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Abstract. It is well known that there are no real cubic polynomials f with

two distinct critical points such that f is infinitely renormalizable and all the
renormalizations of f are cubic-like maps. This due to the real bounds. In

this paper, we show that there does exist an infinitely renormalizable complex

cubic polynomial F with two distinct critical points such that all the renor-
malizations are cubic-like. As a consequence, F has no a priori (complex)

bounds.

Moreover, F is combinatorially equivalent to a unicritical polynomial. In
particular, such a unicritical polynomial is not combinatorially rigid in the

space of cubic polynomials. We further prove that the combinatorial class of

such a polynomial contains a continuum.

1. Introduction

Infinitely renormalizable real polynomials have been deeply studied for decades.
Real bounds and complex bounds have been built for such maps [17]. A remark-
able result proved in this century is on the rigidity of the infinitely renormalizable
real polynomials [13]. While the rigidity of the infinitely complex polynomials re-
mains open since the combinatorics for complex polynomials are more complicated
than those for real polynomials. As we all know, critical points play an important
role in holomorphic dynamics. The increase of the critical points will make the
combinatorics intricate. Unicritical polynomials can be treated more easily than
multi-critical polynomials. Fortunately, the combinatorics for infinitely renormal-
izable real polynomials are not too complicated due to the real bounds. Indeed, all
the deep renormalizations of infinitely renormalizable real polynomials are compo-
sitions of unicritical maps. (See [19, 20].) As a corollary, deep renormalizations of
an infinitely renormalizable real cubic polynomial with two distinct critical points
cannot be cubic. One may naturally ask whether there exists an infinitely renor-
malizable complex cubic polynomial with two distinct critical points such that all
the renormalizations are cubic-like.

The aim of the paper is to answer the question above affirmatively.

Main Theorem. There exists an infinitely renormalizable complex cubic polyno-
mial F with two distinct critical points ω ̸= ω′ such that all the renormalizations of
F are cubic-like maps. More precisely, ω, ω′ ∈

⋂
nKn is non-trivial, where Kn is

the filled-Julia set of the n-th renormalization of F .

Date: June 6, 2025.

2020 Mathematics Subject Classification. Primary: 37F20 ; Secondaries: 37F31.
Key words and phrases. Polynomial dynamics, Tuning, Quasiconformal surgery,

Renormalization.

1



2 HIROYUKI INOU AND YIMIN WANG

The Main Theorem is also related to the combinatorial rigidity problem:

Definition 1.1 (Combinatorial equivalence). We say two polynomials f and g
with connected Julia sets and no indifferent cycles are combinatorially equivalent if
f and g have the same rational lamination.

See § 2.1 for the definition of rational laminations.

Definition 1.2 (Combinatorial rigidity). We say a polynomial f with connected
Julia set and no indifferent cycle is combinatorially rigid if a polynomial g of the
same degree as f with connected Julia set and no indifferent cycle is combinatorially
equivalent to f , then the composition of the Böttcher coordinates

ϕg ◦ ϕ−1
f : (C \K(f)) → (C \K(g))

extends to a quasiconformal homeomorphism on the Riemann sphere Ĉ.

McMullen conjectured that every polynomial with connected Julia set and no
indifferent cycle is combinatorially rigid [14]. A counterexample is first given by
Henriksen [4].

Here we give another counterexample of combinatorial rigidity; in fact, the ex-
istence of such a polynomial F in the Main Theorem implies that there exists an
infinitely renormalizable cubic unicritical polynomial P (z) = z3+c combinatorially
equivalent to F . Clearly, F and P are not combinatorially rigid (see Corollary 4.2
for more detail).

Contrary to the fact that our counterexample is unicritical, Henriksen’s coun-
terexample is far from unicritical; it is a cubic polynomial with infinitely many
capture renormalizations, namely, each renormalization is quadratic and contains
only one critical point, and the other critical point outside is eventually captured
by the filled Julia set of the renormalization. Its combinatorial class contains (and
probably is equal to) a quasiconformally homeomorphic image, contained in a 1-
dimensional analytic set, of the combinatorial class in the Julia set of the quadratic
polynomial hybrid equivalent to the first quadratic renormalization (see also [7]).

More strongly, we prove there exists a continuum connecting P and F in the
combinatorial class (Theorem 4.3). In addition, the important fact is that F is
constructed as a perturbation of z(1 + z)2. Hence such a continuum has a defi-
nite diameter, and furthermore, we can have F infinitely renormalizable not only
in the sense of polynomial-like maps, but also in the sense of the near-parabolic
renormalization [10], which should allow us to study the dynamics of F further.

The combinatorial rigidity conjecture for the unicritical family zd+c is still open
for d ≥ 2. Our example does not contradict this; we are working in a bigger family
of the whole cubic polynomials, and the intersection of the combinatorial class with
the uncritical family can be a singleton.

2. Preliminaries

Let f be a polynomial. The filled Julia set K(f) of f is defined as:

K(f) = {z ∈ C | sup
n∈N

|fn(z)| <∞}.

We call the boundary J(f) of K(f) the Julia set of f .
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In this paper, we only concern about the monic centered polynomials with con-
nected Julia set. We use C3 to denote the set of all such maps, that is,

C3 = {f | f is a monic centered cubic polynomial and J(f) is connected}.

2.1. External rays and equipotential curves. For any f ∈ C3, there exists a
unique conformal map φ : C \K(f) → C \ D with the following properties.

• φ(z)/z → 1 as z → ∞.
• φ(f(z)) = (φ(z))3 for all z ∈ C \K(f).

The Green function of f is defined as

Gf (z) =

{
log |φ(z)|, if z ̸∈ K(f);
0 otherwise.

For any s > 1, we call the set G−1
f (s) the equipotential curve of level s and denote

it by E(s).
For t ∈ R/Z, the external ray Rf (t) of angle t is defined as

Rf (t) = φ−1({re2πit | r > 1}).

If the limit

x = lim
r→1

φ−1(r exp(2πiθ))

exists, then we say Rf (θ) lands at x and θ is the landing angle for x.
The rational lamination of f , denoted by λ(f), is the equivalence relation on

Q/Z so that θ1 ∼ θ2 if and only if Rf (θ1) and Rf (θ2) land at the same point.

2.2. Yoccoz puzzle. Fix an f ∈ C3. We say that a finite set Z is f -admissible if
the following hold:

• Z is the union of some repelling periodic cycles.
• for any z ∈ Z, there exist at least two external rays landing at z.

Fix an f -admissible set Z. Let Γ0 = ΓZ
0 denote the union of all the external rays

landing on Z, the set Z itself and the equipotential curve E(1). For each n ≥ 1,
define Γn = f−n

0 (Γ0). A bounded component of C \ Γn is called a puzzle piece of
depth n.

2.3. External markings and hybrid conjugacies. We say F : U → V is a
cubic-like map if F is a holomorphic proper map of degree 3 and U ⋐ V are Jordan
disks in C. Similar to polynomials, we define the filled Julia set K(F ) of F as

K(F ) =
⋂
n∈N

F−n(U).

