On spectra of 1-dimensional diffusion operators

Ichiro Shigekawa (Kyoto University)

November 15, 2012, RIMS

Mathematical Quantum Field Theory and Related Topics

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

- 1. Introduction
- 2. One dimensional diffusion processes
- 3. Super symmetry and the spectrum
- 4. Logarithmic Sobolev inequality

1. Introduction

Hermite polynomials

Hermite polynomials are defined by

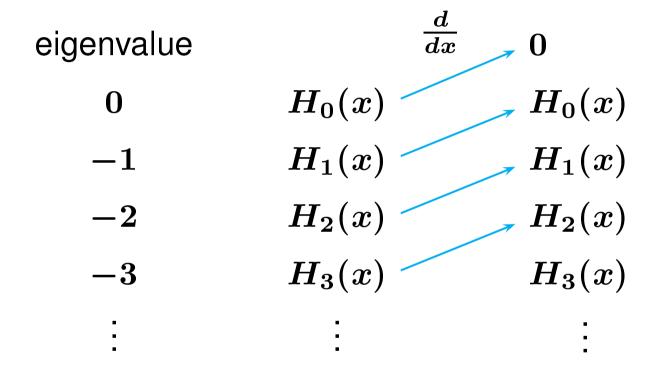
$$H_n(x) = \frac{(-1)^n}{n!} e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}, \quad n = 0, 1, \dots$$

These are eigenfunctions of the Ornstein-Uhlenbeck operator

$$\frac{d^2}{dx^2} - x \frac{d}{dx}.$$

We have

$$\frac{d}{dx}H_n(x) = H_{n-1}(x).$$



In this talk, we give a general framework of this fact.

2. One dimensional diffusion processes

- ullet $M=[0,\infty)$
- a, p: positive continuous functions on $(0, \infty)$

We consider the diffusion process generated by

(1)
$$\mathfrak{A}u = \frac{1}{p}(apu')'.$$

This operator is regarded as a self-adjoint operator in $L^2(p)$. Here p denotes a measure p(x)dx on $[0,\infty)$.

By formal calculation, the associated Dirichlet form is

(2)
$$\mathcal{E}(u,v) = \int_0^\infty u'v'ap\,dx.$$

The speed measure and the scale function

- dm = p(x)dx: the speed measure.
- s(x): the scale function.

(3)
$$m(x) = \int_0^x p(y) dy$$
(4)
$$s(x) = \int_0^x \frac{1}{a(y)p(y)} dy.$$

We assume that 0 is a regular boundary point (Feller's classification). So we have m(0) = 0, s(0) = 0. We also assume that ∞ is not a regular boundary point, i.e.,

$$m(\infty) + s(\infty) = \infty.$$

The precise domain of \mathcal{E} is given by

$$\mathrm{Dom}(\mathcal{E})=\{u\in L^2(p);\ u \ ext{is absolutely continuous on } (0,\infty)$$
 and $u'\in L^2(ap)\}.$

Proposition 1. If $u \in \text{Dom}(\mathcal{E})$, then u is a.c. (absolutely continuous) on $[0, \infty)$, i.e., u(0+) exists and u is a.c. on $[0, \infty)$ by defining u(0) = u(0+). In this case, we have

(5)
$$|u(0)| \leq \frac{1}{m(x)^{1/2}} ||u||_{L^2(p)} + \mathcal{E}(u,u)^{1/2} s(x)^{1/2}.$$

Moreover, if $s(\infty)<\infty$ then $u(\infty)$ exists and if $s(\infty)<\infty$, $m(\infty)=\infty$ then $u(\infty)=0$.

To show this, we use

$$|u(y) - u(x)| \le \mathcal{E}(u, u)^{1/2} (s(y) - s(x))^{1/2}.$$

By Proposition 1, $u \mapsto u(0)$ is a continuous linear functional from $\mathrm{Dom}(\mathcal{E})$ to \mathbb{R} .

Now we define an operator $V: L^2(p) \to L^2(ap)$ by

$$(6) Vu = u'$$

Here $Dom(V) = Dom(\mathcal{E})$.

If we impose the Dirichlet boundary condition at 0, we set

$$\mathrm{Dom}(V)=\mathrm{Dom}(\mathcal{E})\cap\{u:\,u(0)=0\}.$$

Proposition 2. $V: L^2(p) \to L^2(ap)$ is a closed operator.

The dual operactr V^*

We give a characterization of V^* .

