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Abstract. In this paper, we prove that a polynomial f can be determined
by the conformal conjugacy class of its restriction f |Df (∞) together with the

hybrid class of the restriction of f to non-trivial periodic components of the

filled Julia set K(f). The proof is based on quasiconformal surgery.

1. Introduction

Fix an integer d ≥ 2. We consider the set Pd of all the monic centered polyno-
mials of degree d. For each f ∈ Pd, the basin of infinity of f is defined by

Df (∞) = {z ∈ C | fn(z) → ∞ as n→ ∞}.
Its complement K(f) is called the filled Julia set of f . Set

B̃d :=

{(
φ ◦ f |Df (∞)

)
◦ φ−1

∣∣∣∣∣ φ : Df (∞) → φ(Df (∞)) is conformal and

lim
z→∞

φ(z)
z = 1, f ∈ Pd

}
.

Let us consider the projection

π : Pd → B̃d, f 7→ f |Df (∞).

Note that the fiber over (zd,C\D) is precisely the connectedness locus Cd consisting
of maps in Pd with connected Julia sets. Clearly, any map f ∈ Cd is determined
by the dynamics of f on its filled Julia set K(f) [5, 7]. In contrast, it was proved
in [19, 20] that each fiber of π containing a map f ∈ Pd with a Cantor Julia set is
singleton.

One of the main topics in dynamical systems is to decompose a complicated
system into several simplified models that could extract the main features of it.

Intuitively, one might anticipate that the fibers of the map π : Pd → B̃d can be
identified with the product of connectedness loci Cdi of degrees di ≤ d, each of
which is connected [1, 4, 11]. More precisely, one may expect that a polynomial
f ∈ Pd should be determined by the conformal conjugacy class of its restriction
f |Df (∞) together with the hybrid classes of the restriction of f to non-trivial peri-
odic components of the filled Julia set K(f). Evidently, it holds for d = 2. The aim
of this paper is to provide a rigorous proof for such an intuition by employing qua-
siconformal surgery. As a byproduct, we show that the fibers of π are connected. It
is worth mentioning that DeMarco and Pilgrim [2] proved that the fibers of π′ are
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connected, utilizing a method that is entirely distinct. Here, π′ : Md → Bd denotes
the projection from the Moduli space to the set Bd of all the conformal conjugacy
classes of the maps f |Df (∞). More precisely, DeMarco and Pilgrim’s strategy is to
prove that each fiber of π′ can be characterized as a nested intersection of connected
sets [2]. In contrast, our approach employs the technique of quasiconformal surgery.

Let f0 ∈ Pd . We say a component of K(f0) is critical if it contains a criti-
cal point of f0. Qiu-Yin [16], and independently Kozlovski-van Strien[9], proved
that a component K of K(f0) is nontrivial if and only if the orbit of K under f0
eventually lies in the orbit of a periodic component that is critical. Let us define
a mapping schema S0 = (|S0|, σ, δ) induced by f0 as follows. First let |S0| be the
set of nontrivial components of K(f0) that is critical. The result of Qiu-Yin and
Kozlovski-van Strien implies that for every v ∈ |S0| there exists a first moment

r(v) ≥ 1 such that f
r(v)
0 (v) ∈ |S0|. Now let σ : |S0| → |S0| be defined by

σ(v) = f
r(v)
0 (v)

and let δ : |S0| → {2, 3, · · · , } be defined by

δ(v) = deg(f
r(v)
0 : v → σ(v)).

In Section 2, we introduce the set of of monic and centered generalized polyno-
mials P(S0) over the schema S0 and let C(S0) ⊂ P(S0) be the set of generalized
polynomials over the schema S0 with fiber-wise connected Julia sets. We further
define a map

F0 :
⋃

v∈|S0|

v →
⋃

v∈|S0|

v

by F0|v = f
r(v)
0 |v. Note that F0 can be extended to a GPL map over the schema

S0 with filled Julia set
⋃

v∈|S0|
v. Let F0 denote the fiber π−1(π(f0)) of f0 under π.

Then we show that every f ∈ F0 naturally induces a GPL map over the schema
S0 with a fiber-wise connected Julia set. Such a GPL map is hybrid conjugate to
a unique map χ(f) in C(S0) (respecting the external markings). This yields a well
defined map

χ : F0 → C(S0), f 7→ χ(f)

which we will call a straightening map. Our purpose is to prove :

Main Theorem. Let f0 ∈ Pd be a polynomial whose Julia set is not a Cantor set.
Then the straightening map

χ : F0 → C(S0), f 7→ χ(f).

is a bijection.
Moreover, the fiber F0 is compact and connected.

The proof is based on quasiconformal surgery. This theorem is an analogue of
the main results in [7, 18]. In other words, every map in the fiber F0 can be tuned
by a generalized polynomial g ∈ C(S0). Let us mention that χ is discontinuous in
general [6].

The paper is organized as follows. In Section 2, we revisit the definitions of
GPL maps over mapping schemata and proceed to establish the straightening map
denoted by χ. Advance to Section 3, where we apply quasiconformal surgery to
substantiate the surjectivity attribute of the straightening map. Section 4 delves



STRAIGHTENING MAPS FOR POLYNOMIALS WITH DISCONNECTED JULIA SETS 3

into the proof of rigidity for the maps in the fibers of π, a result which, in turn,
corroborates the injectivity of the straightening map χ. Within this section, we
also address the issue of connectedness of the fibers of π.

Acknowledgement. The authors would like to express their gratitude to Mit-
suhiro Shishikura, Weixiao Shen and Yongcheng Yin for valuable suggestions. The
authors thank the referee for useful comments. The first author is supported
by JSPS KAKENHI Grant Numbers JP18K03367 and JK22K03373. The sec-
ond author is supported by Natural Science Foundation of Shanghai (Grant No.
25ZR1402412 ) and Science and Technology Innovation Plan of Shanghai (Grant
No. 23JC1403200).