By an admissible path to K(F ) we mean a continuous map γ : [0, 1] → V so that
γ(0, 1] ⊂ V \K(F ) and γ(0) is a fixed point of F . We say two admissible paths γ0
and γ1 to K(F ) are homotopic if there exists a continuous map γ̃ : [0, 1]× [0, 1] → V
such that

• t 7→ γ̃(s, t) is an admissible path to K(F ) for all s ∈ [0, 1];
• γ̃(0, t) = γ0(t) and γ̃(1, t) = γ1(t) for all t ∈ [0, 1];
• γ̃(s, 0) = γ0(0) for all s ∈ [0, 1].
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We say an admissible path γ is F -invariant if F (γ ∩ U) = γ. A homotopy class
of F -invariant admissible paths to K(F ) is called an external marking of F . An
externally marked cubic-like map (F, [γ]) is a cubic-like map F with an external
marking [γ]. By abuse of notation, We often omit [γ] and simply call g an externally
marked polynomial.

The fixed point γ(0) is called the externally marked fixed point for (F, [γ]). Note
that every externally marked fixed point has zero combinatorial rotation number.

Note that the external ray Rf (0) of angle 0 naturally induces an external marking
of a given cubic polynomial f . This external marking is called the standard external
marking of f . In the following, every monic cubic polynomial f is externally marked
by the standard external marking unless otherwise stated.

Two cubic-like maps F : U → V and g : U ′ → V ′ are said to be quasiconformally
conjugate if there exists a quasiconformal map ϕ : C → C such that ϕ ◦ F = G ◦ ϕ
near K(F ). We say that F and G are hybrid equivalent if they are quasiconformally
conjugate and there exists a quasiconformal conjugacy ϕ so that ∂̄f = 0 a.e. on
K(F ). The following theorem is a special case of [9, Theorem A].

Theorem 2.1 (Straightening). Let F be a cubic-like map with connected Julia set
and let [γ] be an external marking of F . There exists a unique cubic polynomial
f ∈ C3 such that there exists a hybrid conjugacy between F and f sending the
external marking [γ] of F to the standard external marking of f .

3. Straightening and Tuning

Recall that C3 denotes the connectedness locus of monic and centered cubic
polynomials. We always consider a polynomial f ∈ C3 externally marked by the
standard external marking. Then C3 is isomorphic to the family of affine conjugacy
classes of externally marked cubic polynomials with connected filled Julia sets.

For any q ≥ 2, fix a unicritical cubic polynomial Pq(z) = z3 + cq such that

• Pq is monic and centered;
• The unique critical point of Pq is periodic of period q.
• Pq has a repelling fixed point αPq with rotation number 1/q.
• αPq

is the landing point of RPq
(1/(3q − 1)).

Note that Pq is the center of the 1/q-satellite copy of the multibrot set M3

attached to the main hyperbolic component, namely, at

z3 +
eπi/q(3− e2πi/q)

3
√
3

,

which has a parabolic fixed point of multiplier e2πi/q at eπi/q
√
3
. The limit

lim
q→∞

eπi/q(3− e2πi/q)

3
√
3

=
2

3
√
3

is the cusp of the main hyperbolic component.
Let C(q) denote the set of combinatorially renormalizable maps with respect to

λ(Pq), that is,

C(q) = {f ∈ C3 | λ(f) ⊃ λ(Pq)}.
There exists a subset R(q) ⊂ C(q) and a well defined straightening map

χq : R(q) → C3
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with the following dynamical property. For any f ∈ R(q), f is renormalizable in
the sense of polynomial-like mapping and its renormalization is hybrid equivalent
to χq(f) respecting external markings. See [9, 11] for more details.

In this paper, we only consider cubic renormalizations; hence a map f ∈ C3 is
renormalizable if there exists a cubic-like restriction fq : U → V of some iterate of
f with connected filled Julia set such that U contains both of the critical points.
We call the fq : U → V a renormalization of period q.

Lemma 3.1. Let f ∈ C3 satisfy the following:

(1) There exists a fixed point α of rotation number 1/q for f .
(2) There exists a cubic renormalization fq : U → V of period p. Let K be the

filled Julia set of the renormalization.
(3) An external angle θ of α for f satisfies the following: The connected com-

ponent of C \ (Rf (θ) ∪Rf (3θ) ∪ {α}) containing Rf (θ + ε) for sufficiently
small ε contains K \ {α}.

Then by replacing f by −f(−z) if necessary, we have the following:

• 3θ = 1/(3q − 1) in Q/Z, and
• f ∈ R(q).

Note that the third assumption is not only for θ, but also for the renormalization
because there are “crossed” renormalizations [14] for which such θ does not exist.

Proof. First observe that since the combinatorial rotation number of α is 1/q,
θ, 3θ, 32θ, . . . , 3q−1θ are ordered counterclockwise.

Rf (θ), Rf (3θ), . . . , Rf (3
q−1θ)

as well as the landing point α divide the plane into q sectors. Let Sk be the sector
bounded by Rf (3

k−1θ) and Rf (3
kθ). Then S1 contains both of the critical points

and f : Sk → Sk+1 is a homeomorphism for k = 2, . . . , q (indices are understood in
modulo q here).

Therefore, the intervals [3k−1θ, 3kθ] (k = 1, . . . , q) partition R/Z and their
lengths ℓk satisfy

3ℓ1 = 2 + ℓ2, 3ℓk = ℓk+1 (k = 2, . . . , q).

Hence it follows that

1 =

q∑
k=1

ℓk = ℓ2
3q − 1

2
,

so

2 · 3θ ≡ ℓ2 =
2

3q − 1
mod 1.

Therefore, we have

3θ =
1

3q − 1
, or

1

3q − 1
+

1

2
.

By taking a conjugacy by z 7→ −z (in other words, by replacing f by −f(−z)) for
the latter case, we have 3θ = 1

3q−1 .

Since K ⊂ S1, it is easy to see that f ∈ R(q). □

We proceed to define C(qn) for any finite sequence qn = (q1, q2, · · · , qn), qj ≥ 2
for all j. By the main theorem of [11] (or [9, Theorem B and C]), there exists a
unique hyperbolic and post-critically finite cubic polynomial Pq1,q2 ∈ C(q1) such
that χq1(Pq1,q2) = Pq2 . We then define Pqn , inductively such that Pqn ∈ C(q1) and
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χq1(Pqn) = Pσ(qn), where σ(q1, q2, · · · , qn) = (q2, · · · , qn) is the shift map. Finally,

let

C(qn) = {f ∈ C3 | λ(f) ⊃ λ(Pqn)}.

Lemma 3.2. For any infinite sequence q = (q1, q2, · · · ) with qj ≥ 2 for all j, let
qn = (q1, q2, · · · , qn) for all n ≥ 1. Then

C(qn) ⊂ C(qn−1).

Proof. By construction, Pqn ∈ C(qn−1). Hence the lemma follows from the defini-

tion of C(qn). □

Lemma 3.3. For any infinite sequence q = (q1, q2, · · · ) with qj ≥ 2 for all j, let
qn = (q1, q2, · · · , qn) for all n ≥ 1. If a sequence {fn} of cubic polynomials with
fn ∈ C(qn) converges to f , then

f ∈ C(q) =
⋂
n

C(qn)

Moreover, f is infinitely renormalizable. In particular, C(q) is a nonempty compact
set.

Note that C(qn) is not compact. This lemma is essentially proved in [8] in a more
general situation, but we provide a simpler proof under our current situation.

