : Uk → Vk+1)k∈ZN is an N -PL map with fiberwise connected Julia
set.
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• For every critical point c of f , there exists at most one k ∈ ZN such that
c ∈ Uk.
• When N = 1, U0 does not contain all the critical points of f .

We call G an N -PL renormalization of f .

Definition 4.1. We say a monic centered polynomial with a marked fixed point
(g, x) is a p-rotatory intertwining of (F,O) if:

• g has an N -PL renormalization which is hybrid equivalent to F .
• x corresponds to O by the hybrid conjugacy above.
• x has a rotation number p/(Nq0).
• deg g = t-degF . (Or equivalently, all critical points of g lie in the filled

Julia set of the renormalization above.)

The last property implies that the filled Julia set of an intertwining is connected.

Figure 1. (g, x) with g(z) = z2 − 0.1225611 . . . + i0.7448617 . . .
and x = 0.2762983 . . . + i0.47979213 . . . is a 1-rotatory of (F,O),
where F = (z2, z, z) and O=(1,1,1)

Definition 4.2. A four-tuple of integers (N, p0, q0, p) is admissible if p and N are
relatively prime and p ≡ p0 mod q0.

Note that the above definition also makes sense when N and q0 are integers,
p0 ∈ Zq0 and p ∈ ZNq0 . It is easy to show the following proposition.

Proposition 4.1. If a p-rotatory intertwining of (F,O) exists, then (N, p0, q0, p)
is admissible.

Our main purpose is to show the converse:

Theorem 4.1. Let F be an N -polynomial map with fiberwise connected Julia set
and O = {(k, xk)} be a repelling periodic orbit of period N with rotation number
p0/q0.

If an integer p satisfies that (N, p0, q0, p) is admissible, then there exists a p-
rotatory intertwining (g, x) of (F,O) and it is unique up to affine conjugacy.

Note that we assume a rotatory intertwining is a monic and centered polynomial.
Hence it is unique up to conjugation by rotation by (deg g − 1)-th root of unity.

Remark 4.1. More generally, we allow the case where several cycles land at O, in
which case we choose one cycle and ignore the others.

We may even use several (or all) of the ray cycles to intertwine under an ap-
propriate combinatorial assumption, but for simplicity we only consider one ray
cycle.
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Example 4.1. Figure 1 shows the quadratic polynomial called the rabbit, which is
of the form

g(z) = z2 − 0.1225611 . . .+ 0.7448617 . . . i

and have a period 3 superattracting cycle. Then g(z) has a repelling fixed point at
x = 0.2762983 . . .+i0.47979213 . . . of rotation number 1/3 and (g, x) is a 1-rotatory
of (F,O), where F = (z2, z, z) and O = (1, 1, 1).

Example 4.2. Consider a cubic polynomial

g(z) = z3 − 3

4
z −
√

7

4
i.

The critical points ± 1
2 are periodic of period 2 and the unique fixed point on the

imaginary axis
x = i1.481997 . . .

is a repelling fixed point of rotation number 1/2. There are four rays landing at x,
of angles 1/4, 5/8, 3/4 and 7/8.

Figure 2. The Julia set of z3 − 3
4z −

√
7

4 i. (the butterfly).

Hence there are two ways to consider g(z) as a 1-rotatory intertwining; the up–
down renormalization and the left–right renormalization.

Up–down renormalization: Consider 5/8- and 7/8-rays landing at x and
ignore the rays of angle 1/4 and 3/4. Then we have a 2-PL renormalization
hybrid equivalent to F1 = (z3 + 3

2z, z).
Left–right renormalization: If we consider only the rays of angle 1/4 and

3/4, then we have another 2-PL renormalization hybrid equivalent to F2 =
(z2 − 1, z2 − 1).

To obtain such a PL renormalization, we construct Yoccoz puzzles from the given
two rays in each case, and apply the standard thickening technique.

Note that both F1 and F2 have two superattracting cycles, and t-degF1 =
t-degF2 = 3.

We leave the uniqueness part of Theorem 4.1 to the next section. The proof for
the existence is based on the intertwining surgery [4], [5].

Fix R > 0 and let

Vk =
{

(k, z)
∣∣ |ϕk(z)| < R

}
∪Kk(F )
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and Uk = F−1
k (Vk+1). Let V =

⊔
Vk and U =

⊔
Uk. Then

(Fk : Uk → Vk+1)

(or equivalently, F |U : U → V) is an N -polynomial-like map.
Fix θ ∈ Q/Z such that R0(F ; θ) lands at (0, x0). Let θ0, . . . , θq0−1 be all the

external angles of {FNi(R0(F ; θ))} ordered counterclockwise.
Let ε > 0 small and let 0 < δ < ε/(2N). For 0 ≤ k < N and l ∈ Zq0 , consider

arcs

γ0(k +Nl) = R0

(
F ; θl, R,

(
k

N
− 1

2

)
ε

)
,

γ±0 (k +Nl) = R0

(
F ; θl, R,

(
k

N
− 1

2

)
ε± δ

)
.