2. Yoccoz puzzles and GPL maps

In this section, we first recall some definitions such as Yoccoz puzzles and GPL
maps. As for prerequisites, the reader is expected to be familiar with polynomial
dynamics. We refer the readers to [5, 13]. Throughout this paper, we fix an f0 ∈ Pd
whose Julia set is not a Cantor set.

The aim of this section is to define the straightening map

χ : F0 → C(S0), f 7→ χ(f).

2.1. Yoccoz puzzles. Let f ∈ Pd and let Crit(f) denote the critical points of f .
The Green function of f is given by

Gf (z) : C → [0,+∞), z 7→ lim
n→∞

1

dn
log+ |fn(z)|,

where log+ x = max{log x, 0}.
The level sets of Gf determine a foliation F of the basin Df (∞) of infinity. Every

leaf of F is a union of smooth simple closed curves unless it intersects the backward
orbit of Crit(f) under f . Let Rf = max

c∈Crit(f)
Gf (c) be the maximal escaping rate of

f . There exists a conformal map

ϕf : {z ∈ C | Gf (z) > Rf} → {z ∈ C | |z| > eRf }

such that ϕf (f(z)) = (ϕf (z))
d whenever it makes sense. Such a conformal map

is unique under the additional condition lim
z→∞

ϕf (z)
z = 1 and is called the Böttcher

map of f .
Fix a constant 1 ≤ r0 = r0(f) < d such that the level set {z ∈ C | Gf (z) = r0}

is a union of simple closed curves. Such an r0 can be chosen as follows. Let Cf be
the intersection of the grand orbit of Crit(f) and {1 ≤ Gf (z) < d}. Clearly, Cf is

a finite and thus a discrete set. Put b = max
z∈Cf

Gf (z). Set r0 = b+d
2 and we are done.

Definition 2.1 (Puzzle pieces). For each n ∈ N, we let Γfn = {Gf (z) = r0d
−n}.

An f -puzzle piece of depth n is a bounded component of C \ Γfn.

It is fairly easy to see that each puzzle piece is a quasidisk with a smooth bound-
ary under our assumptions. Moreover, the following Markov property holds: for
any two distinct puzzle pieces, either they have disjoint closures or one is compactly
contained in the other.
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2.2. GPL maps and external markings. Recall that f0 ∈ Pd has a disconnected
Julia set that is not a Cantor set. Let us recall that the mapping schema S0 =
(|S0|, σ, δ) induced by f0 is a triple consisting of

• the set |S0| of all the nontrivial components of K(f0) that are critical,
• the first return map σ : |S0| → |S0|,
• a degree map δ : |S0| → {2, 3, · · · }, v 7→ deg(σ|v).

A generalized polynomial P over S0 is a map

P : |S0| × C → |S0| × C

such that P (v, z) = (σ(v), Pv(z)) where gv(z) is a monic centered polynomial of
degree δ(v). The filled Julia set K(P ) of P is the set of points in |S0| × C whose
forward orbits are precompact. The boundary ∂K(P ) of the filled Julia set is called
the Julia set J(P ) of P . The filled Julia set K(P ) is called fiber-wise connected if

K(P, v) := K(P ) ∩ ({v} × C)

is connected for every v ∈ |S0|. Let P(S0) denote the set of all generalized polyno-
mials over S0. Let C(S0) ⊂ P(S0) be the subset of all generalized polynomials with
fiber-wise connected filled Julia sets over S0.

We shall need external rays for P ∈ C(S0) which can be defined similarly as in
the case of a single polynomial. Indeed, for each v ∈ |S0| there exists a unique
conformal φP,v : C \K(P, v) → C \D such that φP,v(z)/z → 1 as z → ∞ and that

φP,σ(v)(Pv(z)) = φP,v(z)
δ(v).

For t ∈ R/Z, the external ray RP (v, t) is defined as φ−1
P,v({re2πit : r > 1}).

Let us now revisit the definition of GPL maps that were discussed in [7, 18]. We
say U ⊂ |S0| × C is a topological multi-disk if each fiber

Uv := U ∩ ({v} × C)

is a simply connected domain. Let U and V be two topological multi-disk in |S0|×C.
We simply use the notation U ⋐ V to denote that Uv is compactly contained in Vv
for each v ∈ |S0|.

Definition 2.2. An GPL map g over the schema |S0| is a map

g : U → V

(v, z) 7→ (σ(v), gv(z)),

with the following properties:

• U ⋐ V are two topological multi-disks in |S0| × C;
• gv : Uv → Vσ(v) is a proper map of degree δ(v) for each v.

The set K(g) :=
∞⋂
n=0

g−n(U) is called the filled-Julia set of g.

Definition 2.3 (Access and external marking). Let g : U → V be a GPL map
with fiber-wise connected filled Julia set. A path to K(g) is a continuous map
γ : [0, 1] → V such that γ((0, 1]) ⊂ V \K(g) and γ(0) ∈ J(g). We say two paths γ0
and γ1 to K(g) are homotopic if there exists a continuous map γ̃ : [0, 1]× [0, 1] → V
such that

(1) t 7→ γ̃(s, t) is a path to K(g) for all s ∈ [0, 1];
(2) γ̃(0, t) = γ0(t) and γ̃(1, t) = γ1(t) for all t ∈ [0, 1];
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(3) γ̃(s, 0) = γ0(0) for all s ∈ [0, 1].

An access to K(g) is a homotopy class of paths to K(g).
An external marking for g is a collection Γ = {Γv}v∈|S0|, where each Γv is an

access to K(g) contained in {v} × C, which is forward invariant in the following
sense. For every v ∈ |S0| and every representative γ of Γv, the connected component
of g(γ ∩ U) which intersects K(g) is a representative of Γσ(v).

