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1. Essential self-adjointness

(B;H; �): an abstract Wiener space

� B: a Banach space

� H: a Hilbert space � B

� �: the Wiener measure with

Z
B
e
p�1hx;'i�(dx) = exp
n

�1
2
j'j2H�

o
;

' 2 B� � H�:
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FC1
0 : f : B ! R such that

f(x) = F (hx; '1i; : : : ; hx; 'ni);

F 2 C1
0 (R n); '1; : : : ; 'n 2 B�:

L� V : Schr�odinger operator on L2(�)

L: the Ornstein-Uhlenbeck operator

V : a scalar potential

Question:

Is L� V essentially self-adjoin on FC1
0 ?
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k k2: L2-norm

V+ := maxfV; 0g (the positive part)

V� := maxf�V; 0g (the negative part)

Proposition 1.1. Assume

� V+ 2 L2+ =
S

p>2 L
p,

� there exist 0 < a < 1, b > 0 such that

kV�fk2 � akLfk2 + bkfk2:

Then L� V is essentially selfadjoint on FC1
0 .
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What is suÆcient for

kV�fk2 � akLfk2 + bkfk2 ?

(Defective) logarithmic Sobolev inequalityZ
B
jf j2 log(jf j=kfk2) d� � �E(f; f) + �kfk22:

� (B; �): a probability space

� E : a Dirichlet form

� L: the associated generator
5



We assume

� E admits a square �eld operator �.

� E has a local property.

Hence E has the following form

E(f; g) =
Z

B
�(f; g) d�(1.1)

and � has the derivation property.

E.g. On an abstract Wiener space:

� �(f; g) = rf � rg, r: the gradient operator
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Theorem 1.2. AssumeZ
B
jf j2 log(jf j=kfk2) d� � �E(f; f) + �kfk22:

Then, for any " > 0, there exist positive constantsK1,

K2 such thatZ
B
f2log2+ f d�

� �2(1 + ")kLfk22 +K1 +K2kfk62:

cf. Feissner(1975), Bakry-Meyer(1982)
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Hausdor�-Young inequality

Set

�(x) = x log2+ x;  �1(x) = �0(x);

 (x) = e
p

x+1�1:

De�ne the complimentary function

	(x) =
Z x

0

 (y)dy:

Hausdor�-Young inequality:

xy � �(x) + 	(y) � x log2+ x+ 2
p
ye
p
y
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Theorem 1.3. Assume the logarithmic inequalityZ
B
jf j2 log(jf j=kfk2) d� � �E(f; f) + �kfk22

and v � 0,

e
v

2 L
2�+ =

[
p>2�

L
p
:

Then, there exist constants 0 < a < 1 and b � 0 such

that

kvfk2 � akLfk2 + bkfk2:(1.2)
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We now return to an abstract Wiener space.

Gross' logarithmic Sobolev inequalityZ
B
jf j2 log(jf j=kfk2) d� �
Z

B
jrf j2 d�

)
Z

B
f2 log2+ f d� � (1 + ")kLfk22 +K1 +K2kfk62:

Theorem 1.4. Assume

� V+, eV� 2 L2+.

Then L� V is essentially self-adjoint on FC1
0 .

cf. Segal(1969), Glimm & Ja�e(1970), Simon(1973),

Simon & H�egh-Krohn(1972)
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2. Domain of Schr�odinger operator

We consider a Schr�odinger operator A = L� V +W

on an abstract Wiener space (B;H; �).

Basic assumptions

(A.1) V � 1, V 2 L2+.

(A.2) W � 0 and there exists a constant 0 < � < 1

such that eW 2 L2=�.

) A = L� V +W is essentially self-adjoint on FC1
0
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Aim : To determine the domain,

i.e., Dom(A) = Dom(L) \Dom(V )

Main tools

� The Lax-Milgram theorem.

� The intertwining property, i.e.,

p
VA = A
p

V :
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How to de�ne an operator A?

We de�ne a vector �eld b by

b =

rV
2V

=

1
2
r log V:

and a bilinear form EA by

EA(f; g) = (rf;rg) + (b � rf; g)

� (f; b � rg) + ((V �W � jbj2)f; g):

By a formal computation, the associated generator is

given by
A = L� 2b � r+ (r�b� V +W + jbj2):(2.1)
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Decompose EA as

EA(f; g) = ^EA(f; g)

::::::::::::

symmetric
+ �EA(f; g)

::::::::::::

skew-symmetric

where
^EA(f; g) = (rf;rg) + ((V �W � jbj2)f; g);

�EA(f; g) = (b � rf; g)� (f; b � rg):

Moreover, we set

^EA��(f; g) = ^EA(f; g) + �(f; g):

The bilinear form associated to L� V is

EL�V (f; g) = (rf;rg) + (V f; g):
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Clearly
Dom(EL�V ) = Dom(r) \Dom(
p

V ):

We will show that Dom( ^EA) = Dom(EL�V ).