Proof. For n ∈ N, Let Qn = Pqn . Note that Qn has a periodic point αn with

period sn := q1q2 · · · qn−1 and rotation number 1/qn. Let Θn be the set of all
external angles of αn for Qn. For each n ∈ Z+, fix an angle θn ∈ Θn and let βn
be the landing point of the external ray Rf (θn). By [6, Lemma B.1], it suffices to
show that each βn is repelling.

We first show that β1 is repelling. To obtain a contradiction, we assume that β1
is parabolic.

Case 1. β2 is repelling. It follows from [6, Lemma B.1] that Rf (t) lands at β2
for all t ∈ Θ2. We use all the external rays with angles in Θ2 and the equipotential
curve of level 1 to make Yoccoz puzzle. Note that there exist critical puzzle pieces

Y
(kq1q2)
Q2

of depth kq1q2 (k ∈ Z+) such that the first return map

Qq1q2
2 : Y

(kq1q2)
Q2

→ Y
((k−1)q1q2)
Q2

is a 3-to-1 covering map. Since fn ∈ C(Q2), the corresponding first return map

fq1q2n : Y
(kq1q2)
fn

→ Y
((k−1)q1q2)
fn

is also a 3-to-1 covering map. Thus fq1q2 : Y
(kq1q2)
f → Y

((k−1)q1q2)
f is a 3-to-

1 covering. This implies the orbits of two critical points of f can never escape⋃q1q2−1
j=0 f j(Y

(q1q2)
f ). However the parabolic fixed point β1 must attract at least one

critical point of f . Hence β1 has to lie in
⋃q1q2−1

j=0 f j(Y
(q1q2)
f ). By the definition

of β1 and β2, β1 cannot belong to the boundary of any puzzle piece. So β1 ∈⋃q1q2−1
j=0 f j(Y

(q1q2)
f ). This contradicts with the fact that

fq1q2 : Y
(q1q2)
f → Y

(0)
f

is a first return map.
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Case 2. β2 is parabolic. Then β3 must be repelling since a cubic polynomial
can have at most two parabolic cycles. By using a same argument in case 1, one
can show that this is impossible.

Similarly, one can show that βn is repelling for all n ∈ Z+.
□

Definition 3.4. Let f and g are cubic polynomials with connected Julia sets. Let
α be a fixed point of f , and β be a β-fixed point of g, i.e., a fixed point with
combinatorial rotation number 0. Let p/q be an irreducible fraction with q ≥ 2.
We say (f, α) is a p/q-rotatory of (g, β) if there exist topological disks U ⋐ V with
the following properties.

• The rotation number of α is p/q and α ∈ U .
• fq : U → V is a cubic-like map with connected Julia set K.
• Both of the critical points of f lie in U .
• There exists a hybrid conjugacy h between fq|U and g such that h(α) = β.

If g is externally marked, we further require the following: There exists θ ∈ Q/Z
such that

• the external ray Rf (θ) lands at x;
• K \ {x} is contained in a component of

C \

(
p−1⋃
n=0

fn(Rf (θ)) ∪ {x}

)
;

• the external marking for fq : U → V defined by Rf (θ) (note that this does
not depend on the choice of θ) corresponds to the standard external marking
by the hybrid conjugacy h.

Note that no rotatory exists if β is parabolic. Otherwise, rotatories always exist:

Theorem 3.5. Let p/q be an irreducible fraction with q ≥ 2 and let g be an exter-
nally marked cubic polynomial with connected Julia set. If the externally marked
fixed point is repelling, then there exists a p/q-rotatory of (g, β).

Indeed, a quasiconformal surgery construction is given in [11, Theorem 4.1] under
more general settings.

In the following, we only consider the case p = 1; i.e., 1/q-rotatories. Then by
Lemma 3.1, the following further holds:

Corollary 3.6. Under the assumption of the theorem, consider further the case
p = 1. Then there exists a 1/q-rotatory (f, α) of (g, β) such that

(1) the combinatorial rotation number of α for f is 1/q,
(2) the external ray Rf (

1
3q−1 ) lands at α, and

(3) f ∈ R(q).

We recursively apply this corollary to construct infinitely renormalizable poly-
nomials. However, since we want to start with parabolic maps, The first step is
done explicitly as follows:

For q ≥ 2, let

(3.1) ĝq(z) = e2πi/qz (1 + z)
2
.
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Figure 1. The Julia set of ĝ128. The biggest yellow region is the
filled Julia set of the combinatorial (or parabolic-like) renormaliza-
tion. There is a critical point located at the thinnest part of the
region, which the preimage of the parabolic fixed point of multi-
plier e2πi/128 at the origin.

Note that ĝq has a parabolic fixed point 0 with rotation number 1/q and there
exists a critical point −1 satisfies

ĝq(−1) = 0.

Let β̂q = e−πi/q − 1 be the repelling fixed point of ĝq that is close to 0. Note

that there is a unique external ray landing at β̂q. Such an external ray induces an
external marking κq of ĝq. By Theorem 2.1, there exists a unique cubic polynomial
gq ∈ C3 so that it is hybrid equivalent to ĝq and there exists a hybrid conjugacy
between gq and ĝq that sends the standard external marking of gq to the external
marking κq of ĝq. Consequently, gq and ĝq are affinely conjugate. Let βq and αq

be the fixed point of gq which corresponds to β̂q and 0 respectively by the affine
conjugacy between ĝq and gq. Let ωq and ω′

q be the critical points of gq such that
ωq lies in the parabolic basin of αq and gq(ω

′
q) = αq.

Let g∞ = limq→∞ gq. It is a monic centered cubic polynomial affinely conjugate
to ĝ∞ = lim ĝq = z(1 + z)2.

Lemma 3.7. Let f be a monic and centered cubic polynomial. Assume that f has
a parabolic fixed point x0 with multiplier e2πi/q for some q ∈ N and there exists a



COMBINATORIAL NON-RIGIDITY FOR CUBIC POLYNOMIALS 9

critical point c which satisfies
f(c) = x0.

Then f is affinely conjugate to gq.

Proof. Let φ : C → C be an affine map such that φ(x0) = 0 and φ(c) = −1. Then
it is easy to see

ĝq = φ ◦ f ◦ φ−1.

□

Lemma 3.8 (QC-rigidity). Let gq be the polynomial as above. Assume that f ∈ C3
is quasiconformally conjugate to gq. If there exists a quasiconformal conjugacy ϕ
sending the standard external markings of f to that of gq, then f = gq.

Proof. Since gq and f are quasiconformally conjugate, f has a parabolic fixed point

x0 with multiplier e2πi/q and there exists a critical point c0 of f such that f(c0) =
x0. By Lemma 3.7, f is affinely conjugate to gq. The conclusion follows since the
conjugacy respects the standard external marking of f and gq. □

Lemma 3.9. For any p, q ≥ 2, there exists a monic and centered cubic polynomial
gp,q ∈ R(p) such that

• gp,q has a repelling fixed point αp,q with rotation number 1/p;
• (gp,q, αp,q) is a 1/p-rotatory of (gq, βq).

Moreover, as q tends to infinity,

• gp,q converges to gp.
• Let α′

p,q be the parabolic periodic point of gp,q of period p whose immediate
basin contains a critical point. Then both αp,q and α′

p,q converge to αp.

Proof. First of all, for any p, q ≥ 2, it follows from Corollary 3.6 that a 1/p-rotatory
(gp,q, αp,q) exists and gp,q ∈ R(p). Let ωp,q and ω′

p,q be the critical points of gp,q
such that ωp,q lies in the immediate basin of the parabolic periodic point α′

p,q, and
gp,q(ω

′
p,q) = gp,q(α

′
p,q).