The standard external marking for a generalized polynomial P with fiber-wise
connected Julia set is defined as the collection of {[RP (v, 0)]}v∈|S0|, where RP (v, 0)
is the external ray of P with 0-angle in the v-fiber.

Let g1, g2 be two GPL maps. We say that they are quasiconformally conjugate
if there is a fiber-wise quasiconformal map φ : |S0| × C → |S0| × C such that
φ ◦ g1 = g2 ◦ φ near K(g1). We say that they are hybrid equivalent if they are
quasiconformally conjugate and we can choose φ such that ∂̄φ = 0 a.e. on K(g1).
The Douady-Hubbard straightening theorem [5] extends in a straightforward way.

Theorem 2.4. [7, Theorem A] Let g be a GPL map over S0 with fiber-wise con-
nected Julia set and let Γ be an external marking for g. There exists a unique
P ∈ C(S0) and a hybrid conjugacy between g and P which sends the external mark-
ing Γ for g to the standard external marking for P .

2.3. Renormalization via mapping schema. The following lemma asserts that
critical components of K(f0) can be separated by puzzle pieces.

Lemma 2.5. Let |T | be the set of all the trivial critical component of K(f0). Set
S′ = |T | ∪

⋃
n≥0

fn0 (|S0|). There exists a positive integer N = N(f0) such that any

two different components K1,K2 ∈ S′ of K(f0) do not lie in the same puzzle piece
of depth N .

Proof. Note that S′ contains finitely many elements. The lemma follows easily from
the fact [9, 16] that

K =
⋂
n∈Z+

Yn(K) for all K,

where K is a component of K(f0) in S
′ and Yn(K) is puzzle piece of depth n that

contains K. □

From now on, we fix an integer N > max{r(v) | v ∈ |S0|} given by Lemma 2.5.
For any v ∈ |S0|, set Vv = {v} × YN (v), where YN (v) is the puzzle piece of depth
N that contains v. Let Uv = {v} × YN+r(v)(v), where r(v) is the smallest positive

integer so that f
r(v)
0 (v) = σ(v) and YN+r(v)(v) is the puzzle piece of depth N+r(v)

that contains v.

Lemma 2.6. The map

F0 :
⋃

v∈|S0|

Uv →
⋃

v∈|S0|

Vv,

(v, z) 7→ (σ(v), f
r(v)
0 (z))

is a GPL map over S0 with filled Julia set K(F0) =
⋃

v∈|S0|
{v} × v.
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Proof. Set U =
⋃

v∈|S0|
Uv and V =

⋃
v∈|S0|

Vv. We begin by proving that F0 : U → V

is a GPL map. Clearly, U ⋐ V . It suffices to show that F0 : Uv → Vσ(v) has degree

δ(v) for all v ∈ |S0|. Note that f j0 (YN+r(v)(v)) does not contain a nontrivial critical
component of K(f0) for all 1 ≤ j ≤ r(v)− 1 since r(v) is the first moment so that

f
r(v)
0 (v) ∈ |S0|. According to Lemma 2.5, for each 0 ≤ j ≤ r(v),

f j0 (YN+r(v)(v)) = YN+r(v)−j(f
j
0 (v)) ⊂ YN (f j0 (v))

does not contain any trivial critical component of K(f0). Thus

deg(F0|Uv ) = deg(f0|YN+r(v)(v)) = δ(v).

Finally note that⋃
v∈|S0|

{v} × v ⊂ K(F0) ⊂
⋃

v∈|S0|

⋂
n∈N

{v} × Yn(v) =
⋃

v∈|S0|

{v} × v,

and the proof is complete. □

A standard argument of hyperbolic geometry shows that there exists a finite
invariant set {αv}v∈|S0| in the Julia set such that αv lies in Uv, F0(αv) = ασ(v) for
all v ∈ |S0| and the combinatorial rotation number of αv is zero if v is periodic
under σ.

Lemma 2.7. There exists a family {Rv}v∈|S0| of smooth curves parameterized by
r ∈ (0,+∞) with the following properties.

• For every v ∈ |S0|, lim
r→0

Rv(r) = αv.

• For every v ∈ |S0|, fr(v)0 Rv = Rσ(v).

Proof. It follows from [15, Main Theorem] that for every periodic αv there exists

at least one smooth external ray R̃v of f0 landing at αv. Evidently, such external

rays R̃v can be chosen so that f
r(v)
0 R̃v = R̃σ(v) for all periodic v ∈ |S0|. For

every periodic v ∈ |S0|, let θv be the external angle of R̃v. We define Rv to be a

perturbation of R̃v in the following way. Fix an ϵ > 0 small enough so that the
following holds. For every periodic v ∈ |S0|,

• Rv(r) = ϕ−1
f0

(er+i(2πiθv+ϵr)) for r > Rf0 , where ϕf0 is the Böttcher coordi-
nate of f0 and Rf0 is the maximal escaping rate of f0.

• Rv([Rf ,+∞)) does not meet the post-critical set of f0.

• We extend Rv by f
r(v)
0 Rv(r) = Rσ(v)(d

r(v)r) for all r ∈ (0,+∞).
• lim
r→0

Rv(r) = αv.

Finally we define Rv for every preperiodic v ∈ |S0| by induction. Assume that
Rσ(v) has been defined. We define Rv as a connected component of preimage of

f
−r(v)
0 (Rσ(v)) such that lim

r→0
Rv(r) = αv.

□

Remark 2.8. The result of Petersen and Zakeri[15] is only for periodic points. For
an eventually periodic point, the external rays may bifurcate. See figure 1 for
example.
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Figure 1. The Julia set of (z2− .64)2+ .8. The β-fixed point (the
landing point of the 0-ray) has a preimage in the critical preperiodic
component having only broken (bifurcated) rays.

Such a family {Rv}v∈|S0| given by the lemma above induces an external marking
Γ0 = {[{v} ×Rv]}v∈|S0| for F0.