All these arcs are perturbations of the truncated external ray R0 (F ; θl, R) and they
are periodic under F with the same period as R0 (F ; θl, R). If ε is sufficiently small,
then these arcs are mutually disjoint. For j ∈ ZNq0 , let

(4.1)
γk(j) = Fk(γk−1(j − p) ∩ Uk−1),
γ±k (j) = Fk(γ±k−1(j − p) ∩ Uk−1),

for k = 1, . . . , N − 1. Let Sk(j) (resp. Lk(j)) be the open sector in Vk between
γk(j − 1) and γk(j) (resp. γ+

k (j − 1) and γ−k (j)).

<latexit sha1_base64="6keP+zk9//PLuaGyglxlbbsS2Ho="></latexit>

...

�0(Nq0 � 1)

�0(0)

�0(1)

�0(2)

�0(N � 2)
�0(N � 1)�0(N)

S0(0)

S0(1)

S0(2)

S0(N)

x0J(f)

Lk(j)

�k(j)

�k(j � 1)

�+
k (j � 1)

��
k (j)

xk

Sk(j)

Figure 3. Sectors.

Note that FN0 (γ0(j) ∩ F−N0 (V0)) = γ0(j +Np0) since the rotation number of x0

for FN0 is p0/q0. Therefore, by the assumption that (N, p0, q0, p) is admissible,

FN−1(γN−1(j − p) ∩ UN−1) = FN (γ0(j −Np) ∩ F−(N−1)(UN−1))

= γ0(j −Np+Np0)

= γ0(j).

This equation also holds for γ±k instead of γk. Therefore, the equations (4.1) hold
for any k ∈ ZN .

Since O is repelling, F is linearizable at O. Namely, there are a neighborhood Ok
of xk and a holomorphic embedding ψk : Ok → C for each k such that ψk(xk) = 0



SATELLITE TUNING VIA INTERTWINING SURGERY 9

and ψk+1 ◦Fk(z) = λk ·ψk(z) on O′k, where λk = F ′k(xk) and O′k is the component

of F−1
k (Ok+1) containing xk.

For each j ∈ ZNq0 , the quotient space (Lk(j)∩Ok)/FNq0 is an annulus of finite
modulus. So we denote the modulus of this quotient annulus by modLk(j). Since
F maps Lk(j) ∩O′k univalently to Lk+1(j + p) ∩Ok+1, we have

modLk(j) = modLk+1(j + p).

To prove Theorem 4.1, we are going to identify N disks V0, . . . , VN−1 quasi-
conformally and define a quasiregular map on it. Then we can use the measur-
able Riemann mapping theorem to construct a desired rotatory intertwining. For
some technical reasons, before doing this, we deform the N -polynomial-like map
F : U → V by some hybrid conjugacy.

Lemma 4.1. There exists an N -polynomial-like map F̂ = (F̂k : Ûk → V̂k+1)k∈ZN
hybrid equivalent to F such that the sector L̂k(j) which corresponds to Lk(j) satisfies
that

mod L̂k(j) = mod L̂k′(j)

for any k, k′ ∈ ZN and j ∈ ZNq0 .

Proof. For l ∈ Zq0 , let Al be an annulus with modAl = ml = mod L0(lN). For
k = 1, . . . , N − 1, take a quasiconformal homeomorphism

ρl,k : (L0(lN + pk) ∩O0)/FNq0 → Al.

Since FN induces a conformal isomorphism between L0(lN+pk)/FNq0 and L0((l+
p)N + pk)/FNq0 , we can choose ρl,k so that

(4.2) ρl+p,k ◦ FN = ρl,k.

Define a complex structure σ on L0(lN + pk) ∩ O0 by pulling back ρl,k and
lifting the standard complex structure σ0 on Al. Note that, since (N, p0, q0, p) is
admissible, L0(lN + pk) does not intersect the filled Julia set and we can push
forward a complex structure on (L0(lN + pk)) ∩ O0 to L0(lN + pk) by FNq0 . By
(4.2), σ is FN -invariant. The modulus mod(L0(lN + pk), σ) with respect to the
complex structure σ is equal to ml.