The task now is to show that gp,q converges to gp. Since the connectedness
locus C3 of cubic polynomials is compact, any subsequence of {gp,q}q≥2 has a con-
vergent subsequence. It suffices to show that the limit function of any convergent
subsequence of {gp,q}q≥2 is just gp.

To this end, we assume that {gp,q}g≥2 itself converges to some cubic polynomial
Q and show that Q = gp. By passing to a subsequence, we may further assume
that the following holds.

(1) As q → ∞, αp,q converges to a fixed point α of Q and α′
p,q converges to a

fixed point α′ of Qp. Moreover, (Qp)′(α′) = 1.
(2) ω′

p,q converges to a critical point c of Q such that Qp(c) = Q(α′).

We claim that α = α′. Assume by contradiction that α ̸= α′. Since one of
the critical point of Q is in the basin of α′ and the other is eventually mapped to
α′, α must be a repelling fixed point of Q. As there are p external rays landing
at αp with rotation number 1/p, there are also p external rays landing at α with
the same rotation number 1/p. Clearly, gp,q and Q are immediately renormalizable
with respect to the fixed point αp and α respectively. More precisely, there exists
quasidisks Uq ⋐ V and U ⋐ V such that

• gpp,q : Uq → V is hybrid equivalent to gq;
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Figure 2. The Julia set of λ0z(1 + b0z + z2) with λ0 =
0.9987956669... + 0.04906469347...i and b0 = 1.776923343... +
0.09663115176...i, which is affinely conjugate to g128,128. This is
a 1/128-rotatory of g128, and the yellow regions correspond to the
yellow region in Figure 1.

• Qp : U → V is hybrid equivalent to g∞.

Let hq be a hybrid conjugacy between gpp,q|U and gq. Since gpp,q converges to Qp,
we may assume that the dilatation of hq is uniformly bounded from above. Thus
hq lies in a compact family. Without loss of generality, we may assume that hq
converges to a quasiconformal map h. Note that hq(αq) = βq and hq(α

′
q) = 0. Let

q → ∞, we have h(α) = 0 = h(α′). This lead to a contradiction since α ̸= α′.
Since the rotation number of αp,q is 1/p and α = α′ is parabolic, Q′(α) =

e2πi/p by the Yoccoz inequality [5]. Therefore, by the condition (2) above, Q is
affinely conjugate to gp by Lemma 3.7. Since Q and gp are monic centered cubic
polynomials, Q is either equal to gp or −gp(−z). Hence α = α′ is the unique
parabolic fixed point for Q.

Since gp,q is a 1/p-rotatory, αp,q is the landing point of Rgp,q

(
1

3p−1

)
. Moreover,

since

α = lim
q→∞

αp,q ∈ lim sup
q→∞

Rgp,q

(
1

3p−1

)
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and there is no parabolic fixed point other than α, it follows that α is the landing
point of RQ(

1
3p−1 ). Hence Q is in fact equal to gp and we have proved

lim
q→∞

gp,q = Q = gp. □

Now we repeatedly apply Corollary 3.6 to construct a sequence of finitely renor-
malizable polynomials. For any given integer n ≥ 1 and qn = (q1, q2, · · · , qn),
we define gqn ∈ C(qn) and a sequence of periodic points (βqn , α

(1)
qn , . . . , α

(n)
qn ) by

induction on n:
For n = 1, we identify q1 = (q) with q, and let gq and βq be defined as above.

Let α
(1)
q = αq.

For n = 2, let us denote q2 = (q1, q2) = (p, q). Let gq2 = gp,q be as in Lemma 3.9.

Let βq2 be the landing point of 0-external ray and let

α(1)
q1,q2 = αp,q, α(2)

q1,q2 = α′
p,q,

where αp,q and α′
p,q are as in the proof of Lemma 3.9.

For n ≥ 3, let (gqn , α
(1)
qn ) be a 1/q1-rotatory of (gσ(qn), βσ(qn)). (Recall that

σ is the shift map.) By taking an affine conjugacy if necessary, we may assume
gqn ∈ R(q1) and χ(gqn) = gσ(qn). Let βqn be the landing point of 0-external ray for

gqn . Take a hybrid conjugacy h from a renormalization gq1qn : U → V to gσ(qn) and

for k = 2, . . . , n, let

α(k)
qn = h−1(α

(k−1)
σ(qn)

).

Observe that α
(k)
qn is of period

∏k−1
j=1 qj and α

(n)
qn is a parabolic periodic point whose

immediate basin contains a critical point. Let ωqn and ω′
qn be the critical points of

gqn such that

• ωqn lies in the immediate basin of α
(n)
qn , and

• gqn(ω
′
qn) = gqn(α

(n)
qn ).

Definition 3.10. We say a polynomial f ∈ C3 is quasiconformally rigid if there
is no polynomial g ̸= f ∈ C3 such that there exists a quasiconformal conjugacy
between f and g which respects the standard external markings of f and g.

The following lemma will be one of the main ingredients in the proof of the main
theorem.

Lemma 3.11. Fix n ≥ 1. For qn = (q1, q2, · · · , qn), let qnk = (q1, q2, · · · , qn, k) be
the concatenation of qn and k. Then

• gqn is quasiconformally rigid.

• gqnk converges to gqn as k → ∞.

Proof. The proof is by induction on n. For n = 1, the conclusion follows from
Lemma 3.8 and Lemma 3.9.

Now suppose n ≥ 2 and the conclusion holds for n − 1, we proceed to prove it
also holds for n. The proof will be divided into two parts.

We first show that gqnk converges to gqn as k → ∞. By passing to a subsequence,

we may assume that gqnk converges to some Q ∈ C3. It suffices to prove that
Q = gqn .
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Claim. Q lies in R(q1) and χ(Q) = χ(gqn), where χ : R(q1) → C3 is the

corresponding straightening map.
It follows from the Claim and the injectivity of χ ([9, Theorem B]) that gqn = Q.

Proof of the Claim. Let us consider two sequences

q′n−1 = σ(qn) = (q2, q3, · · · , qn),

q′n−1k = σ(qnk) = (q2, q3, · · · , qn, k).

Set hn,k = gq′n−1k
and h∗ = gq′n−1

. By hypothesis, h∗ is quasiconformally rigid

and hn,k → h∗ as k → ∞. Let θ = 1
3q1−1 be a landing angle of α

(1)
qnk

for fqnk,

which is a repelling fixed point of gqnk with rotation number 1/q1. By passing to a

subsequence, we may assume that α
(1)
qnk

converges to a fixed point α of Q as k → ∞.

By a similar argument in the proof of Lemma 3.3, one can show that α is a repelling
fixed point of Q. It follows from [6, Lemma B.1] that θ is an external angle of α
for Q and Rgqnk

(θ) converges to RQ(θ) in the Hausdorff topology.

Let θ′ = 3q1−1θ and let Sqnk be the sector bounded by Rgqnk
(θ) ∪ Rgqnk

(θ′) ∪
{α(1)

qnk
}. Since gqnk ∈ C(q1), any critical point ω of gqnk satisfies gjq1qnk

(ω) ∈ Sqnk.

