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1. Essential self-adjointness

B, H, i): an abstract Wiener space
7

B: a Banach space
H: a Hilbert space C B

p: the Wiener measure with

1
/ e\/—_1<w,so>,u(dw) — exp{—§|go|§{*},
B

p € B* C H".
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FCy°: f: B — R such that

f(aj) — F(<w7 901>7 I <ZC, 90n>)9
F c CP(R"), @15...,9n € B,

L — V: Schrodinger operator on L?(pu)

L: the Ornstein-Uhlenbeck operator

V. a scalar potential

Question:
Is L — V essentially self-adjoin on FC3° 7
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| ||2: L*-norm
V. := max{V,0} (the positive part)

V_ := max{—V, 0} (the negative part)

Proposition 1.1. Assume

V_|_EL2+:U Lp

)

p>2

there exist 0 < a < 1, b > 0 such that

IV-fll2 < allLf]l2 + bl[f]]2

Then L — V is essentially selfadjoint on FC3°.
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What is sufficient for

IV-Fll2 < allLfll2 + bl f||2 *

(Defective) logarithmic Sobolev inequality

/B 7P log(1£1/11£]l2) di < €(F, £) + BIIFII2.

(B, i): a probability space
E: a Dirichlet form

L: the associated generator
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We assume

£ admits a square field operator I.

£ has a local property.

Hence € has the following form

(1.1) E(f,9) =/Bl“(f,g) dp

and I' has the derivation property.

E.g. On an abstract Wiener space:

I'(f,g) = Vf-Vg, V: the gradient operator
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Theorem 1.2. Assume

/B 7P log(1F1/11£]l2) di < €(F, £) + BIIFII2.

Then, for any € > 0, there exist positive constants K7,
K5 such that

| £108% £ dp
< (1 +e)||Lf|5 + Ki + Ko fll5.

cf. Feissner(1975), Bakry-Meyer(1982)
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Hausdorfi-Young inequality

Set
®(x) = xlogixz, P ' (z)=d'(x),
P(x) = eVl

Define the complimentary function

V(@)= [ by
0
Hausdorfl-Young inequality:

ry < B(z) + U(y) < wlog? © + 2/FeV?

8



Theorem 1.3. Assume the logarithmic inequality

/B 72 1og(1£1/11f]l2) di < a€(F, £) + BIIF |2

and v > 0,

e’ € L*t = || L.
pP>2¢

Then, there exist constants 0 < a < 1 and b > 0 such
that

(1.2) [vfllz < al|[Lfll2 + bl f||2.
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We now return to an abstract Wiener space.

Gross’ logarithmic Sobolev inequality

[ 1410851/l du < [ 1951 g
B B

:»/ f2log? fdp < (1+ )| LFI2 + K1 + Kal FIIS.
B

Theorem 1.4. Assume

V_|_, BV_ - L2+.

Then L — V is essentially self-adjoint on FCg3°.

cf. Segal(1969), Glimm & Jaffe(1970), Simon(1973),
Simon & Hgegh-Krohn(1972)



2. Domain of Schrodinger operator

We consider a Schrodinger operator 2l = L — V + W
on an abstract Wiener space (B, H, u).

Basic assumptions

(A1) V >1,V € L**.

(A.2) W > 0 and there exists a constant 0 < o < 1
such that e € L%/«

= A = L — V + W is essentially self-adjoint on FCy°
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Aim: To determine the domain,

i.e., Dom(2() = Dom(L) N Dom(V)

Main tools

The Lax-Milgram theorem.

The intertwining property, i.e.,

VVA = AVV.
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How to define an operator A7

We define a vector field b by

VvV

1
b = = —VlogV.

2V 2
and a bilinear form €4 by

Ea(f,g) = (VF,Vg)+(b-VFf,g)
T (fab * Vg) + ((V — W — |b|2).fag)°

By a formal computation, the associated generator is

given by
(21) A=L—-2b-V+(Vb—V +W + |b|?).
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Decompose €4 as

Ea(f,9) = €a(£,9) + £a(f:9)

syminetric
where

skew-symmetric

f:;A(fag) — (Vfa Vg) ((V — W — ‘b‘2)f,g),
Ea(f,g)=((b-Vf,g) —(f,b-Vg).