Now we define an F -invariant complex structure σ̂ on ZN × C as follows: let

σ̂ =

{
(Fn)∗σ on F−n(L0(lN + pk)) for some k ∈ {1, . . . , N − 1} and n > −N.
σ0 otherwise.

Since ⋃
l∈Zq0 ,k=1,...,N−1

L0(lN + pk)

is forward invariant by FN and σ is FN -invariant, σ̂ is well-defined and F -invariant.
By the measurable Riemann mapping theorem, there exists a quasiconformal

homeomorphism

φ : ZN × C→ ZN × C, φ({k} × C) = {k} × C

such that φ∗σ0 = σ. Let

V̂k = φ(Vk), Ûk = φ(Uk), L̂k(j) = φ(Lk(j)),
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and F̂ = φ ◦ F ◦ φ−1 on Ûk. Then F̂ :
⊔
Ûk →

⊔
V̂k is holomorphic and by the

equation ml = ml+p and (4.2), we have

mod L̂0(j) = mod L̂0(j + p)

and

mod L̂k(j) = mod L̂0(j − pk)

= mod L̂0(j).

�

To simplify the notations, we replace F by F̂ and so on and assume that
F :

⊔
Uk →

⊔
Vk is an N -PL map such that

modLk(j) = modLk′(j)

for any k, k′ ∈ ZN and j ∈ ZNq0 .

Remark 4.2. By the proof of the above theorem, we can see that the quasiconformal
map φ is conformal in a small sector containing γk(j) for all k ∈ ZN and 0 ≤ j <
Nq0 − 1. Indeed, for any k ∈ ZN and 0 ≤ j < Nq0 − 1, there is a invariant sector
Sk,j containing γk(j) such that

Fn(Sk,j) ∩ F−n(L0(lN + pk′)) = ∅
for all k′ ∈ {1, 2, · · · , N − 1} and l ∈ Zq0 . Thus the complex structure σ̂ = 0 on
Sk,j . Hence, φ(γk(j))’s are smooth.

Now we construct quasiconformal maps τk : V0 → Vk (k ∈ ZN ) to identify
V0, . . . , VN−1 together.

Lemma 4.2. There exist quasiconformal maps τk : V0 → Vk (k ∈ ZN ) with the
following properties. For any 0 ≤ j < q0N ,

• τk|γ0(j) is a diffeomorphism onto γk(j) such that FN ◦τk|γ0(j) = τk|γ0(j)◦FN
when both sides are defined;
• τk(S0(j)) = Sk(j) and τk|L0(j) is a conformal map onto Lk(j).

We postpone the proof of this lemma to the end of this section and utilize it to
show the existence part of Theorem 4.1.

Proof of Theorem 4.1 (Existence part). Let V = V0 and

U =
⋃

j∈Zq0 ,k=0,...,N−1

τ−1
k

(
Sk(jN + kp) ∩ Uk

)
.

Note that since (N, p0, q0, p) is admissible and (4.6), jN +kp runs over all elements
of ZNq0 and U is a Jordan disk. Define a quasiregular map g̃ : U → V as follows.
When z ∈ S0(jN + kp) ∩ U for some j ∈ Zq0 , let

g̃(z) = τ−1
k+1 ◦ Fk ◦ τk(z).

By (4.4), g̃ extends continuously on U .
We define an almost complex structure on V as follows. For any j ∈ Zq0 and

k ∈ ZN , let us denote S0(jN + kp) \ L0(jN + kp) by Yj,k and define

σ|Yj,k = τ∗k (σ0|Sk(jN+kp)\Lk(jN+kp)),

where σ0 is the standard complex structure on Vk. Let Y =
⋃
Yj,k. Note that g̃

is holomorphic on Y ∩ U with respect to σ. In other words, σ is g̃-invariant, that
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is, g̃∗σ = σ on Y ∩ U . Indeed, for any j ∈ Zq and k ∈ ZN , F maps each sector
τk(Yj,k ∩ U) onto the sector τk+1(Yj,k+1) and thus

g̃∗σ = τ∗kF
∗(τ−1

k+1)∗σ

= τ∗kF
∗σ0

= τ∗kσ0 = σ

Then we define σ on
⋃
g̃−n(Y ) by pulling back σ|Y via g and let σ = σ0 every-

where else. Note that σ is a well-defined complex structure on V and the maximal
dilatation of σ equals to that of σ|Y since g̃∗σ = σ on Y and g̃ is conformal outside
Y .