Therefore the rational lamination of Q contains that of Pq1 , so it follows that

Q ∈ C(q1) = {f ∈ C3 | λ(f) ⊃ λ(Pq1)}.
By [9, Lemma 5.13], Q ∈ R(q1) and there exists an analytic family of cubic-like

renormalizations near Q. Then as in [3, Chapter II, Section 7], we may choose
hybrid conjugacies ϕn between χ(gqnk) = hn,k and the renormalization of gqnk so

that the maximal dilatation of ϕn is uniformly bounded. Passing to a further subse-
quence, we see that χ(Q) is quasiconformally conjugate to lim

k→∞
χ(gqnk) respecting

the standard external markings. Note that

lim
k→∞

χ(gqnk) = lim
k→∞

hn−1,k = h∗ = χ(gqn).

Thus χ(Q) is quasiconformally conjugate to χ(gqn) respecting the standard external

markings. By hypothesis, χ(gqn) = h∗ is quasiconformally rigid. Hence χ(gqn) =

χ(Q).
Now we proceed to prove that gqn is quasiconformally rigid. Assume that there

exists a f̃ ∈ C3 and a quasiconformal conjugacy ψ between f̃ and gqn which re-

spects the standard external markings. We must have λ(gqn) = λ(f̃). By the

definition of gqn , gqn lies in R(q1) and χ(gqn) = h∗. Thus f̃ also lies in R(q1). Note

that conjugacy ψ naturally induced a quasiconformal conjugacy between χ(f̃) and
χ(gqn) = h∗ respecting the standard external markings. Since h∗ is quasiconfor-

mally rigid, we have χ(f̃) = h∗ = χ(gqn). It follows from the injectivity of χ ([9,

Theorem B]) that f̃ = gqn . □

Theorem 3.12. Let q = (q1, q2, . . . ) satisfy qj ≥ 2 for all j. If qj grows sufficiently
fast, then there exists some gq ∈ C(q) with two distinct critical points.

Proof. Fix q1 ≥ 2. Recall that gq1 has a repelling fixed point α with rotation
number 1/q1. Moreover, one critical point ω1 lies in the parabolic basin and the
other ω′

1 is mapped to α by gq1 . In particular, ω1 ̸= ω′
1. Let η = |ω1 − ω′

1|.
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By Lemma 3.11, if qn grows sufficiently fast, then the sequence of cubic polyno-
mials gqn constructed as above has the following properties:

• for any n ≥ 2, gqn ∈ C(qn) where qn = (q1, q2, · · · , qn).
• for any n ≥ 2, gqn has two critical points ωn and ω′

n.

• for any n ≥ 2, |ωn − ωn−1| < η
10n and |ω′

n − ω′
n−1| <

η
10n .

Passing to a subsequence, we may assume that gqn converges to a polynomial

gq ∈ C3 and ωn (resp. ω′
n) converges to a critical point ω (resp. ω′) of gq. Note

that

|ω − ω1| ≤
∑

|ωn − ωn−1| <
η

10
and |ω′ − ω′

1| ≤
∑

|ω′
n − ω′

n−1| <
η

10
.

Hence ω ̸= ω′.
It follows from Lemma 3.3 that gq ∈ C(q). Clearly, gq is infinitely cubic-like

renormalizable. □

4. Combinatorial non-rigidity

For any infinite sequence q = (q1, q2, · · · ) with qj ≥ 2 for all j, there exists a

unicritical polynomial Pq(z) = z3 + cq ∈ C(q). Hence under the assumption of

Theorem v3.12, we have obtained two distinct polynomials Pq and gq in C(q).

Lemma 4.1. The combinatorial class of Pq is equal to C(q), i.e.,

C(q) = {f ∈ C3 | λ(f) = λ(Pq)}.

The following holds from the lemma and Theorem 3.12:

Corollary 4.2. If q = (q1, q2, . . . ) satisfy Theorem 3.12, then Pq is not combina-

torially rigid.

Proof. Let gq ∈ C(q) be as in Theorem 3.12.

By the lemma, we have λ(gq) = λ(Pq). Now assume the composition of the

Böttcher coordinates

ϕgq ◦ ϕPq
: (C \K(Pq)) → (C \K(gq))

extends to a quasiconformal homeomorphism h on Ĉ.
Since both Pq and gq do not have any bounded Fatou component, we have

(C \K(Pq)) = (C \K(gq)) = Ĉ,

hence h : Ĉ → Ĉ is a quasiconformal conjugacy from Pq to gq.

However, there is no topological conjugacy from Pq to gq because Pq is unicritical

and gq is not. Therefore, there is no such a quasiconformal extension and the

combinatorial non-rigidity for Pq holds. □

Proof of Lemma 4.1. By definition,

C(q) = {f ∈ C3 | λ(f) ⊃ λ(Pq
n
) for any n}.

Hence it suffices to prove that any f ∈ C(q) and any λ(f)-equivalent θ1, θ2 ∈ Q/Z,
there exists some n such that θ1 and θ2 are λ(Pq

n
)-equivalent.

Let us denote λn = λ(Pq
n
). Now assume θ1 and θ2 are not λn-equivalent for a

given n. Then they are contained in an infinite λn-unlinked class (gap) L (see [9]
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and [12] for details), hence for the common landing point x of Rf (θ1) and Rf (θ2)
is contained in ⋃

j≥0

f−j(Kn),

where Kn is the filled Julia set of a λn-renormalization (in other words, n-th renor-
malization) of f . In particular, the eventual period of θ1 under θ 7→ 3θ is greater

than the
∏n−1

k=1 qk (note that this is the period of α
(n)
qn for gqn).

Hence θ1 and θ2 are λn-equivalent for sufficiently large n. □

Now we prove the following:

Theorem 4.3. If q = (q1, q2, . . . ) satisfy Theorem 3.12, then there exists a contin-
uum connecting Pq and gq contained in C(q)

Proof. We just modify the construction in Section 3.
First, recall that Pq is the center of the 1/q-satellite copy of M3 and Pqn ∈ C(q

n
)

is the hyperbolic post-critically finite unicritical polynomial such that χq1(Pqn) =

Pqn−1
for n ≥ 2.

Now we construct a sequence (γn)n of paths with γn ⊂ Hn. First take an
arbitrary continuous path γ1 : [0, 1] → H1 such that

• γ1(0) = Pq1 and γ1(1) = gq1 ,
• γ1(t) ∈ H1 for t ∈ [0, 1).

Then apply the same construction as gqn , starting from every map g ∈ γ1, we obtain

a continuous path γn connecting Pqn and gqn in Hn.

Then the set

K =
⋂
N≥0

⋃
n≥N

γn([0, 1])

is a continuum containing Pq and gq. It follows by Lemma 3.3 that K ⊂ C(q). □

5. Near-parabolic renormalizations

In this section, we introduce another kind of renormalization, which is called the
near-parabolic renormalization [10].

We use the notations in Section 3. Let q = (q1, q2, . . . ) satisfy Theorem 3.12 and
let gq be as in the theorem. As in the proof, gq is a subsequential limit of gqn , so

gq has a sequence of periodic points

(βq, α
(1)
q , α(2)

q , . . . )

which is a subsequential limit of (βqn , α
(1)
qn , α

(2)
qn , . . . , α

(n)
qn ). Then α

(n−1)
q and α

(n)
q are

fixed points of n-th (polynomial-like) renormalization of gq. Similarly, let ωq and

ω′
q be the critical points which are subsequential limits of ωn and ω′

n respectively.