The remainder of this section will be devoted to the construction of the straight-
ening map

χ : F0 → C(S0), f 7→ χ(f).

We begin with the constructions of GPL maps induced by maps in the fiber F0.

Lemma 2.9. For any n ∈ N and f ∈ F0, there exists a quasiconformal homeomor-
phism ϕf,n : C → C with the following properties.

• ϕf,n : {z | Gf0(z) > r0d
−n} → {z | Gf (z) > r0d

−n} is a conformal map.
• ϕf,n ◦ f0 = f ◦ ϕf,n on {z | Gf0(z) ≥ r0d

−n}.

Proof. First note that there exists a conformal map Φ : Df0(∞) → Df (∞) such
that

(2.1) Φ ◦ f0 = f ◦ Φ on Df0(∞)

since f and f0 lie in the same fiber of π. Set W = {z | Gf0(z) > r0d
−n} and

W ′ = {z | Gf (z) > r0d
−n}. It follows from (2.1) that Φ maps W conformally onto

W ′. Since ∂W and ∂W ′ are unions of disjoint smooth curves, Φ can be extended
smoothly from W onto W ′. Let D be an arbitrary component of C \W and let
D′ denote the bounded component C \ Φ(∂D). Then we extend Φ: ∂D → ∂D′

to a diffeomorphism hD : D → D′ in an arbitrarily smooth way. Finally we define
ϕf,n = Φ on W and ϕf,n = hD on D, where D runs over all the component of

C \W . It is clear that ϕf,n : C → C is a quasiconformal map satisfying all the
desired conditions. □

Set N ′ = max
v∈|S0|

N + r(v). For any f ∈ π−1(π(f0)), let ψ = ϕf,N ′ be given by

Lemma 2.9. For any v ∈ |S0|, let U ′
v = {v} × ψ(YN+r(v)(v)) and V ′

v = {v} ×
ψ(YN (v)).



8 HIROYUKI INOU AND YIMIN WANG∗

Lemma 2.10. The map

F :
⋃

v∈|S0|

U ′
v →

⋃
v∈|S0|

V ′
v ,

(v, z) 7→ (σ(v), fr(v)(z))

is a GPL map over S0 with fiber-wise connected filled Julia set.

Proof. Let us first check that F is well defined. To this end, we need to show that

fr(v)(ψ(YN+r(v)(v))) = ψ(YN (v))

for any v ∈ |S0|. Note that ψ(YN+r(v)(v)) is an f -puzzle piece of depth N +

r(v), which yields fr(v)(ψ(YN+r(v)(v))) is an f -puzzle piece of depth N . Since

ψ ◦ fr(v)0 = fr(v) ◦ ψ on ∂YN+r(v)(v), we conclude that the two bounded Jordan

disks fr(v)(ψ(YN+r(v)(v))) and ψ(YN (v)) share a common boundary. In fact,

∂(fr(v)(ψ(YN+r(v)(v)))) = ∂(ψ(f
r(v)
0 (YN+r(v)(v)))) = ∂(ψ(f(YN (v))).

Therefore fr(v)(ψ(YN+r(v)(v))) = ψ(f(YN (v)).
We now proceed to show that F is a GPL map. Obviously,

⋃
v∈|S0|

U ′
v ⋐

⋃
v∈|S0|

V ′
v .

It remains to prove that for any v ∈ |S0|,

fr(v) : ψ(YN+r(v)(v)) → ψ(YN (v))

is a holomorphic proper map of degree δ(v). This follows easily from that fact that
the boundary map

fr(v) : ∂ψ(YN+r(v)(v)) → ∂ψ(YN (v))

is a δ(v)-to-one covering. Indeed,

f
r(v)
0 : ∂YN+r(v)(v) → ∂YN (v)

is a δ(v)-to-one covering and ψ is a conjugacy between f
r(v)
0 |∂YN+r(v)(v) and f

r(v)|∂ψ(YN+r(v)(v)).

We are left with the task of checking the filled Julia set K(F ) is fiber-wise
connected. Conversely, suppose that K(F ) is not fiber-wise connected. Then there
exists a moment s ≥ 1 such that F−s(

⋃
v∈|S0|

U ′
v) is not a topological multi-disk.

More precisely, there exists v0 ∈ |S0| and two disjoint f -puzzle piece Y, Ỹ such that

both {v0}×Y and {v0}×Ỹ are different components of (F−s(
⋃

v∈|S0|
U ′
v))∩({v0}×C).

Recall that there exists a conformal map Φ: Df0(∞) → Df (∞) such that Φ◦f0 = f◦
Φ. Note that ∂Y and ∂Ỹ lie in Df (∞). We check at once that {v0}×Φ−1(∂Y ) and

{v0} × Φ−1(∂Ỹ ) are the boundaries of two disjoint components of F−s
0 (

⋃
v∈|S0|

Uv).

This contradicts that K(F0) =
⋃

v∈|S0|
{v} × v is fiber-wise connected. □

Now the straightening map

χ : F0 → C(S0), f 7→ χ(f)

can be defined as follows. For any f ∈ F0, let F be as given by Lemma 2.10.
Recall that there exists a unique conformal map Φ: Df0(∞) → Df (∞) such that
Φ′(∞) = 1 and Φ ◦ f0 = f ◦ Φ. For every v ∈ |S0|, let R′

v := Φ(Rv). Note that
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Γ = {[{v} × R′
v]}v∈|S0| is an external marking for the GPL map F . Now let χ(f)

be the unique map in C(S0) that is hybrid equivalent to F (respecting the external
markings) given by Theorem 2.4.

3. Straightening maps are surjective

Recall that f0 ∈ Pd is a map whose Julia set is not a Cantor set. The straight-
ening map

χ : F0 → C(S0), f 7→ χ(f)

induced by f0 has been defined in the last section. The objective of this section is
to establish the following:

Theorem 3.1. The straightening map χ is surjective.