By the measurable Riemann mapping theorem, there exists a quasiconformal
mapping h : V → C such that h∗σ0 = σ. Then ĝ = h ◦ g̃ ◦ h−1 is a polynomial-like
map, so there exists a polynomial g hybrid equivalent to ĝ. By taking an affine
conjugacy, we may assume g is monic and centered, and it is easy to check this g
is a p-rotatory intertwining of F by using the thickening technique. �

Now we finish the proof of Lemma 4.2 to complete this section. For the proof,
we first construct C1 diffeomorphisms

τk :
⋃
j

γ0(j)→
⋃
j

γk(j)

such that

• τk maps γ0(j) diffeomorphically onto γk(j) for all k ∈ ZN and 0 ≤ j <
Nq0 − 1;

• τk ◦ FN = FN ◦ τk for all k ∈ ZN .

To this end, we construct C1 diffeomorphisms

τ̃k :
⋃
j

γk(j)→
⋃
j

γk+1(j)

which maps γk(j) onto γk+1(j) for any j and F ◦ τ̃k = τ̃k+1 ◦F for all k ∈ ZN . The
construction is based on induction.

Lemma 4.3. There exists a diffeomorphism

τ̃0 :
⋃
j

γ0(j)→
⋃
j

γ1(j)

such that

• τ̃0 ◦ FN = FN ◦ τ̃0.
• (τ̃−1

0 ◦ F )N = FN .

Proof. Let y0
k(j) be the end point of γk(j) other than xk. For n > 0, let ynk (j) be

the point in γk(j) which satisfies that Fn(ynk (j)) = y0
k+n(j + pn).

All rays γk(j) are periodic of the same period q0N under F . The quotient
space (

⋃
j γk(j))/F q0N is diffeomorphic to the disjoint union of circles and each

component is of the form ηk(j) = γk(j)/F q0N . The points {ynk (j)} corresponds to

the q0N points {[ynk (j)]}k=0,...,q0N−1 (the equivalent class [ynk (j)] = [yn+q0N
k (j)] in

ηk(j)). F induces a diffeomorphism

α : ηk(j)→ ηk+1(j + p)
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(for simplicity, we omit indices k and j for α). Then α([ynk (j)]) = [yn−1
k+1 (j+ p)] and

αN : ηk(j)→ ηk(j + pN)

is the identity map on (
⋃
j γk(j))/FN .

Furthermore, we identify each η0(j) with R/(q0NZ) diffeomorphically so that
{[yn0 (j)]} corresponds to {[n]}. Define R : R/(q0NZ)→ R/(q0NZ) by R(x) = x−1.
Since Rq0N = αq0N = id, we may assume that the following diagram commutes:

η0(j)
αN // η0(j + pN)

R/(q0NZ)
RN
// R/(q0NZ).

Let τ̂ : η0(j)→ η1(j) be the diffeomorphism defined by:

η0(j) ∼= R/(q0NZ)
R−1

−−−→ R/(q0NZ) ∼= η0(j − p) α−→ η1(j).

Then the following diagram commutes:

R/(q0NZ)
R // R/(q0NZ)

R // · · · R// R/(q0NZ)

η0(j)

τ̂

��

α

&&

η0(j + p)

τ̂

��

α

##

· · ·
α

##

η0(j + pN)

τ̂

��
η1(j) η1(j + p) · · · η1(j + pN),

so,

(4.3) (τ̂−1 ◦ α)N = RN = αN .

Let τ̃0 : γ0(j)→ γ1(j) be the diffeomorphism which is a lift of τ̂ . Then τ̃0 ◦FN =
FN ◦ τ̃0. Furthermore, since F is a lift of α, (4.3) implies (τ̃0

−1 ◦ F )N = FN . �

Now define τ̃k for k = 1, . . . , N − 1 inductively by the equation

(4.4) Fk ◦ τ̃k−1 = τ̃k ◦ Fk−1.

Then this equation is also valid for k = 0. Indeed,

τ̃0 ◦ FN−1 ◦ FN−1 = τ̃0 ◦ FN = FN ◦ τ̃0
= F0 ◦ FN−1 ◦ · · · ◦ F1 ◦ τ̃0
= F0 ◦ FN−1 ◦ · · · ◦ τ̃1 ◦ F0

· · ·
= F0 ◦ τ̃N−1 ◦ FN−1.

Since FN−1 maps the subarc of γ0(j − (N − 1)p) from xk to yN−1
0 (j − (N − 1)p))

diffeomorphically onto γN−1(j), we have F0 ◦ τ̃N−1 = τ̃0 ◦ FN−1.
Similarly, we can also show that

FN = (τ̃−1
0 ◦ F )N

= τ̃N−1 ◦ · · · ◦ τ̃0 ◦ FN ,
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so

(4.5) τ̃N−1 ◦ · · · ◦ τ̃0 = id.

