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1. Introduction

Hermite polynomials

Hermite polynomials are defined by

—-1)" 2, d" 2
H,(x) = ( n') e’ /2d:13"8_m /2. n=0,1,...

These are eigenfunctions of the Ornstein-Uhlenbeck operator

d? d

dx? w%

We have

% n(ac) — Hn_l(w).



eigenvalue dx 0
0 Ho () ? Ho ()
—1 H,(x) / H,(x)
—2 Hs(x) / Hs(x)
_3 Hs(x) H(x)

In this talk, we give a general framework of this fact.



2. One dimensional diffusion processes

e M = [0,00)
e a, p: positive continuous functions on (0, co)
We consider the diffusion process generated by

(1) Au = 1(a,pu')'.
p

This operator is regarded as a self-adjoint operator in L%(p). Here p
denotes a measure p(x)dx on [0, 00).

By formal calculation, the associated Dirichlet form is

(2) E(u,v) =/ u'v'ap dx.
0



The speed measure and the scale function

e dm = p(x)dx: the speed measure.

e s(x): the scale function.

(3) m(z) = / " () dy
T 1
) s(@) = /0 a(w)p) ¥

We assume that 0 is a regular boundary point (Feller’s classification).
So we have m(0) = 0, s(0) = 0. We also assume that oo is not a
regular boundary point, i.e.,

m(oo) 4+ s(o0) = oo.



The precise domain of £ is given by

Dom(€&) = {u € L?(p); u is absolutely continuous on (0, co)

and u’ € L?(ap)}.

Proposition 1. If u € Dom(€), then w is a.c. (absolutely continu-
ous) on [0, 00), i.e., u(0+) exists and w is a.c. on [0, co) by defining
u(0) = u(0+). In this case, we have

(5) [u(0)] < lullz2 ) + & (u, u)'/2s(2)'/2.

m(x)1/2

Moreover, if s(oco) < oo then u(oo) exists and if s(oco) < oo,
m(oo) = oo then u(oo) = 0.




To show this, we use
lu(y) — u(z)| < E(u,u)?(s(y) — s(x))'/2.

By Proposition 1, u — u(0) is a continuous linear functional from
Dom(€) to R.

Now we define an operator V': L?(p) — L?*(ap) by
(6) Vu=u'

Here Dom(V) = Dom(€).

If we impose the Dirichlet boundary condition at 0, we set
Dom(V) = Dom(€) N {u : u(0) = 0}.

Proposition 2. V: L?(p) — L?*(ap) is a closed operator.




The dual operaotr V*

We give a characterization of V'*,

Proposition 3. Take any 8 € L?(ap). If ap is a.c. on (0, co0) and
(“pr)’ € L?(p), then ap@ is a.c. on [0, c0), i.e., apB(0+) exists and
apl is a.c. on [0, co) by defining apf(0) = apf(0+). We also have

10]]22(ap) | ” (apb)’

(1) |apB(0+)| < s()i/z

| L2 (pym(z) /3

Moreoover, if m(oco) < oo then apf(oo) exists and if m(oo) < oo,
s(o0) = oo then apf(occ) = 0.




To show this, we use

[apb(y) — apb(z)| < \//y ) p dt(m(y) — m(z))*/>.

p2

Dense domain

We denote the set of all continuous functions on [0, co) with compact
support by Cy.

Proposition 4. Dom(€) N Cp is dense in Dom(€) and Dom (&) N
CoN{u: u(0) =0} isdense in Dom(€) N {u: u(0) = 0}.

By using this, we have the following duality formula (integration by parts):



10

Proposition 5. Forany u € Dom(€) and any 8 € L?(ap) satisfy-
ing (229" ¢ L2(p), we have

o @)

(8) /000 u'Oap dt = —u(0)apf(0+) — / u(apb)’ dt

0

Further we have uap8(oco) = 0.
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Proposition 6. The dual opetator V*: L?(ap) — L?*(p) of
V: L?(p) — L?*(ap) is given by

(9) vrg = P9
p
Here
(10)
(apf)’

Dom(V*) = {0 € L?(ap); € L?*(p), ap6(0+) = 0}

for the Neumann boundary condition and

(apf)’

(11) Dom(V*) = {6 € L*(ap); € L*(p)}

for the Dirichlet boundary condition.




12
We define 24 = —V*V. We can give a characterization of Dom(2() as
follows:

Theorem 7. We have that v € Dom (%) if and only if
1. wisa.c.on (0,00) and u’ € L?(ap),

2. apu’ is a.c. on (0, oo) and (C”’T;“")’ € L?(p),

3. apu’(0+) = 0.