Keep in mind that N is an integer given by Lemma 2.5. For any v ∈ |S0|,
set Vv = {v} × YN (v), where YN (v) is the puzzle piece of depth N that contains
v. Let Uv = {v} × YN+r(v)(v), where r(v) is the smallest positive integer so that

f
r(v)
0 (v) = σ(v) and YN+r(v)(v) is the puzzle piece of depth N + r(v) that contains
v. By Lemma 2.6, the map

F0 :
⋃

v∈|S0|

Uv →
⋃

v∈|S0|

Vv,

(v, z) 7→ (σ(v), f
r(v)
0 (z))

is a GPL map over S0 with filled Julia set K(F0) =
⋃

v∈|S0|
{v} × v. Bear in mind

that a collection of perturbed external rays {Rv}v∈|S0| induces an external marking
for F0.

Convention. Let

Π: |S0| × C → C
(v, z) 7→ z

be the projection to the second coordinate.

The proof of Theorem 3.1 is based on the following lemma.

Lemma 3.2. For any g ∈ C(S0), there is a quasiregular map f̂ : C → C with the
following properties.

(1) f̂ = f0 on
⋃

v∈|S0|
C \Π(Uv).

(2) The map

F̂ :
⋃

v∈|S0|

Uv →
⋃

v∈|S0|

Vv,

(v, z) 7→ (σ(v), f̂r(v)(z))

is a quasiregular map. Moreover,

F̂ :
⋃

v∈|S0|

Wv →
⋃

v∈|S0|

Uv

is holomorphic and it is a GPL map over S0 hybrid equivalent to g, where

Wv = F̂−1(Uσ(v)) for every v ∈ |S0|.
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(3) The non-regular part NR = {z ∈ C : ∂̄f̂(z) ̸= 0} is contained in
⋃

v∈|S0|
Π(Uv\

Wv). Moreover, for any z ∈ C, the orbit of z under f̂ pass through NR at
most once.

(4) There is a collection {γv}v∈|S0| of paths characterized by the following at-
tributes.

• for every v ∈ |S0|, f̂r(v)(γv) = γσ(v);
• for every v ∈ |S0|, γv \Π(Uv) = Rv;

• {γv}v∈|S0| induces an external marking Γ̂ for F̂ . Furthermore, there is

a hybrid conjugacy between F̂ and g sending Γ̂ to the standard external
marking for g.

We will postpone the proof of this lemma to Section 3.1 and instead utilize it to
demonstrate Theorem 3.1.

Proof of Theorem 3.1. For any g ∈ C(S0), let f̂ be given by Lemma 3.2. By the

third property of f̂ and [17, Lemma 1], there exists a quasiconformal map Φ: C → C
with the following properties.

• Φ is holomorphic near infinity, Φ′(∞) = 1.

• ∂̄Φ = 0 a.e. on K(F̂ ).

• f := Φ ◦ f̂ ◦ Φ−1 is a monic centered polynomial.

Our aim is to show that f ∈ χ−1(g).

By the properties (2) and (3) of f̂ , the map

F :
⋃

v∈|S0|

{v} × Φ(Π(Wv)) →
⋃

v∈|S0|

{v} × Φ(Π(Uv))

(v, z) 7→ (σ(v), fr(v)(z))

is a GPL map over S0 hybrid equivalent to g.
Let us first check that f ∈ π−1(π(f0)). In other words, f |Df (∞) and f0|Df0

(∞)

are conformally conjugate. We use the notation Pn to denote the complement of
the union of puzzle pieces of depth n of f0. It suffices to prove that there exists a
sequence of homeomorphisms ϕn : C → C so that for each n sufficiently large,

• ϕn is holomorphic on Pn.
• f ◦ ϕn = ϕn ◦ f0 on Pn.
• ϕn+1 = ϕn on Pn.

Indeed, once such a sequence ϕn is constructed, the map ϕ, defined by ϕ|Pn
= ϕn,

becomes a desired conformal conjugacy.
Recall that N is a sufficiently large integer given by Lemma 2.5. Note that

f ◦ Φ = Φ ◦ f0 on PN by the first property of f̂ . Let ϕN = Φ and assume that
ϕn has been constructed for some n ≥ N . We now proceed to construct ϕn+1 as
follows. For each Y ⊂ C, denote Y ′ = ϕn(Y ). It suffices to construct, for each
puzzle piece Y of depth n, a homeomorphism ϕn+1 so that ϕn+1 is holomorphic
and f ◦ ϕn+1 = ϕn+1 ◦ f0 on Y ∩ Pn+1.

Case 1. Y does not contain any critical points of f0. Then f0 : Y → f(Y ) is
conformal, and so is f : Y ′ → f(Y ′). This follows from the fact that ϕn◦f0 = f ◦ϕn
on ∂Y . The map ϕn+1 can be defined easily by

ϕn+1 = (f |f(Y ′))
−1 ◦ ϕn ◦ f0|Y .
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Case 2. Y contains a critical point c in v0 for some v0 ∈ |S0|. Let K0 denote
the filled Julia set of F in the fiber {v0}×C. Note that Π(K0) ⊂ Y ′ = ϕn(Y ). Let

B (resp . B̃) be the puzzle pieces of depth of n+1 of f0 (resp. f) that contains v0
(resp. Π(K0)). Then both the two maps

f
r(v0)
0 : Y \B → f

r(v0)
0 (Y ) \ fr(v0)0 (B)

and

fr(v0) : Y ′ \ B̃ → fr(v0)(Y ′) \ fr(v0)(B̃)

are coverings of degree δ(v0). Thus there is a homeomorphism ϕn+1 such that

f
r(v0)
0 ◦ ϕn = ϕn+1 ◦ fr(v0) on Y \B

and

ϕn+1 = ϕn on ∂Y.