And it is easy to see that

(4.6) τ̃k(ynk (j)) = ynk+1(j)

Now let τk = τ̃k−1 ◦ · · · ◦ τ̃0 on
⋃
γ0(j). Clearly, τk is our desired diffeomorphism.

Proof of Lemma 4.2. The proof is due to Bielefeld [1, Lemma 6.4, 6.5].
Let

τk :
⋃
j

γ0(j)→
⋃
j

γk(j)

be the diffeomorphisms we constructed as above and let τk|L0(j) : L0(j) → Lk(j)

be the conformal isomorphism which sends x0 to xk, γ+
0 (j − 1) to γ+

k (j − 1), and

γ−0 (j) to γ−k (j). Taking Lk(j) smaller (that is, taking δ greater) if necessary, we

may assume that τk|L0(j) extends smoothly on γ+
0 (j − 1) and γ−0 (j).

It remains to extend τk on
⋃

(Sk(j) \ Lk(j)) quasiconformally. For k ∈ ZN and
j ∈ ZNq0 , let S−k (j) (resp. S+

k (j)) be the open sector between γ−k (j) and γk(j)

(resp. γk(j) and γ+
k (j)). Then

⋃
(Sk(j) \ Lk(j)) =

⋃
(S+
k (j) ∪ S−k (j)). So we need

to extend τk quasiconformally on S−0 (j), which maps to S−k (j) (the case for S+
0 (j)

is quite similar). Furthermore, since τk is smooth on γ±0 (j), and we need only show
the extendability of τk on O0, where F is linearizable. So we consider S−0 (j) ∩ O0

instead of S−0 (j).
To this end, we will use the log-Koenigs coordinate. Recall that the Koenigs

coordinate is a univalent map ψk : Ok → C such that ψk(FNq0k (z)) = λ̃q0ψk(z),

where λ̃ is the multiplier of the orbit O. Set λ = λ̃q0 . Let hk(z) = logψk(z) on

(S−k (j) ∪ Lk(j)) ∩Ok. Then we have

(4.7) hk(FNq0k (z)) = hk(z) + log λ.

Let T−k (j) = hk(S−0 (j) ∩O0), Mk(j) = hk(Lk(j) ∩O0) and

χk = hk ◦ τk ◦ h−1
0 : ∂±T−0 (j) ∪M0(j)→ ∂±T−k (j) ∪Mk(j).

where ∂+T−k (j) = hk(γk(j)) and ∂−T−k (j) = hk(γ−k (j)) are the upper and lower

boundaries of the strip T−k (j). Then, by (4.7), for z ∈ ∂+T−k (j),

χk(z + log λ) = hk ◦ τk ◦ h−1
0 (z + log λ)

= hk ◦ τk ◦ FNq0(h−1
0 (z))

= hk ◦ FNq0k ◦ τk ◦ h−1
0 (z)

= hk(τk ◦ h−1
0 (z)) + log λ

= χk(z) + log λ.

We call such a diffeomorphism on curves in C a near translation. More precisely,
we say a diffeomorphism on a curve in C onto its image in C is a near translation
if it is of the form z+O(1) and its derivative is uniformly bounded away from zero
and infinity.

Claim. χk|∂−T−0 (j) is a near translation.
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Figure 4. Conjugacy to translations and linear expansion.

Since τk|Lk(j) is conformal, χk|M0(j) : M0(j)→Mk(j) is conformal and it maps

the upper boundary ∂+M0(j) (= ∂−T0(j)) to ∂+Mk(j) (= ∂−Tk(j)) diffeomorphi-
cally. Let m = mod(Mk(j)/(z 7→ z+log λ)) = modLk(j). Then by the assumption,
m is independent of k.

Let Hν = { z log λ | 0 < Im z < ν}. Then there exists some ν > 0 such that
for any k ∈ ZN , there is a conformal map sk from Mk(j) into Hν which maps
the upper and lower boundary to the upper and lower boundary respectively, and
which gives a conjugacy from z 7→ z + log λ to itself. (ν is given by the equation
mod(Hν/(z 7→ z + log λ)) = m.) Since sk(z + log λ) = sk(z) + log λ, sk|∂+M0(j) is
a near translation. Let

χ̂k = e ◦ sk ◦ χk ◦ s−1
0 ◦ e−1

where e(z) = exp

(
π

ν log λ
z

)
.

