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1. Entropy and the Zygmund space

Zygmund space

e (M,B,m): ameasure space

e m(M) =1

o () =Blfl= [ fdm



Let ¢: [0,00) — R be defined by

(1) ¢(r) = log(1l + x)

graph of ¢(x) = log(1 + x)



Set

@ @ = | o dy=1+e)log1+a) -

A

Graphsof ® and xlogx —



The Zygmund space Z = L log L is defined by

(3) Z =A{f; E[®(|f])] < oo}.
The norm Ng In Z is defined by

(4) Ng(f) = inf{A; E[®(|f]/A)] < 1}.

The dual space of Z can be defined as follows. Let ¢ be the inverse
function of ¢:

Y(x) = e® — 1.
Set

W)= [ w@dy= [ (@ -1dy=e -z 1.



The dual space of Z is the Orlicz space associated with ¥. The
following inequality is fundamental:

() ry < (x) + ¥(y).
By using this inequality we can show

(6) [ fll1 < (e —1)Na(f).

So Z is smaller than L. Moreover we have

N&(f — (f)) = 2Na(f).



Entropy

Define an entorpy of f > 0 by

(7) Ent(f) = E[f log(f/(f))]-

We discuss the relation between the Zygmunt space and the entropy.

Proposition 1. For any non-negative function f, we have

(8) (HNERA(f = ()] < Ent(f)

If (f) > 1, we have another inequality.




Proposition 2. For any nonnegative function f with (f) > 1, we
have

(9) E[®(|f = (£)D] < {f) Ent(f).

Now we have

Proposition 3. For any non-negative function f, we have

(10)  Na(f — (f)) < max{\/(f), VEnt(f)}/Ent(f).




Now we will prove the reversed inequality. Recall

(11) Ent(f) = E[f log(f/{f))]

Proposition 4. For any non-negative function f, we have

()
1) Bnt(f) < 7L BIR((F — (/D)

If f satisfy (f) < 1, we have the following.
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Proposition 5. For any non-negative function f with (f) < 1, we
have

(13) Ent(f) < E[®(|f — (f)D] + 2.

Proposition 6. For any non-negative function f, we have

(14) Ent(f) < 3Nas(f — (f))-




The logarithmic Sobolev inequality

Let us recall the logarithmic Sobolev inequality.
e £ : aDirichlet form
o {T;} : a Markovian semigroup in L?(m)
e 2 : the generator of {7}}

The following inequality is called a logarithmic Sobolev inequality:

(15) /M 72 (@) log(£(2)?/ || F12) dm < ——£(f, ).

YLS
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If we assume the logarithmic Sobolev inequality (15), it is known that
for any non-negative function f, we have

(16) Ent(T:f) < e st Ent(f).

We set

(17) Yz—z = —lim S log [Tt —ml|z—z
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Combining the previous results, we have

Theorem 7. We have the following inequality:

(18) YLs < Yz 2z

Under the assumption of the logarithmic Sobole inequality, we can
show that tha independence of the spectrum.

Assume 2( is normal. Then o (2(,) is independentof p (1 < p < 00).
Here A, Is the generator in LP.

Question: What happens in the Zygmund space®?



2. Operators in Zygmund space

We define an Orlitz norm || || as follows:

(19) |flle = sup{E|g|f]]; E[¥(g)] < 1}.

Here non-negative functions g run over all fundtions with
E(¥(g)] < 1. We also have

(20) |flle = sup{E[g|f|]; Ele? —g] < 2}.

Tow norms Ng and || || are equivalent:

(21) Ng(f) < [[flle < 2Na(f).
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Proposition 8. A linear operator T' in Z is bounded if and only if
there exist positive constants A, B such that

(22) ITflle < AE[®(]f])] + B.

Corollary 9. A linear operator T in Z is bounded if and only if
there exist positive constants A, B such that for all non-negative
function g with E[e?] < 4, we have

(23) Elg|Tf|] < AE[[f|log|f|] + B.




3. Spectrum of the Kummer operator

In this section, we consider the Kummer operator

e M = [0,00)

1

(87 —
F(a_H):L' e Tdx

e m(dx) =
°» H = Lz([O,oo),m)

.Q[:a}dz —|—(]_—|—Oé—£ll‘)%

dx?2

We assume that o« > 0.

We give a representation of the resolvent by using the confluent
hypergeometric functions.
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Confluent hypergeometric functions

A confluent hypergeometric functions is defined by

oo

(24) 1Fi(ascsx) = Z (@)n x".

— (c)nn!

Here (a),, stands for the Pochhammer symbol:

I'(a 4+ n) _
['(a)

(25)  (a)n =

(a(a,—l—l)---(a,—l—n—l) n>1
1 n=20

\

1 F1 (a5 c; ) satisfies the following Kummer differential equation:

(26) zu” + (¢ — z)u’ = au.
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This means that ; F; (a; c; x) is an “eigen-function” of the Kummer
operator in the case of 1 + a = c.

If 1 Fy(a;c;x) € L?, then 1 Fy(a;c;x) is really an eigen-value. We
set

(27) M(a, 1+ a;x) = 1Fi1(a;1 + a3 x).

This function is called the Kummer function. Another independent
solution is
(28)

I(—a) I(a)
Dla—a) @2t

which iIs called the Kummer function of the second kind. Their

U(a,14+a3x) =

r “M((a—a,1—a;x)
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Wronskian iIs

I'l+ a) a1
I'(a)

Zr

e

W(M((a,1+ a3 +),U(a,1+ a3 -))(x) = —

It is known that Laguerre polynomials are eigen-functions. In fact, we
have

(ax+1),

n!

(29) LY (x) = M(—n,a + 1;x).

Thus the spectrum of 2 is {0, —1, —2,--- }.

The asymptotic behavior is crucial in the computation of the resolvent.



When x — 0, we have

(30) M(a,1+ a;x) — 1,
I
(31) U(a,1+ ajx) ~ F(((:))w_a.
When a = 0, x— should be log «.
When x — oo, we have
I'(1
(32) M(a,1+ a;x) ~ (1+a) eTxt 1,
I'(a)
(33) U(a,1+ ajx) ~x™?

Herea,14+ a #0,—1,—2,....

Recall that o > 0. We also assume thata # 0, —1, —2,

20

.... Then
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the resolvent G, = (a — 21) ! has the following kernel expression.

(31 Gaf (@) = | Galw,y)f(y) dy
0
where
( 1
—M(a,1+ a5y)U(a,1 4+ a,x) y < x,
yW (y)
Ga(wa y) = 1
—M(a,1 +a;x)U(a, 1+ o,y Yy > x.
W is the Wronskian. Hence
( I'(a) _
M(a,1+ a;y)U(a,1 + a,x)e” Yy* y < x,
I'l+ o)
Ga(z,y) = «

I'(a)
(I'(1 4+ o)

M(a,1+ a;x)U(a,1 4+ a,y)e " Yy* y > x.




G, is a bounded operator in L%. What happens in the case of
Zygmund space?
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4. The spectrum of the Kummer operaotr in Z

Now we can compute the spectrum of 2( in Z. Since we have the
Kenel expression of the resolvent,we can compute the spectrum.

Theorem 10. The set of point spectums of 2(is {z; Rz < —1} U

{—1yU{0}.

Theorem 11. When ®a > —1, a belongs to the resolvent set.




The spectrum in Z.
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In Theorem 7, we have shown v1,s < vz_,z. In this example
YLs = 3 and yz_,z = 1, which means that y.s # vz, z.
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Thanks !
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