Extending ϕn+1 in an arbitrary way to a homeomorphism from B onto B̃, and we
obtained our desired map ϕn+1.

Case 3. Y contains a critical point c ̸∈
⋃

v∈|S0|
v. Since N is a sufficiently

large integer given by Lemma 2.5, c is the unique critical point of f0 in Y . Then
f0 : Y → f(Y ) is a branched covering, and so is f : Y ′ → f(Y ′). Let YN be
the puzzle piece of depth N of f0 that contains c. Note that c̃ = Φ(c) is the
unique critical point in Y ′

N = Φ(YN ) = ϕn(YN ) since Φ conjugates f0 to f outside⋃
v∈|S0|

Π(Uv). So c̃ is the unique critical point of f in Y ′. Let X (resp. X̃) be the

puzzle piece of depth n+1 of f0 (resp. f) that contains c (resp. c̃). Then both the
two maps

f0 : Y \X → f0(Y ) \ f0(X)

and

f : Y ′ \ X̃ → f(Y ′) \ f(X̃)

are coverings of the same degree. The subsequent proof mirrors that of Case 2.
It remains to prove that there exists a hybrid conjugacy between F and g which

respects the external markings. Keep in mind that we have constructed a conformal
conjugacy between f0|Df0

(∞) and f |Df (∞) such that ϕ = Φ near infinity. Together

with the property (4), we conclude that R′
v := Φ(γv) is an external ray of f with

the same external angle as Rv for all v ∈ |S0|. Let Ψ be a hybrid conjugacy

between F̂ and g, as given by the property (4), which sends the external marking

Γ̂ = {[{v} × γv]}v∈|S0| for F̂ to the standard external marking for g. It follows
immediately that

ι :
⋃

v∈|S0|

{v} × Φ(Π(Uv)) →
⋃

v∈|S0|

{v} × C

(v, z) 7→ Ψ((v,Φ−1(z)))

is a hybrid conjugacy between F and g sending the external marking Γ = {[{v} ×
R′
v]}v∈|S0| for F to the standard external marking for g. □
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3.1. Quasiconformal surgery. For each v ∈ |S0|, set m = max
v∈|S0|

mod(Vv \ Uv).

Choose an annulus Av lying in Vv \ Uv with the following properties.

• Π((Vv \ Uv) \Av) is contained in the basin of infinity of f0.
• The core geodesic of Av is homotopic to that of Vv \ Uv in the annulus
(Vv \ Uv).

Figure 2. The domains Uv, Vv and Wv, and the annulus Av (for
the case σ(v) = v for simplicity). Note that Av contains K(f0) ∩
(Vv \ Uv).

Indeed, this can be done easily since ∂Π(Uv) and ∂Π(Vv) are contained in the
basin of infinity of f0 (see Figure 2). Note that each ray Rv (v ∈ |S0|) intersects
∂Vv (resp. ∂Uv) transversally at a single point xv (resp. av ).

We conclude this section by providing a proof of Lemma 3.2.

Proof of Lemma 3.2. For any g ∈ C(S0), we first fix a GPL restriction

g :
⋃

v∈|S0|

W ′
v →

⋃
v∈|S0|

U ′
v

of g such that

• min
v∈|S0|

mod(U ′
v \W ′

v) ≥ m.

• Each external ray Rg(v, 0) intersects ∂U ′
v (resp. ∂W ′

v) transversally at a
single point a′v and b′v.

Indeed, such a GPL restriction can be chosen easily by requiring the boundaries of
U ′
v to be equipotential curves of g with sufficient large potential. For every v ∈ |S0|,

let φv : Uv → U ′
v be a conformal homeomorphism such that φv(v, av) = a′v. Set

Wv = φ−1
v (W ′

v) and bv = φ−1
v (b′v). Let Ãv be an annulus with smooth boundaries

contained compactly in Uv \Wv such that

• δ(v)mod(Ãv) = mod(Aσ(v)).
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• The core geodesic of Ãv is homotopic to that of Uv \Wv in the annulus
(Uv \Wv).

The existence of Ãv is guaranteed by the fact that

mod(U ′
v \W ′

v) ≥ m ≥ mod(Vσ(v) \ Uσ(v)) > modAσ(v) >
modAσ(v)

δ(v)
.

We first define a quasiregular map F̂ :
⋃

v∈|S0|
Uv →

⋃
v∈|S0|

Vv as follows. For ev-

ery v ∈ |S0|, we define F̂ (v, z) := φ−1
σ(v) ◦ g ◦ φv(v, z) for (v, z) ∈ Wv. Clearly,

F̂ :
⋃

v∈|S0|
Wv →

⋃
v∈|S0|

Uv is conformally conjugate to g :
⋃

v∈|S0|
W ′
v →

⋃
v∈|S0|

U ′
v.

Moreover, a conformal conjugacy, between F̂ and g,

ι̂ :
⋃

v∈|S0|

Uv →
⋃

v∈|S0|

U ′
v

(v, z) 7→ φv(v, z)

sends the external marking Γ̂ = {[φ−1
v (Rg(v, 0))]} for F̂ to the standard external

marking for g. Let F̂ |Ãv
be defined as an arbitrary holomorphic covering of degree

δ(v) from Ãv onto Aσ(v). Let F̂ (v, z) := (σ(v), f
r(v)
0 (z)) for (v, z) ∈ ∂Uv. Up to

this point, we have defined F̂ on
⋃

v∈|S0|
Uv \ (Wv ∪ Ãv). Finally, we interpolate

F̂ quasiregularly so that the path F̂ (φ−1
v (Rg(v, 0) ∩ (U ′

v \W ′
v))) is homotopic to

Rσ(v) ∩ (Vσ(v) \ Uσ(v)) rel {(σ(v), xσ(v)), (σ(v), aσ(v))} in the annulus Vσ(v) \ Uσ(v).
Now we proceed to construct a quasiregular map f̂ : C → C so that

F̂ (v, z) = (σ(v), f̂r(v)(z))

for all v ∈ |S0| and (v, z) ∈ Uz. Note that for every v ∈ |S0|,

f
r(v)−1
0 : f0(Π(Uv)) → Π(Vσ(v))

is conformal. Let

f̂(z) =


f0(z) if z ∈

⋃
v∈|S0|

C \Π(Uv),(
f
r(v)−1
0 |f0(Π(Uv))

)−1

◦Π ◦ F̂ (v, z) if z ∈ Π(Uv), v ∈ |S0|.