Proposition 3. Take any $\theta \in L^2(ap)$. If $ap\theta$ is a.c. on $(0,\infty)$ and $\frac{(ap\theta)'}{p} \in L^2(p)$, then $ap\theta$ is a.c. on $[0,\infty)$, i.e., $ap\theta(0+)$ exists and $ap\theta$ is a.c. on $[0,\infty)$ by defining $ap\theta(0)=ap\theta(0+)$. We also have

(7)
$$|ap\theta(0+)| \le \frac{\|\theta\|_{L^2(ap)}}{s(x)^{1/2}} + \|\frac{(ap\theta)'}{p}\|_{L^2(p)}m(x)^{1/2}$$

Moreover, if $m(\infty) < \infty$ then $ap\theta(\infty)$ exists and if $m(\infty) < \infty$, $s(\infty) = \infty$ then $ap\theta(\infty) = 0$.

To show this, we use

$$|ap\theta(y) - ap\theta(x)| \le \sqrt{\int_x^y \frac{(ap\theta)'^2}{p^2}} p \, dt (m(y) - m(x))^{1/2}.$$

Dense domain

We denote the set of all continuous functions on $[0, \infty)$ with compact support by C_0 .

Proposition 4. $\operatorname{Dom}(\mathcal{E}) \cap C_0$ is dense in $\operatorname{Dom}(\mathcal{E})$ and $\operatorname{Dom}(\mathcal{E}) \cap C_0 \cap \{u: u(0) = 0\}$ is dense in $\operatorname{Dom}(\mathcal{E}) \cap \{u: u(0) = 0\}$.

By using this, we have the following duality formula (integration by parts):

Proposition 5. For any $u\in {
m Dom}(\mathcal E)$ and any $\theta\in L^2(ap)$ satisfying $\frac{(ap\theta)'}{p}\in L^2(p),$ we have

(8)
$$\int_0^\infty u'\theta ap \, dt = -u(0)ap\theta(0+) - \int_0^\infty u(ap\theta)' \, dt$$

Further we have $uap\theta(\infty) = 0$.

Proposition 6. The dual operator $V^*\colon L^2(ap) o L^2(p)$ of $V\colon L^2(p) o L^2(ap)$ is given by

(9)
$$V^*\theta = -\frac{(ap\theta)'}{p}.$$

Here

(10)

$$\mathrm{Dom}(V^*) = \{ heta \in L^2(ap); \ rac{(ap heta)'}{p} \in L^2(p), ap heta(0+) = 0 \}$$

for the Neumann boundary condition and

(11)
$$\operatorname{Dom}(V^*) = \{\theta \in L^2(ap); \frac{(ap\theta)'}{p} \in L^2(p)\}$$

for the Dirichlet boundary condition.

We define $\mathfrak{A} = -V^*V$. We can give a characterization of $\mathbf{Dom}(\mathfrak{A})$ as follows:

Theorem 7. We have that $u \in \text{Dom}(\mathfrak{A})$ if and only if

- 1. u is a.c. on $(0, \infty)$ and $u' \in L^2(ap)$,
- 2. apu' is a.c. on $(0,\infty)$ and $\frac{(apu')'}{p} \in L^2(p)$,
- 3. apu'(0+) = 0.

If u satisfies these conditions, we have

$$\mathfrak{A}u = -V^*Vu = \frac{(apu')'}{p}$$

If the boundary condition is Dirichlet, the third condition is replaced by u(0) = 0.

Theorem 8. We have that $\theta \in \text{Dom}(VV^*)$ if and only if

- 1. $ap\theta$ is a.c. on $(0,\infty)$ and $\frac{(ap\theta)'}{p}\in L^2(p)$,
- 2. $\frac{(ap\theta)'}{p}$ is a.c. on $(0,\infty)$ and $\left(\frac{(ap\theta)'}{p}\right)' \in L^2(ap)$,
- 3. $ap\theta(0+) = 0$.

In this case we have

(12)
$$\hat{\mathfrak{A}}\theta = -VV^*\theta = \left(\frac{(ap\theta)'}{p}\right)'$$

If the boundary condition is Dirichlet, the third condition $ap\theta(0+)=0$ should be omitted.

If we assume that a and p are C^2 functions, we have

Corollary 9. We have

$$\mathfrak{A}u = -V^*Vu = au'' + bu',$$

(13)
$$\mathfrak{A}u = -V^*Vu = au'' + bu',$$
(14)
$$\hat{\mathfrak{A}}\theta = -VV^*\theta = a\theta'' + (b+a')\theta' + b'\theta.$$

Here
$$b=a'+a(\log p)'$$
 $(b+a'=a'+a(\log ap)')$.

3. Super symmetry and the spectrum

The super symmetry is an efficient machinery to investigate the spectrum, which depends on the following well-known fact:

Proposition 10. Let T be a closed operator in a Hilbert space H. Then T^*T and TT^* have the same spectrum except for 0.

Let x be an eigenvector for a point spectrum λ of T^*T :

$$T^*Tx = \lambda x.$$

Then

$$(TT^*)Tx = T(T^*T)x = T\lambda x = \lambda Tx$$

which shows that Tx is an eigenvector for an eigenvalue λ of TT^* .