If v satisfies these conditions, we have

(apu’)’
u =

p

Qu = —V*V

If the boundary condition is Dirichlet, the third condition is replaced by
u(0) = 0.
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Theorem 8. We have that 8 € Dom (V' V™) if and only if
1. apb is a.c. on (0, oco) and (“I’Tf’)’ € L?(p),

2. (“pr)' is a.c. on (0, co0) and ((C”’Tf)')' € L?(ap),

3. apf(0+) = 0.

In this case we have

(12) A = —VV*0 = ((az;@)’)'

If the boundary condition is Dirichlet, the third condition ap6(0+) = 0
should be omitted.




f we assume that a and p are C? functions, we have

14

Corollary 9. We have

(13) Au = —V*Vu = au” + bu/,

(14) A9 = —VV*0 = ab” + (b+ a’)0’ + b'6.

Here b = a’ + a(log p)’

(b+ a’ = a’ 4+ a(logap)’).
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3. Super symmetry and the spectrum

The super symmetry is an efficient machinery to investigate the
spectrum, which depends on the following well-known fact:

Proposition 10. Let T be a closed operator in a Hilbert space H.
Then T*T and T'T™* have the same spectrum except for O.

_et x be an eigenvector for a point spectrum A of T*T':

(15) T *Tx = Ax.

Then
(TT*)Tx =T(T*"T)x = TAx = \Tx

which shows that T'x is an eigenvector for an eigenvalue X\ of TT*.
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d d

In the previous section, we took T' =V = —. S0 — give rise to a
dx dx

correspondence between eigenfunctions of the following operators:
(16) Au = —V*Vu = au” + bu/,
(17) A9 = —VV*0 = ab” + (a’ + b)0’ + b'6.

Here b = a’ + a(log p)’.

This can be seen from the following computation. Assume
au’” + bu’ = \u. Then

alu// _I_ alulll _I_ blul _I_ bu" — A’U,,.
Hence

a(u)’ + (a’ +b)(u') + b'u" = Au'.
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Corollary 11. Assume that b(xz) < —c < 0, then —2A has a spectral
gap > c.

Hermite polynomials

Wetakea = 1, p = e—* /2, M = R. Then

b=a'+ a(logp) = (—z*/2) = —=.
Hence

ANu = —V*Vu = u" — z2u’

A0 = —VV*0 = 0" — 20’ — 0.
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20 is the Ornstein-Uhlenbeck operator. v’/ — xu’ and 8 — 8’ — 6 have
the same spectrum except for 0. This shows that the
Ornstein-Uhlenbeck operator has eigenvalues 0, —1, —2,....
Eigenfunctions are Hermite polynomials

—1)"™ 2., d" 2
(18) H,(x) = (=1) e® /2 e % /2,
n! dx™




eigenvalue

ull . wul

([ Hi(z)
Hz(a?)

H,(x)

\ )

0" — x0" — 0

[ Ho(z) )
Hl(a:)

Hn_l(QJ)
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Laguerre polynomials

Wetakea = x, p = 2 te™®, M = [0,00). Then

/

b=a

a(logp) =1+ z((a — 1) logxz — x)’

a—1

£Zr

Hence

Au = —V*Vu = zu” 4+ (a — xz)u’
A = —VV*0 = 20" + (o + 1 — x)0' — 0.

We call the operator zu"” 4+ (a — x)u’ as the Kummer operator.



Eigenvalues of the Kummer operator is 0, —1,
Eigenfunctions are Laguerre polynomials:

x> d™

n! dx™

(19) LY (x) = € (e~ TY),

We have

dx

—2.....

n=0,1,2,...

iLg_l(w) = —L;_, ().

21



22

eigenvalue zu” + (a — x)u’ 0" + (a+1—2x)0" — 0

-1 ([ L§(x) ) [ —Lg(x)
—2 L@ | 4 —L$ ()
dx
o«
—n L3~ (x) —L§(x)

N\ N\



Laplacian

d2

Wetakea=1,p=1, M = R. ThenA = —.

dx?

Eigenfunctions are e**. We have

di e’er — iéeig‘” .
T

23
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4. Logarithmic Sobolev inequality

For the Kummer operator, we have the following logarithmic Sobolev
inequality.

Theorem 12. For 2u = zu" 4+ (@ — x)u’, we have

(20) /000 u? log(u?/||u||3)p(z) de < 4E(u,u).




To show this, we use Bakry-Emery’s I'; criterion.

Au = zu’” + (a — x)u’.
1 2 ’2
I'u,u) = E{Ql(u ) — 2uRAu} = xu

Ia(u,u) = %{QlI‘(u,u) — 2I'(Au, u) }

a—1

1 1
— 2! T2 ~(1 4
z7(u” + )"+

So we have to assume that o > 2.

2x

) (w,u).
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Thanks !
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