Additional assumptions

We assume either

eW+jbj2 2 L2=�(B.1)

or there exists a constant C > 0 such that

jbj2 � �V + C:(B.2)
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Proposition 2.1. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then there exists a constant � such that

(W + jbj2f; f) � �
::

appeared in (A.2)

EL�V (f; f) + �(f; f)

and hence

(1� �)EL�V (f; f) � ^EA(f; f) + �(f; f)

� (1 + �)EL�V (f; f) + �(f; f):

Therefore

Dom( ^EA) = Dom(EL�V ) = Dom(r) \Dom(
p

V ):
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Estimate of �EA

Proposition 2.2. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then, for suÆciently large �, there exists a

constant K > 0 such that

j �EA(f; g)j � K ^EA��(f; f)1=2 ^EA��(g; g)1=2:

Therefore EA satis�es the sector condition.

EA = ^EA + �EA is a closed bilinear form.
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Intertwining property

Instead of

p
VA = A
p

V ;

we show

EA(f;
p

V g) = EA(
p

V f; g):(2.2)
Proposition 2.3. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then (2.2) holds for f ,g 2 FC1
0 . Moreover,

we have, for f 2 Dom(A), g 2 Dom(A�),

(Af;
p

V g) = (
p

V f;A�g):(2.3)
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Domain of the Schr�odinger operator

Theorem 2.4. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then Dom(A) = Dom(L) \ Dom(V ).

Moreover, for suÆciently large �, there exist positive

constants K1, K2 such that

K1k(A� �)fk2 � kLfk2 + kV fk2

� K2k(A� �)fk2:

Remark. K1, K2 depend only on constants in (A.1),

(A.2), (B1), (B.2).
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3. Spectral gap of Schr�odinger operator

A Schr�odinger operator A = L� V +W on an abstract

Wiener space (B;H; �).

�(A): the spectrum of A = L� V +W .

Bounded potential

Theorem 3.1. Assume V is bounded and W = 0.

Then l = sup�(A) is a point spectrum of multiplicity

one and the associated eigenfunction can be chosen to be

positive. Moreover, the spectrum is discrete on (l�1; l],

i.e., it consists of point spectrums of �nite multiplicity.
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General potential

Theorem 3.2. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then l = sup�(A) is a point spectrum of

multiplicity one and the associated eigenfunction can be

chosen to be positive. Moreover, the spectrum is discrete

on (l� 1; l], i.e., it consists of point spectrums of �nite

multiplicity.
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Proof of Theorem 3.1

Approximation method

f'ig1i=1 � B�: a c.o.n.s of H�.

Fn := �('1; '2; : : : ; 'n).

Vn = E[V jFn].

)
(

�(L� Vn) is discrete on (�(Vn)� 1; �(Vn)]

where �(Vn) = sup�(L� Vn).
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We set

G(n) = (�� L+ Vn)
�1;

G = (�� L+ V )�1:

claim: G(n) ! G in norm sense

G�G(n) = G(n)(V � Vn)G:

We show k(V � Vn)Gkop ! 0.

By the logarithmic Sobolev inequality and the

Hausdor�-Young inequality xy � x log x� x+ ey
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k(V � Vn)Gfk22

= E[(V � Vn)
2(Gf)2]

=

1
N
E[N(V � Vn)
2(Gf)2]

� 1
N
E[(Gf)2 log(Gf)2 � (Gf)2 + eN(V�Vn)2]

� 1
N
f2E[jrGf j2] + kGfk22 log kGfk22

� kGfk22 + E[eN(V�Vn)2]g:
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Now replacing f with f=kGfk2,

k(V � Vn)Gfk22

� 1
N
f2E[jrGf j2] + E[eN(V�Vn)2 � 1]kGfk22g

� 1
N
fE[f2] + E[(Gf)2] + E[jV j(Gf)2]

+ E[eN(V�Vn)2 � 1]kfk22g

� 1
N
f(2 + kV k1)kfk22 + E[eN(V�Vn)2 � 1]kfk22g:

Hence

k(V � Vn)Gk2op �
1

N
f2 + kV k1 + E[eN(V�Vn)2 � 1]g:
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Now letting n!1 and then letting N !1, we have

lim
n!1
k(V � Vn)Gkop = 0:

This completes the proof.
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