Let

pn =

n−1∏
j=1

qj

be the period of α
(n)
q .

The purpose of this section is to prove the following:
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Theorem 5.1. Let q = (q1, q2, . . . ). If we further assume every qj is sufficiently
large and qj grows sufficiently fast (that is, possibly even faster than Theorem 3.12),
then there exist a universal constant k ∈ N and a decreasing sequence (Ωn)n∈N of
open sets such that

(1) Ωn+1 ⊂ Ωn.

(2) Ωn contains the periodic orbit of α
(n)
q for gq,

(3) ωq ∈ Ωn, but ω
′
q ̸∈ Ωn.

(4) gjq(ωq), g
j
q(ω

′
q) ∈ Ωn for 1 ≤ j ≤ pn − kpn−1.

In particular, the postcritical set is contained in⋂
n≥0

Ωn,

hence ω′
q is not recurrent.

Recall that the postcritical set of a given polynomial f of degree at least two is
defined by

P (f) =
⋃
n≥1

fn(Crit(f))

where Crit(f) is the set of critical points of f .

5.1. Near-parabolic renormalizations. Let P (z) = z(1+z)2 and V = ψ1(Ĉ\E),
where

E =

{
z = x+ iy ∈ C

∣∣∣∣∣
(
x+ 0.18

1.24

)2

+
( y

1.04

)2
≤ 1

}
,(5.1)

ψ1(z) = − 4z

(1 + z)2
.

Consider the following family of holomorphic maps:

F1 =

{
h = P ◦ φ−1 : φ(V ) → C

∣∣∣∣ φ : V → φ(V ): univalent, φ(0) = 0, φ′(0) = 1,
φ has a quasiconformal extension to C

}
.

For h = P ◦ φ−1 ∈ F1, let Dom(f) = φ(V ) be the domain of definition of h.
For a set X ∈ C, let

X ⋉ F1 = {f(z) = h(e2πiαz) | α ∈ X, h ∈ F1}.
For f(z) = h(e2πiαz) ∈ X ⋉ F1, let

Dom(f) = e−2πiα Dom(h) = e−2πiαφ(V )

denote the domain of definition of f .
Now let α∗ > 0 be small and let

◀ = {α ∈ C | 0 < |α| < α∗, | argα| < π
4 },

▶ = {α ∈ C | 0 < |α| < α∗, | arg(−α)| < π
4 },

▶◀ = ▶ ∪◀.

In the following, we consider maps of the form f(z) = h(e2πiαh) ∈ ◀⋉ F1. The
argument for the case α ∈ ▶ is parallel. In fact, if f(z) = h(e2πiαz) ∈ ▶⋉ F1, it is
conjugate by complex conjugate to the map of the form

f̂(z) = f(z) = h(e2πi(−α)z),
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which lies in ◀⋉ F1 since we have −α ∈ ◀ and h(z) ∈ F1. Note that V is
symmetric with respect to the real axis.

Proposition 5.2. If α∗ is sufficiently small, there exists a constant k > 0 and a
neighborhood W of the origin such that the following holds:

For any f = h(e2πiαz) ∈ ◀ ⋉ F1, f has a unique non-zero fixed point σf ∈ W ,
and there exist a domain Pf ⋐ Dom(f), and a univalent map Φf : Pf → C such
that

(1) The boundary of Pf is a piecewise smooth curve containing 0, σf and cpf =
− 1

3 .
(2) ImΦf (z) → +∞ as z → 0 and ImΦf (z) → −∞ as z → σf in Pf .
(3) Φf (cpf ) = 0 and

{w ∈ C | Rew ∈ (0, 2)} ⊂ Φf (Pf ).

(4) Φf (f(z)) = Φf (z) + 1, where both sides are defined.
(5) Φf is uniquely determined by the above conditions.
(6) Φf depends holomorphically on (α, h).
(7) Φf (Pf ) = {w ∈ C | 0 < Rew < Re( 1

α )− k}.

See [2, Propositions 2.1–2.3]. When α ∈ ▶, the same statement holds with (2)
replaced by

(2’) ImΦf (z) → −∞ as z → 0 and ImΦf (z) → +∞ as z → σf in Pf .

The Φf above is called the (normalized) Fatou coordinate of f .
For f ∈ ▶◀⋉ F1, define α = α(f) and β = β(f) by

f ′(0) = exp(2πiα(f)), f ′(σf ) = exp(2πiβ(f)).(5.2)

Now let

(5.3)
Af,± := Φ−1

f ({w ∈ C | 1
2 ≤ Rew ≤ 3

2 , ± Imw ≥ 2}),

Cf := Φ−1
f ({w ∈ C | 1

2 ≤ Rew ≤ 3
2 , −2 ≤ Imw ≤ 2}).

Proposition 5.3. Under the assumption of Proposition 5.2, there exist a positive

integer k±f , domains A
−k±

f

f,± and C
−k±

f

f,± such that

(1) The fixed point 0 lies in the boundary of A
−k+

f

f,+ , and σf lies in the boundary

of A
−k−

f

f,− .

(2) For 0 ≤ k < k±f , let

A−k
f,± = fk

±
f −k(A

−k±
f

f,± ), C−k
f,± = fk

±
f −k(C

−k±
f

f,± ).

Then A0
f,± = Af,± and C0

f,± = Cf .

(3) We have

A
−k±

f

f,± , C
−k±

f

f,± ⊂
{
z ∈ Pf | 1

2
< ReΦf (z) < Re

1

α
− k

}
.

(4) The maps

f : Ak
f,± → Ak+1

f,± (−k±f ≤ k ≤ −1),

f : Ck
f,± → Ck+1

f,± (−k±f ≤ k ≤ −2)
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are univalent, and
f : C−1

f,± → C0
f,±

is a proper branched covering of degree two.

See [2, Propositions 2.6, 2.7].
The petal Pf approaches to the fixed points 0 and σf as ImΦf (z) tends to

±∞. Asymptotically, it approaches the fixed points in logarithmic spirals when
Imα, Imβ ̸= 0:

Proposition 5.4. There exists a constant k′ such that the following holds:
Under the situation in Proposition 5.2, there exist continuous branches of argw

on Pf and on Pf − σf such that

(1) For all ζ ∈ (0,Re 1
α − k),

lim
ξ→+∞

(arg Φ−1
f (ζ + iξ) + 2πξ Imα) = arg σf + 2πζ Reα+ cf .

(2) For all ζ ∈ (0,Re 1
α − k),

lim
ξ→−∞

(arg(Φ−1
f (ζ + iξ)− σf ) + 2πξ Imβ) = arg σf + 2πζ Reβ + c′f .

where α = α(f) and β = β(f), and cf , c
′
f are constants depending on f with

|cf |, |c′f | ≤ k′(1− log |α|)).

See [2, Proposition 2.4].
Let

S±
f := A

−k±
f

f,± ∪ C
−k±

f

f,± .

Then we can define the lifted horn maps Ẽ±
f by

Ẽ±
f := Φf ◦ fk

±
f ◦ Φ−1

f : Φf (S
±
f ) → C.

Then Ẽ±
f satisfies the following functional equation

Ẽ±
f (w + 1) = Ẽ±

f (w) + 1

where both sides are defined (that is, on the “left” boundary arc).
Therefore, there exist well-defined holomorphic maps E±

f defined near the origin
such thatp

E±
f (z) ◦ Exp± = Exp± ◦ Ẽ±

f ,

where

Exp±(w) := − 4

27
exp(±2πiw).