In the previous section, we took $T=V=\frac{d}{dx}$. So $\frac{d}{dx}$ give rise to a correspondence between eigenfunctions of the following operators:

(16)
$$\mathfrak{A}u = -V^*Vu = au'' + bu',$$

(17)
$$\hat{\mathfrak{A}}\theta = -VV^*\theta = a\theta'' + (a'+b)\theta' + b'\theta.$$

Here $b = a' + a(\log p)'$.

This can be seen from the following computation. Assume $au'' + bu' = \lambda u$. Then

$$a'u'' + a'u''' + b'u' + bu'' = \lambda u'.$$

Hence

$$a(u')'' + (a' + b)(u') + b'u' = \lambda u'.$$

Corollary 11. Assume that $b(x) \le -c < 0$, then $-\mathfrak{A}$ has a spectral gap > c.

Hermite polynomials

We take $a=1,\,p=e^{-x^2/2},\,M=\mathbb{R}.$ Then

$$b = a' + a(\log p)' = (-x^2/2)' = -x.$$

Hence

$$\mathfrak{A}u = -V^*Vu = u'' - xu'$$

 $\hat{\mathfrak{A}}\theta = -VV^*\theta = \theta'' - x\theta' - \theta.$

is the Ornstein-Uhlenbeck operator. u'' - xu' and $\theta'' - x\theta' - \theta$ have the same spectrum except for 0. This shows that the Ornstein-Uhlenbeck operator has eigenvalues $0, -1, -2, \ldots$ Eigenfunctions are Hermite polynomials

(18)
$$H_n(x) = \frac{(-1)^n}{n!} e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}.$$

eigenvalue	$u^{\prime\prime}-xu^{\prime}$		$ heta^{\prime\prime}-x heta^{\prime}- heta$
-1 -2 : -n :	$\left(egin{array}{c} H_1(x) \ H_2(x) \ dots \ H_n(x) \ dots \end{array} ight)$	$\dfrac{\dfrac{d}{dx}}{\longrightarrow}$	$egin{pmatrix} H_0(x) \ H_1(x) \ dots \ H_{n-1}(x) \ dots \ \end{pmatrix}$

Laguerre polynomials

We take
$$a=x, p=x^{\alpha-1}e^{-x}, M=[0,\infty).$$
 Then
$$b=a'+a(\log p)'=1+x((\alpha-1)\log x-x)'$$

$$=1+x\Big(\frac{\alpha-1}{x}-1\Big)=\alpha-x.$$

Hence

$$\mathfrak{A}u = -V^*Vu = xu'' + (\alpha - x)u'$$
 $\hat{\mathfrak{A}}\theta = -VV^*\theta = x\theta'' + (\alpha + 1 - x)\theta' - \theta.$

We call the operator $xu'' + (\alpha - x)u'$ as the Kummer operator.

Eigenvalues of the Kummer operator is $0, -1, -2, \ldots$

Eigenfunctions are Laguerre polynomials:

(19)
$$L_n^{\alpha}(x) = e^x \frac{x^{-\alpha}}{n!} \frac{d^n}{dx^n} (e^{-x} x^{n+\alpha}), \quad n = 0, 1, 2, \dots$$

We have

$$rac{d}{dx}L_n^{lpha-1}(x)=-L_{n-1}^lpha(x).$$

eigenvalue $xu'' + (\alpha - x)u'$ $x\theta'' + (\alpha + 1 - x)\theta' - \theta$

Laplacian

We take $a=1,\,p=1,\,M=\mathbb{R}.$ Then $\mathfrak{A}=rac{d^2}{dx^2}.$

Eigenfunctions are $e^{i\xi x}$. We have

$$rac{d}{dx}e^{ioldsymbol{\xi}x}=ioldsymbol{\xi}e^{ioldsymbol{\xi}x}.$$

4. Logarithmic Sobolev inequality

For the Kummer operator, we have the following logarithmic Sobolev inequality.

Theorem 12. For $\mathfrak{A}u = xu'' + (\alpha - x)u'$, we have

(20)
$$\int_0^\infty u^2 \log(u^2/\|u\|_2^2) p(x) \, dx \le 4\mathcal{E}(u, u).$$

To show this, we use Bakry-Emery's Γ_2 criterion.

$$\mathfrak{A}u = xu'' + (\alpha - x)u'.$$

$$egin{align} \Gamma(u,u) &= rac{1}{2} \{ \mathfrak{A}(u^2) - 2u \mathfrak{A}u \} = x u'^2 \ \Gamma_2(u,u) &= rac{1}{2} \{ \mathfrak{A}\Gamma(u,u) - 2\Gamma(\mathfrak{A}u,u) \} \ &= x^2 (u'' + rac{1}{2x} u')^2 + rac{1}{2} (1 + rac{2lpha - 1}{2x})\Gamma(u,u). \end{split}$$

So we have to assume that $\alpha \geq \frac{1}{2}$.

Thanks!