Clearly, f̂ satisfies properties (1) and (2) in the statement of Lemma 3.2.

It remains to check f̂ satisfies properties (3) and (4). Note that the non-regular

part NR = {z ∈ C : ∂̄f̂(z) ̸= 0} of f̂ is contained in
⋃

v∈|S0|
Π
(
(Uv \Wv) \ Ãv

)
.

Moreover, all the points in
⋃

v∈|S0|
Π
(
(Uv \Wv) \ Ãv

)
can never return back to this

(wandering) set since⋃
v∈|S0|

f̂r(v)
(
Π((Uv \Wv) \ Ãv)

)
=

⋃
v∈σ(|S0|)

(Π ((Vv \ Uv) \Av))

is contained in the basin of infinity of f0. Thus the property (3) holds. For every
v ∈ |S0|, we have to construct γv satisfying the property (4). Define γv to be
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Rv \Π(Uv) on C \Π(Uv). Clearly,

f̂r(v)(γv \Π(Uv)) = f
r(v)
0 (Rv \Π(Uv)) = Rσ(v) \Π(Vσ(v)) = γσ(v) \Π(Vσ(v)).

Then we extend {γv}v∈|S0| so that f̂r(v)(γv) = γσ(v) for all v ∈ |S0|. We finish

the proof by declaring that {[{v} × γv]} is the same external marking for F̂ as

Γ̂ = {[φ−1
v (Rg(v, 0))]}. Indeed, this follows from the fact that the two paths

Rσ(v) ∩ (Vσ(v) \ Uσ(v)) = γσ(v) \ Uσ(v)) and F̂ (φ−1
v (Rg(v, 0) ∩ (U ′

v \W ′
v)))

are homotopic rel {(σ(v), xσ(v)), (σ(v), aσ(v))} in the annulus Vσ(v) \ Uσ(v).
□

4. Rigidity of maps in a fiber of π

Let χ : F0 → C(S0) be the straightening map defined in section 2. Up to this
point, we have showed that χ is a surjection. In this section, we finish the proof
the main theorem by proving the following result.

Theorem 4.1. Let f and f̃ be maps in the fiber F0. If χ(f) = χ(f̃), then f = f̃ .

Proof. Let us first prove that f and f̃ are quasiconformally conjugate. Note that

there is a conformal conjugacy Φ: C \K(f) → C \K(f̃), between f and f̃ , off the
filled Julia set K(f). Moreover, Φ′(∞) = 1. Keep in mind that there is a GPL map

F0 :
⋃

v∈|S0|

Uv →
⋃

v∈|S0|

Vv,

(v, z) 7→ (σ(v), f
r(v)
0 (z))

over S0 with filled Julia set
⋃

v∈|S0|
{v} × v. Here, Vv = {v} × YN (v) is the puzzle

piece of depth N of f0 that contains v for all v ∈ |S0| and N is given by Lemma 2.5.

Let Ψ: C \K(f) → C \K(f0) (resp. Ψ̃ : C \K(f̃) → C \K(f0)) be the conformal

conjugacy, between f (resp. f̃) and f0, off the filled Julia set K(f) (resp. K(f̃)).

Convention. For any Jordan domain Y with ∂Y ⊂ C \ K(f0), we use Y ′ (resp.

Ỹ ) to denote the Jordan domain bounded by Ψ(∂Y ). (resp. Ψ̃(∂Y )).

Claim. There exists a positive number M such that for every v ∈ |S0| and n ≥
N , Φ: ∂Y ′

n(v) → ∂Ỹn(v) admits an M -quasiconformal extension Φn inside Y ′
n(v).

Moreover, Φn ◦ f = f̃ ◦ Φn on
⋂
n≥N

Y ′
n(v).

Once the Claim is proved, it is immediately implied by [14, Theorem 1.3] that

Φ extends to a quasiconformal conjugacy between f and f̃ .
Now we turn to prove the Claim. The proof is based on induction and a pullback

argument. Note that

F :
⋃

v∈|S0|

U ′
v →

⋃
v∈|S0|

V ′
v ,

(v, z) 7→ (σ(v), fr(v)(z))

and
F̃ :

⋃
v∈|S0|

Ũv →
⋃

v∈|S0|

Ṽv,
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(v, z) 7→ (σ(v), f̃r(v)(z))

are two hybrid equivalent GPL maps with fiber-wise connected Julia set. For every

v ∈ |S0|, let K(v, F ) and K(v, F̃ ) denote the filled Julia set of F and F̃ in the

fiber {v} × C respectively. Since χ(f) = χ(f̃), there exists a hybrid conjugacy

H :
⋃

v∈|S0|
U ′
v →

⋃
v∈|S0|

Ũv between F and F̃ respecting the external markings. Let

r = max
v∈|S0|

r(v). Recall that N is an integer given by Lemma 2.5, which is bigger

than r. We finish the proof of the Claim by constructing a sequence {Φn}n≥N of
quasiconformal maps

Φn :
⋃

v∈|S0|

Y ′
N−r(v) →

⋃
v∈|S0|

ỸN−r(v)

with the following properties.

• Φn = Φ on
⋃

v∈|S0|
Df (∞) \ Y ′

n(v).

