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The following norm equivalence is well-known on the Euclidean space:

IV =l ~ IV Fllp- (1)

Here, A denotes the Laplacian, || - ||, denotes the L” norm (1 < p < co) and the notation
A ~ B means that cA < B < C'A for some constants ¢ > 0 and C > 0 which is inde-
pendent of f. This equivalence leads the LP-boundedness of the Riesz transform, which
is formally expressed by V/—A ~!. Moreover the equivalence is extended to Riemannian
manifolds (at least compace case).

In this talk, we extend this equiavlence to the case of Schrodinger operator A — V' on
a Riemannian manifold M. Here A is the Laplace-Beltrami operator and V' is a scalar
function. We assume the following. First, the Ricci curvature is bounded from below.
Second, the potential function V' is bounded from below. By adding a positive constant,
we can and do assume that V' is uniformly positive. This is just for notational convenience.
We further assume that VV/max{V,1} and AV/max{V,1} are bounded. Under these
condtions we have the following

Theorem 1. For 1l < p < oo, the following norm equivalence holds

WV = Afl ~ IV Fllp + IVV F il VS € C52(M). (2)
To show the theorem above, the following two properties are fundamental.
e the intertwining property
e the Littlewood-Paley inequality
The first one takes the following form.

VV(A=V) = AVV. (3)

The operator A satisfying this condition is given by
1 1
A:A+b—§v*b+1|b|2—v (4)

where b = —-VV/V.
To state the second one, we need to introduce the Littlewood-Paley G-functions. They
are defined as follows:

G f(z) = {/oot|8te‘tmf(x)|2dt}l/2,

0
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GY fz) = {/oot|\/76tmf(x)|2dt}l/2.

0
We have the following domination which is called the Littlewood-Paley inequality.
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Proposition 2. For 1 < p < oo, it holds that

11l S NG fllp, S 11l
G fllp < 1/ 11,
IGY fllp < 1115

Here the notation A < B means that A < CB for some constants C' > 0 which is
independent of f.

To combine this with the intertwining property, we need to introduce the Littlewood-
Paley G-functions for the operator A. To do this, we just replace A — V with A and
denote the Littlewood-Paley G-functions by G, GL, etc. Similar inequality holds for A,
e.g, 1fll, SNGTfllo < Nfll,- The intertwining property yields that GyvVf = GV f.
Using this relation, we can show that

IVV £l S IVV = Afllp

Remaining inequality can be shown similarly.

So far, we have considered /V — A. If we consider A — V itself, then we have

Theorem 3. For 1 < p < oo, the following norm equivalence holds

A =V fllp ~ I AF Nl + 1V Flp, VI € G (M), ()

We can also extend the above theorem for the Hodeg-Kodaira operator dd* + d*d plus
the potential V. In this case, we need the positivity of the Riemannian curvature.
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