Then χ̂k can be extended to some neighborhood of 0 by the reflection principle.
Hence it is of the form rz +O(z2). Thus

sk ◦ χk ◦ s−1
0 (z) = e−1 ◦ χ̂k ◦ e(z)

= z +O(1),

so it is a near translation. Since the composition of near translations is also a near
translation, χk is also a near translation.
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Just as in the case of Mk(j), let t̂k be a conformal map from T−k (j) into Hνk

which gives a conjugacy from z 7→ z + log λ to itself. (Note that in this case, νk
may depends on k.) Let tk = t̂k/(ν0 log λ) : T−k (j) → {0 < Im z < νk/ν1}. Then

χ̃±k = tk ◦χk ◦ t−1
0 restricted to the upper and lower boundary respectively are both

near translations. We define χ̃k : t0(T−0 (j))→ tk(T−k (j)) as follows:

χ̃k(x+ iy) = y(χ̃+
k (x+ i)− i) + (1− y)χ̃−k (x) + i

νk
ν0
y.

(Although it may not be mapped into tk(T−k (j)), it makes no problem because we
only need to construct this map near the left infinity.) It is easy to check χ̃k is a
quasiconformal diffeomorphism. Therefore, τk = h−1

k ◦t
−1
k ◦χ̃k◦t0◦h0 on S−0 (j)∩O0

is a quasiconformal extension. �

5. Uniqueness for the rotatory intertwning

In this section, we show that rotatory intertwnings are unique up to rotational
conjugacies. It suffices to show that two p-rotatory intertwinings (g, x) and (g′, x′)
of (F,O) are affinely conjugate. Uniqueness of intertwinings are first proved by
Epstein and Yampolsky for intertwinings (not rotatory) of two quadratic polyno-
mials [4]. Their proof is based on the properness of the straightening map in the
paremeter space, which is true only for quadratic renormalizations. Here, we prove
uniqueness of rotatory intertwinings for any degree d ≥ 2.

Let (g, x) be a p-rotatory intertwining of an N -polynomial map (F,O) with
marked periodic point of period N . Let ϕ : C \ K(g) → C \ D be the Böttcher
coordinate of g. Set D0 := {z | |ϕ(z)| < 1} ∪K(g). There are Nq0 external rays
R0,R1, · · · ,RNq0−1 landing at the repelling fixed point x. They are ordered by
g(Ri) = Ri+1 for all i = 0, 1, · · · , Nq0 − 1. We are going to use the thickening
technique as follows. For each external ray Ri, set a sector Si contained in D0 with
the following properties:

• Si ⊃ (Ri ∩D0),
• f(Si ∩ f−1(D0)) = Si+1,
• the components of ∂Si \ ({x} ∪ ∂D0) are smooth.

By the thickening procedure, we can obtain a N -PL map

G = (g : Uk → Vk+1)k∈ZN

with the following properties:

• The N -PL map G is hybrid equivalent to (F,O).
• For every k ∈ ZN , Vk is a Jordan disk with smooth boundary that is

contained in D0.
• The components of Vk \ (

⋃
i

Si) are mutually disjoint Jordan disks.

Let h be a hybrid conjugacy between G and (F,O). Denote by K the filled Julia
set of the N -PL map G.

Let (g′, x′) be another p-rotatory intertwining of an N -polynomial map (F,O)
with marked periodic point of period N . For g′, we attach a prime to each notation
(e.g., D′0, G

′,K′). Our aim is to show (g, x) and (g′, x′) are affinely conjugate. Since
the Julia sets of g and g′ are connected, it suffices to show that g and g′ are hybrid
equivalent.

Theorem 5.1. There exists a qc map φ : C→ C such that
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• φ ◦ g = g′ ◦ φ on C,
• ∂̄φ = 0 a.e. on K(g).

Proof. Let Wk denote the union of the components of Vk \ (
⋃

i∈ZN
Si) that intersects

Kk for each k ∈ ZN . Set Φ = h′−1 ◦ h on
⋃

k∈ZN
Wk. Clearly, Φ can be extended

continuously to
⋃

k∈ZN
Wk and the corresponding boundary map satisfies Φ◦g = g′◦Φ.