Moreover, we set

éA—A(.fa g) — f:;A(.fv g)

XS, 9).

The bilinear form associated to L — V is

8L—V(.f7 g) — (V.fa Vg) =+ (V.fa g)'
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Clearly
Dom(€;_yv) = Dom(V) N Dom(VvV).
We will show that Dom(£4) = Dom(Er_v).

Additional assumptions

We assume either
(B.1) eWHIb ¢ 12/
or there exists a constant C > 0 such that

(B.2) b2 < aV + C.
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Proposition 2.1. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then there exists a constant 3 such that

(W + |b|2.faf) <alépv(f,f)+B(f 1)
appeared in (A.2)

and hence

(1_a)gL—V(f9.f) SéA(faf)+/B(fvf)
S (1‘|‘a)£L—V(.fvf)‘|‘/3(.faf)

Therefore

Dom(€4) = Dom(€;_y) = Dom(V) N Dom(VV).

16




Estimate of €4

Proposition 2.2. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then, for sufficiently large A, there exists a
constant K > 0 such that

Ea(F,9)| < KEa x(F, £)?Ea-x(g,9)">

Therefore € 4 satisfies the sector condition.

Eq = £ A+ E4 is a closed bilinear form.
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Intertwining property

Instead of
vVVA=AVYV,

we show

(2.2) Ex(f,VVg) = E4(VV £, 9).

Proposition 2.3. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then (2.2) holds for f,g € FCy°. Moreover,
we have, for f € Dom(2(), g € Dom(A*),

(2.3) (Af,VVg) = (VVf, A*g).
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Domain of the Schrodinger operator

Theorem 2.4. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then Dom(2() = Dom(L) N Dom(V).
Moreover, for sufficiently large A, there exist positive
constants K7, K5 such that

KA1 ||(A = A) fll2 < ILfllz + [[V £l
< Kof[ (A = A) Sl

Remark. K, K5 depend only on constants in (A.1),
(A.2), (B1), (B.2).
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3. Spectral gap of Schrodinger operator

A Schrodinger operator 2l = L — V + W on an abstract
Wiener space (B, H, u).

o(21): the spectrumof A =L —V + W.
Bounded potential

Theorem 3.1. Assume V is bounded and W = 0.
Then I = sup o(2A) is a point spectrum of multiplicity
one and the associated eigenfunction can be chosen to be
positive. Moreover, the spectrum is discrete on (I—1,1],

1.e., 1t consists of point spectrums of finite multiplicity:.
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General potential

Theorem 3.2. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then I = sup o (21) is a point spectrum of
multiplicity one and the associated eigenfunction can be
chosen to be positive. Moreover, the spectrum is discrete

on (I — 1,1], i.e., it consists of point spectrums of finite

multiplicity:.
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Proof of Theorem 3.1

Approximation method

{pi}2, € B*: ac.onsof H*

Fn = 0(P15P25+5Pn).

V. = E[V|F,].

[ o (L — V,) is discrete on (A(V,,) — 1, A(V,,)]
where A(V,,) = supo(L — V,).

= 9

\
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We set

G =\N-L+V,)™,
G=MN—-L+V) L

claim: G™ — G in norm sense

G- G" =GV -V,)G.

We show ||[(V — V,)G||op — O.
By the logarithmic Sobolev inequality and the
Hausdorfl-Young inequality xy < xlogx — «x
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[(V = Vi) GF?
= E[(V — V,)%(Gf)?]

= CBIN(V ~V,) (G

< E(G) log(GF)* — (GF)? + eNVW))

HZ

< —{2E[|VGf|’] + |Gf|log |G f|2
— |IG£)12 + E[eNV =V},

2
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Now replacing f with f/||Gf||2,

(V= V)G
< A2B(VGSP] + BNV 1))}
< ABIf + B(GH?) + EIVIG)]

+ B[NV ]| £113)

1 2
< L2+ IVINAE + B[NV —1]|I£115}-

Hence

1 2
2 N(V-V,
IV = Va)Gllop, < 12+ IVl + Ele V= — 103,
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Now letting n — oo and then letting N — oo, we have
lim ||[(V — V,)G||op = 0.
n— oo

This completes the proof.
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