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Littlewood-Paley inequality for a diffusion satisfying the logarith-
mic Sobolev inequality:

Let (Xt) be a symmetric diffusion process on a space (M,B(M), μ), where
B(M) is the Borel σ-algebra and μ is a probability measure. We denote the
associated Dirichlet form by E . We assume that E is given as

E(u, v) =
∫

M

(∇u,∇v)dμ(x)

for some closed operator ∇ : L2(μ) → L2(μ;K) which satisfies the derivation
property. Here K is a Hilbert space and L2(μ;K) may be possibly a L2 section
of a vector bundle over M . We assume that E(1, 1) = 0 and the following
logarithmic Sobolev inequality holds: there exist α > 0 and β ≥ 0 such that

∫
M

u2 log u/‖u‖2μ(dx) ≤ αE(u, u) + β(u, u).

We need another semigroup {T̂t} in L2(μ;K) with the generator L̂. We assume
that |T̂tθ|K ≤ Tt|θ|K and ∇L = (L̂ − R)∇. We also impose the exponential
integrability of the negative part of R. We formulate this condition as follows.
Let V be a scalar function satisfying (R(x)k, k)K ≥ V (x)|k|2K . We denote the
negative part of V by V− and assume that eV− ∈ L∞− =

⋂
p≥1 Lp.

Under these conditions, we have the following theorem:

Theorem 1 For any 1 < p < q < ∞, there exist constants C1, C2, so that

‖∇u‖p ≤ C1‖
√

1 − Lu‖q, (1)

‖√1 − Lu‖p ≤ C2(‖∇u‖q + ‖u‖q). (2)
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