Since x is repelling and each component of ∂Si\x is smooth, it is well known that Φ
can be extended to a qc map Φ form D0 onto D′0. See [9, Lemma 5.3] for example.
Consequently, we can get a qc homeomorphism Φ : C → C such that Φ(K) = K′
and Φ ◦ g = g′ ◦ Φ on K. Since the post-critical set P (g) of g lies in K, we can
lift Φ through branched coverings g and g′ to get a qc homeomorphism Ψ : C→ C
such that Ψ is homotopic to Φ rel K ⊃ P (g). By the proof of [14, Theorem A.1],
there is a qc conjugacy φ between g and g′ such that φ = Φ on K. It follows that

∂̄φ = 0 on
∞⋃
n=0

g−n(K) since ∂̄φ = ∂̄Φ = 0 on K. Note that K(g) \
∞⋃
n=0

g−n(K) has

zero Lebesgue measure (see [8, Key Lemma 6.1] for example). Thus φ is actually a
hybrid conjugacy between g and g′. �

6. Tuning for unicritical polynomials

The aim of this section is to prove the Main Theorem. More precisely, fix an
integer d ≥ 2 and a critically periodic unicritical polynomial f0 ∈ Cd, we show that
f0 can be tuned by any polynomial in Cd that does not have parabolic fixed points.

Throughout this section, we fix such an f0 6= zd with an internal angle system
h. Note that f0 has d distinct repelling fixed point. Among these fixed point, there
exists a unique dividing fixed point α(f0), that is, K(f0) \ {α(f0)} is disconnected.
Furthermore, there exists a unique cycle of external rays landing at α(f0). Assume
that the period of the critical point 0 is q′. Let q denote the number of external
rays landing at α(f0).

6.1. Immediate renormalization. Let us begin a naive but essential case.
If q′ = q, then we call f0 immediately renormalizable.

Theorem 6.1. If f0 is immediately renormalizable, then for any g ∈ Cd without
parabolic fixed points, χ−1

f0
(g) 6= ∅.

Proof. Assume that the rotation number of α(f0) is p/q. Let

G = (Gk)k∈Zq : Zq × C→ Zq × C

be a q-polynomial such that G0 = g and Gk = id for k = 1, . . . , q − 1. Let β
be the fixed point of g at which the external ray for g with angle 0 lands. Set
O = {(k, β) | k ∈ Zq}. It follows from Theorem 4.1 that there exists a p-rotatory
intertwining (f, x) of (G,O). Here, we apply Theorem 4.1 with p0 = 0, q0 = 1,
N = q. By a conjugacy via a rotation, we may assume that R(f ; θ) lands at
x whenever R(f0; θ) lands at α(f0). By [8, Corollary 4.11], we have λf ⊃ λf0 .
Finally it is easy to check that g is a λf0-renormalization for f by the definition of

p-rotatory intertwining. Hence f ∈ χ−1
f0

(g). �
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6.2. General cases.

Lemma 6.1. Let f = zd + c be a critically periodic polynomial. Let G be the grand
orbit of the external rays landing at α(f) under f and let

Θ = {(s, t) | R(f ; s) and R(f ; t) ∈ G land at a common point}.

Assume that λf coincides with the smallest rational lamination that contains Θ.
Then either f is immediately renormalizable or primitive.

Proof. Assume that f is not immediately renormalizable. We will show that f is
primitive. For otherwise, there exist two periodic Fatou component U , U ′ and a
periodic point x such that

x ∈ U ∩ U ′.
Note that there are two external angles a 6= b such that R(f ; a) and R(f ; b) lands
at x.

We first show that (a, b) 6∈ Θ. This is a consequence of the following claim.

Claim. For any (s, t) ∈ Θ, the corresponding landing point z∗ of R(f ; t) is
a buried point. In other words, z∗ does not lie on the boundary of any Fatou
component.

For otherwise, there exists a periodic Fatou component V such that α(f) ∈ ∂V .
It follows the period of V is the ray period of α(f). See the proof of [16, Lemma 2.1].
Hence, f is immediately renormalizable.

Since λf is the smallest rational lamination that contains Θ, there exist a se-
quence {(an, bn)} ⊂ Θ such that lim

n→∞
|an − a| = lim

n→∞
|bn − b| = 0. Let Wn

denote the simply connected domain that is bounded by R(f ; a) ∪R(f ; b) and

R(f ; an) ∪R(f ; bn). Then either U ⊂Wn or U ′ ⊂Wn. Without loss of generality,
we may assume that U ⊂ Wn for all n ∈ N. Let θ be an external angle such that
R(f ; θ) lands on ∂U . Then either |θ − a| ≤ |an − a| or |θ − b| ≤ |bn − b| for all
n ∈ N. This implies that θ must equal to a or b. So only R(f ; a) and R(f ; b) can
land on ∂U . This is impossible since U is a Jordan disk. �

Lemma 6.2. There exists a finite sequence (Fi)
n
i=0 ⊂ Cd of critically periodic

unicritical polynomial with internal angle system Hi satisfying the following.

• For each 0 ≤ i ≤ n, Fn is either primitive or immediately renormalizable.
• χf0 = χn ◦ · · · ◦ χ0, where χi is the straightening map induced by Fi and
Hi.

