# On spectra of 1-dimensional diffusion operators\*

Ichiro Shigekawa<sup>†</sup> (Kyoto University)

#### 1 Introduction

It is well-known that the Hermite polynomials are eigenfunctions of Ornstein-Uhlenbeck operator. Here the Hermite polynomials are defined by

$$H_n(x) = \frac{(-1)^n}{n!} e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}, \quad n = 0, 1, \dots$$
 (1)

They satisfy the following identity:

$$H_n'(x) = H_{n-1}(x).$$

This relation suggests that the differentiation gives rise to a correspondence between two families of eigenfunctions. In this talk, we will give a general framework of this fact in one dimensional case.

## 2 1-dimensional diffusion operators

We take  $I = [0, \infty)$  as a state space. Suppose we are given two continuous functions a, p on I. We assume that a > 0, p > 0 on  $(0, \infty)$ . We define a measure  $\nu$  by  $\nu = pdx$ . To denote  $L^2(\nu)$ , we use  $L^2(p)$  for simplicity. We consider an operator on  $H = L^2(p)$  defined by

$$\mathfrak{A}u = \frac{1}{p}(apu')'. \tag{2}$$

The associated Dirichlet form is

$$\mathscr{E}(u,v) = \int_0^\infty u'v'ap\,dx. \tag{3}$$

This corresponds to the Neumann boundary condition. If we impose the Dirichlet boundary condition, we restrict the domain to functions with u(0) = 0

Further we introduce following functions:

$$m(x) = \int_0^x p(y) \, dy \tag{4}$$

$$s(x) = \int_0^x \frac{1}{a(y)p(y)} \, dy.$$
 (5)

<sup>\*</sup>November 14-16, 2012, "Mathematical Quantum Field Theory and Related Topics" in Research Institute of Mathematical Sciences, Kyoto University

<sup>†</sup>E-mail: ichiro@math.kyoto-u.ac.jp URL: http://www.math.kyoto-u.ac.jp/~ichiro/

The measure dm is called a speed measure and s is called a scale function. We assume the integrability of p and ap near 0 and so m(0) = s(0) = 0. At infinity, we assume  $m(\infty) + s(\infty) = \infty$ . Other case can be treated similarly.

We define a operator  $V: L^2(p) \to L^2(ap)$  by

$$Vu = u'. (6)$$

Then the dual operator  $V^*: L^2(ap) \to L^2(p)$  is given by

$$V^*\theta = -\frac{(ap\theta)'}{p}. (7)$$

Therefore we have

#### Theorem 1.

$$\mathfrak{A}u = -V^*Vu = au'' + bu',\tag{8}$$

$$-VV^*\theta = a\theta'' + (a'+b)\theta' + b'\theta. \tag{9}$$

Here  $b = a' + a(\log p)'$ .

Now we can apply the following well-known fact:

**Proposition 2.** Let T be an closed operator on a Hilbert space H, then  $T^*T$  and  $TT^*$  have the same spectrum except  $\{0\}$ .

Thus au'' + bu' and  $a\theta'' + (a'+b)\theta' + b'\theta$  have the same eigenvalue and the correspondence is given by  $V = \frac{d}{dx}$ .

### 3 Examples

**Example 3.1.** If a=1,  $p=e^{-x^2/2}$ , then  $\mathfrak{A}u=u''-xu'$ ,  $-VV^*\theta=\theta''-x\theta'-\theta$ . The eigenfunctions are Hermite polynomials.

**Example 3.2.** If a = x,  $p = x^{\alpha-1}e^{-x}$ , then  $\mathfrak{A}u = xu'' + (\alpha - x)u'$ ,  $-VV^*\theta = \theta'' + (\alpha + 1 - x)\theta' - \theta$ . The eigenfunctions are Laguerre polynomials.