Non-symmetric diffusions on Riemannian manifolds*

Ichiro Shigekawa[†] (Kyoto University)

1 Non-symmetric diffusions on Riemannian manifolds

Let (M, g) be a complete Riemannian manifold. We deonte the Riemannian volume by m = vol. We take a reference measure $\nu = e^{-U}d\text{vol}$. Here we assume that U is C^{∞} . We consider the following operator:

$$\mathfrak{A} = \frac{1}{2}\Delta + b - V. \tag{1}$$

Here \triangle is the Laplace-Beltrami operator and b is a vector field on M. We regard it as an operator in $L^2(\nu)$. Denoting the covariant differentiation by ∇ , we have $\triangle = -\nabla^*\nabla$. Here ∇^* is the dual operator of ∇ with respect to the Riemannian volume dvol. Our reference measure is ν and so we need to introduce the dual operator with respect to ν as follows:

$$\nabla_{\nu}^* = e^U \nabla^* e^{-U}.$$

Setting $\triangle_{\nu} = -\nabla_{\nu}^* \nabla$, \mathfrak{A} can be expressed as

$$\mathfrak{A} = \frac{1}{2} \Delta_{\nu} + \nabla_{\tilde{b}} - V \tag{2}$$

where

$$\tilde{b} = \frac{1}{2}\nabla U^{\sharp} + b \tag{3}$$

The dual operator of \mathfrak{A} is

$$\mathfrak{A}_{\nu}^* = \frac{1}{2} \triangle_{\mu} - \nabla_{\tilde{b}} - \operatorname{div}_{\nu} \tilde{b} - V.$$

We are interested in the semigroups generated by $\mathfrak A$ or $\mathfrak A^*$

We need the following assumptions. We take a point $o \in M$ and define $\rho(x) = d(o, x)$ where d is the Riemannian distance. We introduce the following conditions:

(B.1)
$$\frac{1}{2} \operatorname{div}_{\nu} \tilde{b} + V \geq 0$$
.

(B.2) $\nabla_{\tilde{h}}\rho/\rho$ is bounded from below for large ρ .

Theorem 1. Under the conditions (B.1), (B.2), the closure of $(\mathfrak{A}, C_0^{\infty}(M))$ generates a C_0 semigroup in $L^2(\nu)$ and the semigroup is positivity preserving.

We denote the associated semigroups by $\{T_t\}$.

^{*}October 19-21, 2012, "Probability and Geometry" in Yamagata University

[†]E-mail: ichiro@math.kyoto-u.ac.jp URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Theorem 2. Assume (B.1), (B.2). The semigroup $e^{-\alpha t}\{T_t\}$ is Markovian if and only if $V > -\alpha$.

Theorem 3. Assume (B.1), (B.2). The semigroup $e^{-\beta t}\{T_t\}$ is L^1 -contractive if and only if $\operatorname{div}_{\nu} \tilde{b} + V \geq -\beta$.

We have the similar result for \mathfrak{A}_{ν}^* . We need the following condition in place of (B.2).

(B.3) $\nabla_{\tilde{b}}\rho/\rho$ is bounded from above for large ρ .

Then we have the following:

Theorem 4. Under the conditions (B.1), (B.3), the closure of $(\mathfrak{A}^*_{\nu}, C_0^{\infty}(M))$ generates a C_0 semigroup in $L^2(\nu)$ and the semigroup is positivity preserving.

We denote the associated semigroups by $\{T_t^*\}$.

Theorem 5. Assume (B.1), (B.3). The semigroup $e^{-\beta t}\{T_t^*\}$ is Markovian if and only if $\operatorname{div}_{\nu} \tilde{b} + V \geq -\beta$.

Theorem 6. Assume (B.1), (B.3). The semigroup $e^{-\alpha t}\{T_t^*\}$ is L^1 -contractive if and only if $V \ge -\alpha$.

2 Normal operators on Riemannian manifolds

As an application, we give an characterization of normal operators on Riemannian manifold. We prepare a general theorem. Let H be a Hilbert space. Suppose we are given accretive operators A, B defined on \mathcal{D} . We assume that \overline{A} , \overline{B} are m-dissipative.

Theorem 7. Assume that $A\mathscr{D} \subseteq \mathscr{D}$, $B\mathscr{D} \subseteq \mathscr{D}$ and

$$AB = BA \quad on \mathcal{D},$$

 $(Au, v) = (u, Bv), \quad u, v \in \mathcal{D}.$

Then \overline{A} is normal and $\overline{A}^* = \overline{B}$.

Now we return to the Riemannian manifold case. We consider the following operator in $H = L^2(\nu)$.

$$\mathfrak{A} = \frac{1}{2} \triangle_{\nu} + \nabla_{b}.$$

The dual operator is given by

$$\mathfrak{A}_{\nu}^* = \frac{1}{2} \triangle_{\nu} - \nabla_b - \operatorname{div}_{\nu} b.$$

Then we give a criterion for $\mathfrak{A} = \triangle_{\nu} + b$ being a normal operator as follows.

Theorem 8. Assume that $\operatorname{div}_{\nu} b$ is bounded from below. Then $\mathfrak A$ is normal if and only if b is a Killing vector field and the following identies hold:

$$(\frac{1}{2}\Delta_{\nu} + b)\operatorname{div}_{\nu} b = 0,$$
$$[\nabla U, b] + \nabla \operatorname{div}_{\nu} b = 0.$$