Proof. Recall that h is the internal angle system for f0 and the period of the critical
point 0 under f0 is q′. Let G0 be the grand orbit of the external rays landing at
α(f0) under f0 and let

Θ0 = {(s, t) | R(f0; s) and R(f0; t) ∈ G0 land at a common point}.

By [8, Theorems 5.17,5.18], there exists a unique critically periodic unicritical poly-
nomial F0 ∈ Cd such that λF0

is the smallest rational lamination that contains Θ0.
If F0 is not immediately renormalizable, then it follows that F0 is primitive from
Lemma 6.1. Assume that the period of the critical point 0 under F0 is p0. If p0 = q′,
then we choose the internal angle system H0 = h and let n = 0. Otherwise, we
choose an arbitrary internal angle system H0 of F0.



18 HIROYUKI INOU AND YIMIN WANG∗

Now we proceed to construct (Fk) inductively. Assume that F0, · · · , Fk and
H0, · · · , Hk−1 has been constructed. Let pi be the period of the critical point 0
under Fi (0 ≤ i ≤ k).

Case 1. If q′ > Πk
i=0pi, then we choose an arbitrary internal angle system Hk

of Fk and we let fk+1 = χk ◦ · · · ◦ χ0(f0). Let αk+1 be the unique dividing fixed
point of fk+1 and let Gk+1 be the grand orbit of the external rays landing at αk+1

under fk+1. Let

Θk+1 = {(s, t) | R(fk+1; s) and R(fk+1; t) ∈ Gk+1 land at a common point}.

Again by [8, Theorem 5.17,5.18], there exists a unique critically periodic unicritical
polynomial Fk+1 ∈ Cd such that λFk+1

is the smallest rational lamination that con-
tains Θk+1. By Lemma 6.1, either Fk+1 is immediately renormalizable or primitive.

Case 2. If q′ = Πk
i=0pi, we let n = k and choose Hk such that H−1

k (0) corre-
sponds to h−1(0) in the following sense. Make a convention that χ−1 = id. Indeed,

since q′ > Πk−1
i=0 pi, Fk = fk = χk−1 ◦ · · · ◦ χ0(f0) by the construction. Let φi be a

hybrid conjugacy between fpii = (χi−1 ◦ · · · ◦ χ0(f0))pi and fi+1 = χi ◦ · · · ◦ χ0(f0).
Let γk = φk−1 ◦ · · · ◦ φ0(R(f0; θ0)). Note that γk is F pkk -invariant and so it lands
at a periodic point zk ∈ ∂Uk of period pk under Fk, where Uk is the Fatou com-
ponent of Fk containing 0. Now choose an internal angle system Hk of Fk so that
H−1
k (0) = zk.
It remains to check the second property. For each 0 ≤ k ≤ n, let αk be the

dividing fixed point of fk = χk−1 ◦ · · · ◦ χ0(f0) and let Ok be a cycle of external

rays landing at αk. Let Ôk = (φk−1 ◦ · · · ◦ φ0)−1(Ok). Note that all the rays in Ôk
land at a common periodic point α′k of f0. Let S be the collection of external rays
landing at

⋃
α′k and let

Θ̂ = {(s, t) | R(f0; s) and R(f0; t) ∈ S land at a common point}.

For any f ∈ R(λf0), let

K̂ ′f =
⋂

(s,t)∈Θ̂

Sf (s, t)

where Sf (s, t) is the component of C\R(f ; s) ∪R(f ; t) with the following property.
For any u ∈ R/Z, the external ray R(f ;u) lies in Sf (s, t) if and only if the external

ray R(f0;u) lies in the component of C \ R(f0; s) ∪R(f0; t) that contains U0. By

the constructions of χk, fq
′ |K̂′f extends to be a polynomial-like map that is hybrid

equivalent to χn ◦ · · · ◦ χ0(f). Since K̂f ⊂ K̂ ′f and both fq
′ |K̂f and fq

′ |K̂′f extends

to a polynomial-like map of a same degree d, it follows from [13, Theorem 5.11]

that K̂f = K̂ ′f . Thus

χf0(f) = χn ◦ · · · ◦ χ0(f).

�

Now we prove the Main Theorem to complete this paper.

Proof of the Main Theorem. Let χk = χFk (k = 0, · · · , n) be given by Lemma 6.2.
By Theorem 6.1 and [16, Main Theorem], χk is almost surjective for all k = 0, · · · , n,
and hence χf0 = χn ◦ · · · ◦ χ0 is almost surjective. �
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