As in the case of parabolic renormalizations, the origin is a removable singularity
and they have the forms

E+
f (z) = e−2πi 1

α z +O(z2), E−
f (z) = e−2πi 1

β z +O(z2).

The maps E± are called the horn maps.

Theorem 5.5 ([10]). If α∗ is sufficiently small, then for any map f(z) = h(e2πiαz) ∈
◀⋉ F1, the horn maps E±

f can be extended to a map of the form

E+
f (z) = h+(e

−2πi 1
α z), E−

f (z) = h−(e
−2πi 1

β z)

with h± ∈ F1.
Moreover, h± depends holomorphically on f .
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See [10] for the complex structure on F1. We only need the continuity of (α, h) 7→
h±. As above, the statement hold also for the case α ∈ ▶, by exchanging α and β.

Now we have the upper renormalization h+ and the lower renormalization h−.
For near parabolic case, it is rather important which fixed point the renormalization
under considerration goes around, hence it is often more convinient to use the notion
of top and bottom renormalizations, following Cheraghi and Shishikura [2]:

Definition 5.6. We denote the extensions of E+
f (resp. E−

f ) in the above theorem

by Rt(f) (resp. Rb(f)) and call it the top (resp. bottom) near-parabolic renormal-
izations of f .

For the case f ∈ ▶⋉ F1, We denote the extension E− by Rt(f) and that of E+

by Rb(f).

In other words, we define the top and bottom renormalizations in a consistent
way by the following property:

• the top near-parabolic renormalization is (the extension of) the horn map
at the origin, and

• the bottom near-parabolic renormalization is (the extension of) the horn
map at the bifurcated fixed point σf .

Recall the neighborhoodW of 0 in Proposition 5.2. We may assume f ∈ {α}×F1

contains a unique non-zero fixed point σf in W not only if α ∈ ▶◀ but also if
α ∈ Dα∗ = {α ∈ C | |α| < α∗}. Thus β(f) = 1

2πi log f
′(σf ) is defined even in this

case.

Lemma 5.7. There exists some α∗∗ < α∗ such that for f ∈ {α}⋉F1 with |α| < α∗,
if β ∈ R and |β| < α∗∗, then α = α(f) ∈ ▶◀.

In particular, the top and the bottom near-parabolic renormalizations are defined
for f .

See also [2, Lemma 6.8].

Proof. For f ∈ ▶◀⋉ F1, let

I(f) :=
1

2πi

∫
∂W

dz

z − f(z)
.

By the precompactness of F1, I(f) depends continuously (even holomorphically)
on f and is bounded (see [2, Lemma 3.24] for more detail).

Thus the lemma follows easily by the equality

I(f) =
1

1− f ′(0)
+

1

1− f ′(σf )
.

In fact, if β > 0 is sufficiently small, then I(f, σf )) =
1

1−f ′(σf )
is large and

Re I(f, σf )

Im I(f, σf )

is close to 0. Hence

I(f, 0) =
1

1− f ′(0)
= I(f)− I(f, σf )

has large negative imaginary part and uniformly bounded real part. This implies
α ∈ ▶◀.

The case β < 0 is similar. □
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Note that the assumption that β ∈ R is too strong, and we only need to assume
that |Reβ| > k| Imβ| for some k > 1. Also, if β > 0, then we have Reα < 0, and
vice versa.

6. Deep renormalizations

Here we consider the case that a given map f ∈ ▶◀⋉ F1 is several times near-
parabolic renormalizable, especially the case of bottom renormalizations.

In this section, we fix f = f0 ∈ ▶◀⋉ F1, which is (at least) twice near-parabolic
renormalizable. More precisely, f1 := R∗(f) (∗ = t, b) again lies in ▶◀⋉ F1. Let
s0 ∈ {+,−} be such that R∗(f) = Es0

f near the origin.

As in the previous section, there exists a domain S0 := Ss0
f ⊂ Pf such that

Exps0 ◦R∗(f) = Φf ◦ fk
s0
f ◦ Φ−1

f ◦ Exps0 (∗ = t, b).

on Exps0(S0).

Then since fk
s0
f (S0) = Af,s0 ∪Cf , it follows by (5.3), Proposition 5.3 and Propo-

sition 5.2 (7) that

U0 :=

l0⋃
n=0

fn(S0)

is a neighborhood of 0 (the case ∗ = t) or σf (the case ∗ = b), where

l0 := ks0f +

⌊
Re

1

α
− k

⌋
.

Now we further assume f is N -times near-parabolic renormalizable, and the j-th
renormalization is bottom for j = 2, . . . , N . Namely, for each j = 2, 3, . . . , N , we
assume fj−1 ∈ ▶◀⋉ F1, hence fj := Rb(fj−1) is well-defined.

Let sj ∈ {+,−} satisfy fj = Esj
fj

and let

Sj := S
sj
fj
, lj := k

f
sj
j

+

⌊
Re

1

α(fj)
− k

⌋
,

Uj :=

lj⋃
n=0

fnj (Sj).

Since fj is the bottom renormalization of fj−1 for j ≥ 2, Uj is a neighborhood of
σj−1 := σfj−1

.
We want to define a set Um

j (0 ≤ m < j ≤ N) in the phase space for fm which

is a neighborhood of a periodic orbit of fm and “corresponds to” Uj =: Uj−1
j .

To this end, we want to define an appropriate inverse branch ηj of Expsj ◦Φj on
Uj+1, where Φj = Φfj is the Fatou coordinate for fj . Observe that Pj+1 approaches
the fixed point at 0 in a logarithmic spiral, the image of every inverse branch of
Exp± on Pj+1 does not contained in the vertical strip Φj(Pj). However, this spiral
part at 0 is not contained in Uj , and we have the following:

Lemma 6.1. There exists a universal constant C > 0 such that we can choose a
contiuous branch of the argument on Uj such that | arg z| < C for all z ∈ Uj.

In particular, if αj−1 is sufficiently large, then there exists a continuous inverse
branch ηj of Expsj−1 on Uj such that

ηj(Uj) ⊂ Pj−1.
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Proof. We may assume αj = α(fj) > 0. First we recall some results in [18] and
[10]. Consider the pre-Fatou coordinate z = τj(w) defined by

τj(w) :=
σj

1− e−2πiαjw
.

Let Fj(w) be the lift of fj by τj such that

Fj(w) = w + 1 + o(1) as Imw → +∞.

Then there exists a domain P̃j such that τj maps P̃j) conformally to Pj .
Recall that τj(w) converges locally uniformly to − 1

w as αj → 0 [18, § 3.3.2], and
Fj(w) also converges to

FQ
1 =

H = Q ◦ φ−1 : φ(V ) → C

∣∣∣∣∣∣
φ : V Q → φ(V Q): univalent,

φ(∞) = ∞, limz→∞
φ(z)
z = 1,

φ has a quasiconformal extension to Ĉ

 ,

up to affine conjugacy, where V Q = Ĉ \ E and

Q(z) = z

(
1 + 1

z

)6(
1− 1

z

)4 .
Moreover, if Fj → H ∈ FQ

1 as αj → 0 (by taking an affine conjugate, and passing
to a subsequence if necessary), the Fatou coordinate Φj ◦ τj for Fj converges to
an attracting Fatou coordinates ΦH,attr of H locally uniformly on some domain
Dom(ΦH,attr) containing a right half plane.