• Φn = Π ◦H(v, z) on K(v, F ) for all v ∈ |S0|.
• Dil(Φn) ≤ Dil(ΦN ) for all n ≥ N ,

where Dil(·) is the maximal dilatation. Define

ΦN (z) =

Φ(z) if z ∈
⋃

v∈|S0|
Df (∞) \ V ′

v ,

Π ◦H(v, z) if z ∈ U ′
v, v ∈ |S0|.

Then we extend ΦN to be a quasiconformal map from
⋃

v∈|S0|
Y ′
N−r(v) onto

⋃
v∈|S0|

ỸN−r(v)

in an arbitrary way. Let M = Dil(ΦN ). Now assume that we have constructed a
quasiconformal map

Φn :
⋃

v∈|S0|

Y ′
N−r(v) →

⋃
v∈|S0|

ỸN−r(v)

with the desired properties. Let us construct a quasiconformal map

Φn+1 :
⋃

v∈|S0|

Y ′
N−r(v) →

⋃
v∈|S0|

ỸN−r(v)

as follows. For every v ∈ |S0|,

fr(v) : Y ′
N (v) \K(v, F ) → Y ′

N−r(v)(σ(v)) \K(σ(v), F )

and

f̃r(v) : ỸN (v) \K(v, F̃ ) → ỸN−r(v)(σ(v)) \K(σ(v), F̃ )

are holomorphic coverings with the same degree δ(v). Thus we can lift

Φn : Y
′
N−r(v)(σ(v)) \K(σ(v), F ) → ỸN−r(v)(σ(v)) \K(σ(v), F̃ )

to

Φn+1 : Y
′
N (v) \K(v, F ) → ỸN (v) \K(v, F̃ )

so that

• Dil(Φn+1|Y ′
N (v)\K(v,F )) ≤ Dil(Φn) ≤M for all v ∈ |S0| .

• Φn+1 = Φ on
⋃

v∈|S0|
Df (∞) ∩ (Y ′

N (v) \ Y ′
n+1(v)).
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Finally, let us extend Φn+1 to an M -quasiconformal map from
⋃

v∈|S0|
Y ′
N−r(v) onto⋃

v∈|S0|
ỸN−r(v) by setting Φn+1|Y ′

N−r(v)\Y ′
N (v) = ΦN and Φn+1|K(v,F )(z) = Π ◦

H(v, z) for all v ∈ |S0|. Therefore, we have proved the Claim.

Bear in mind that we have proved that there exists a quasiconformal conjugacy

Ψ between f and f̃ such that Ψ = Φ on Df (∞) = C \K(f) and Ψ = Π ◦H(v, z)
for all v ∈ |S0| and (v, z) ∈ K(v, F ). Let K =

⋃
v∈|S0|

Π(K(v, F )). It is fairly easy

to see ∂̄Ψ = 0 a.e. on C \ (K(f) \
⋃
k≥0

f−k(K)). Then Ψ is a conformal conjugacy

between f and f̃ since there is no invariant line fields on K(f) \
⋃
k≥0

f−k(K) (see

[9, 19, 12] for example). It implies that Ψ is the identity since Ψ′(∞) = Φ′(∞) = 1.

Hence f = f̃ .
□

Now we are in a position to prove the main theorem.

Proof of the Main Theorem. Firstly, F0 = π−1(π(f0)) is compact. The proof is
essentially the same as that of [8, Theorem 3.5]. It remains to prove that F0 is
connected. We will demonstrate that if E is a non-empty subset of C(f0) that is
both open and closed, then χ(E) is a closed subset within C(S0). Coupled with
the connectivity of C(S0) ([18, Theorem 7], see also [1, 11]) and the bijectivity of
χ, this observation ensures that F0 is inherently connected. Indeed, if F0 is not
connected, then there exists two disjoint nonempty closed subsets E1 and E2 of F0

such that E1 ∪ E2 = F0. It follows that C(S0) is the union of χ(E1) and χ(E2),
where χ(E1) and χ(E2) are two disjoint nonempty closed subsets of C(S0). This is
because χ is a bijection. However, this is impossible since C(S0) is connected.

We are left with the task of showing that χ(E) is closed in C(S0). Let a sequence
gn in χ(E) converge to g. We have to show that g ∈ χ(E). Note that E is
compact since F0 is compact. Hence, passing to a subsequence, we may assume
that fn = χ−1(gn) converges to f∞ in E. Recall that

F0 :
⋃

v∈|S0|

Uv →
⋃

v∈|S0|

Vv,

(v, z) 7→ (σ(v), f
r(v)
0 (z))

is a GPL map over S0. For each n ≥ 1, let ϕn be the conformal conjugacy between
f0 and fn defined on Df0(∞).

Convention. For all n ∈ Z+ ∪ {∞} and any subset Y in the fiber {v} × C, we
denote {v} × ϕn(Π(Y )) by Y n.

Note that for every n ∈ Z+ ∪ {∞},

Fn :
⋃

v∈|S0|

Unv →
⋃

v∈|S0|

V nv ,

(v, z) 7→ (σ(v), fr(v)n (z))
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is a GPL map over S0 and it is hybrid equivalent to gn for n ∈ Z+. Since fn → f∞,
we have

inf
n

min
v∈|S0|

mod(V nv \ Unv ) > 0.

As in[5, Section 7] (see also [13, Proposition 2.5]), we may choose hybrid conjuga-
cies Hn between Fn and gn, respecting the external markings, so that the maximal
dilatation of Hn is uniformly bounded. Therefore, passing to a further subsequence,
we conclude that there exists a quasiconformal conjugacy H∞ between F∞ and g
respecting the external marking. Thus f∞ is conjugate to χ−1(g) via a quasicon-
formal map H which is conformal outside the filled Julia set of f∞ and satisfies
H ′(∞) = 1.

Then the Beltrami path connecting f∞ and χ−1(g) is a connected set contained
in C(f0) intersecting E, hence it is contained in E and thus g = χ(χ−1(g)) ∈ χ(E).

□
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