Moreover, ΦH,attr(cvH) = 1 where cvH = 27 is the unique critical value, and the
image ΦH,attr(Dom(ΦH,attr)) contains the right half plane H+ = {z ∈ C | Re z > 0}
[10, Propositions 5.6, 5.7]. Also,

%%%

This essentially follows from [10, §5].
In fact, let h ∈ F1 (i.e., consider the parabolic case α = 0) and letH = ψ0◦f◦ψ−1

0

where ψ0(z) = − 4
z . The map H can be written as H = Q ◦ ϕ−1 where Q(z) =

z
(1+ 1

z )
6

(1− 1
z )

4 and ϕ is a univalent map tangent to the identity at infinity, defined outside

the ellipse E defined by (5.1).
Then ∞ is the corresponding parabolic fixed point for H and its attracting petal

PH = Φ−1
H,attr({z ∈ C | Re z > 1})

is contained in

V = V(u0, 2π3 ) = {z ∈ C | z ̸= u0, | arg(z − u0)| < 2π
3 },

where ΦH,attr is the attracting Fatou coordinate normalized so that ΦH,attr(cvH) =
1, cvH = 27 is the critical value, and u0 = 25√

3
[10, Propositon 5.6].

For simplicity, we consider the upper renormalization. The parabolic renormal-
ization of f is obtained by taking appropriate inverse images of the closures of the
following domains

D1 = Φ−1
H,attr({z | 1 < Re z < 2, −2 < Im z < 2}),

D♯
1 = Φ−1

H,attr({z | 1 < Re z < 2, Im z > 2}).
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Let U be the union of those inverse images (i.e., U in [10, §5]) and
⋃∞

n=0H
n(D1 ∪D♯

1).
Then U is a simply connected domain in C∗.

Then the argument in [10, §5] shows that those inverse images can be regarded
as subsets of a Riemann surface

(V ⊔X)/ ∼,
where X is the Riemann surface defined in [10, §5] with the natural projection
πX : X → C, and ∼ is defined by

V ∋ z ∼± w ∈ X ⇐⇒ z = πX(w), and w ∈ X1+ ∪X2−.

Moreover, there is a continuous branch of the argument on X taking values in
(−π, 3π). In particular, there exists an arc γ : [0, 1) → C \ U such that

γ(0) = 0, lim
t↗1

Im γ(t) → −∞,

arg γ(t) ∈ (−2π, 4π).

Recall that fj is a small perturbation of some map h ∈ F1. (Precisely speaking,
we take α∗ suffuciently small such that the following hold.) Consider the pre-Fatou
coordinate z = τj(w) defined by

τj(w) :=
σj

1− e−2πiαjw
.

where αj = α(fj).

Define S̃j . Let

Ũj :=

lj⋃
n=0

Fn
j−1(S̃j).

Then by the construction and the continuity of Fatou coordinates, it follows that inconsistent indices!
Ũj is contained in a small perturbation of U .

In particular, we still have an arc γ as above disjoint from Ũj .
□

Let Φk be the Fatou coordinate for fk. It is defined on Pk := Pfk , which contains
Sk+1. Note that Vk := Expsk ◦Φk−1(Sk) is a punctured neighborhood of 0 and it
contains σk for k = 2, . . . , N − 1. Let

σk−1
k := ((Expsk−1 ◦Φk−1)|Sk−1

)−1(σk).

Then σk−1
k is a periodic orbit of fk−1. As α(fk−1) tends to zero, the whole perdiodic

orbit of σk−1
k tends to σk−1.

Now recall some detail on Fatou coordinates (see [18] for more details). For each
k, let

τk(w) :=
σk

1− e−2πiαkw
.

We consider new coordinate w, called the pre-Fatou coordinate for fk, defined by
z = τk(w) where αk = α(fk). Fix a large constant b > 0 and let

Qα :=

{
w ∈ C | | arg(w − b)| < 3

2
π,

∣∣∣∣arg( 1

α
− b− w

)∣∣∣∣ < 3

2
π

}
.

If α∗ is sufficiently small, we can take a lift Fk of fk by τk such that it is univalent
on Qαk

and

Fk(w) = w + 1 + o(1) as Imw → +∞.
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Then there exists a Fatou coordinate Φ̃k : Wαk
→ C, i.e., a univalent map satisfying

Φ̃k(Fk(w)) = Φk(w) + 1

where both sides are defined. Moreover, there exist constants c±k such that

(6.1) Φf (w) = w + c±k + o(1)

as w → ∞ satisfying θ′1 < arg(±(w−w0) < θ′2 where w0 ∈ C and π
4 < θ′1 < θ′2 <

3π
4 .

Lemma 6.2. If α∗ is sufficiently small, there exists a holomorphic extension of an
inverse branch ηk of Expsk−1 ◦Φk−1 defined on Pk such that

ηk(Af,sk ∪ Cf ) ⊂ Pk−1.

Need Q because of
the slope?

Note that by Proposition 5.4, the petal Pk approach to 0 in logarithmic spiral
when α(fk) ̸= R, and this implies that ηk(Pk) is not contained in Pk−1.

Proof. □

7. Controlling critical orbits

Now consider the sequence of polynomials (gqn)n∈N for a sequence q = (q1, q2, . . . )

growing sufficiently fast in Theorem 3.12.
Recall that the first element gq1 is affinely conjugate to

ĝq1 = e2πi/q1z(1 + z)2 = e2πi/q1P (z),

whose linear conjugate satisfies

e−2πi/q1 ĝq1(e
2πi/qiz) ∈ ▶◀⋉ F1.

Hence we can consider the near-parabolic renormalizations of gq1 at the parabolic
fixed point as those of ĝg1 . The top near-parabolic renormalization Rt(gq1). Then
by definition, Rt(gq1) has a parabolic fixed point at the origin, i.e., Rt(gq1) ∈ F1

by Theorem 5.5.
Since gq1,q2 is a perturbation of gq1 , it is natural to expect that gq1,q2 is twice

near-parabolic renormalizable, and so on.
By induction, assume gqn−1

is (n− 1)-times near-parabolic renormalizable such

that only the first near-parabolic renormalization is top, but the other (n − 2)
renormalizations are bottom.

Now fix the sequence q. We see that

fn,k := Rb
k−1 ◦ Rt(gqn) (1 ≤ k ≤ n)

are defined.
Let n ≥ 2 and assume fn−1,k (1 ≤ k ≤ n− 1) are defined. By Lemma 3.11, gqn

is a perturbation of gqn−1
. Hence if qn is sufficiently large, fn,k (1 ≤ k ≤ n) are

defined, and fn,n−1 lies in Dα∗ ⋉ F1.
By Proposition 5.4,
In fact, by induction, we have the following:

Lemma 7.1. If q = (q1, q2, . . . ) grows sufficiently fast, then gqn is n-times near-

parabolic renormalizable. Only the first near-parabolic renormalization is top, but
the other (n− 1) renormalizations are bottom.

Moreover,
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(1) Rb
n−1 ◦ Rt(gqn) ∈ F1.

(2) Let sn−1 ∈ {+,−} satisfy

Proof. We have already shown for the case n = 1.
Let n ≥ 2 and assume gqn−1 satisfies the lemma.

□
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