Exponential convergence of Markov Processes

Ichiro Shigekawa (Kyoto University)

Joint work with Seiichiro Kusuoka

July 20, 2012, Fujian Normal University
The 8th Workshop on Markov Processes and Related Topics

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

- 1. Introduction
- 2. Hypercontractivity and the exponential convergence
- 3. Sufficient condition for independence of L^p -spectrum
- 4. Example of L^p -spectrum that depends on p

1. Introduction

- ullet (M,\mathcal{B},m) : a measure space with m(M)=1
- ullet $\{T_t\}$: a Markovian semigroup in $L^2(m)$

We assume

- ullet $\{T_t^*\}$: a Markovian semigroup in $L^2(m)$
- $T_t 1 = T_t^* 1 = 1$

Then $\{T_t\}$ and $\{T_t^*\}$ define semigroups in $L^p(m)$ $(1 \leq p \leq \infty)$. For $f \in L^1$, we denote

$$\langle f
angle = \int_M f \, dm.$$

We are interested in the following ergodicity:

$$T_t f o \langle f
angle$$
 as $t o \infty$

To be precise, define the index $\gamma_{p\to q}$ by

(1)
$$\gamma_{p\to q} = -\overline{\lim} \frac{1}{t} \log ||T_t - m||_{p\to q}.$$

Here

- ullet m : an operator $f\mapsto m(f)=\int_X f\,dm$
- $ullet \ \|\ \|_{p o q}$: the operator norm from L^p to L^q

We are interested in how $\gamma_{p\to q}$ depends on p and q.

From the Riesz-Thorin interpolation theorem, we have

$$s\mapsto \gamma_{1/s o 1/s}$$

is concave. So if the semigroup is symmetric, $\gamma_{2\rightarrow 2}$ is the largest.

2. Hypercontractivity and the exponential convergence

Hyperboundedness

 $\{T_t\}$ is called hyperbounded if there exist K>0, $r\in (2,\infty)$ and $C\geq 1$ such that

$$||T_K f||_r \le C||f||_2, \quad \forall f \in L^2(m).$$

Theorem 1. The followings are equivalent to each other:

- (1) $\{T_t\}$ is hyperbounded.
- (2) $\gamma_{p \to q} \geq 0$ for some 1 . $(3) <math>\gamma_{p \to q} = \gamma_{2 \to 2}$ for all $p, q \in (1, \infty)$.

Hypercontractivity

 $\{T_t\}$ is called hypercontractive if there exist K>0 and $r\in(2,\infty)$ such that

(2)
$$||T_K f||_r \le ||f||_2, \quad \forall f \in L^2(m).$$

Proposition 2. Under (2), we have

$$\|T_K f - \langle f \rangle\|_2 \le (r-1)^{-1/2} \|f\|_2, \quad \forall f \in L^2(m).$$

Furthermore, for any $t \geq 0$, we have

$$\|T_t f - \langle f \rangle\|_2 \leq \sqrt{r-1} \exp \left\{ -rac{t}{K} \log \sqrt{r-1}
ight\} \|f\|_2, \quad orall f \in L^2(m).$$

Proposition 3. Let r > 2. Suppose that there exist positive constants K_0 , K_1 such that

$$egin{align} M_0 := \|T_{K_0}\|_{2 o r} < \infty \
ho := \sup\{\|T_{K_1}f - \langle f
angle\|_2/\|f\|_2\colon f\in L^2(m)\setminus\{0\}\} < 1. \end{gathered}$$

Then the semigroup $\{T_t\}$ is hypercontractive.

Theorem 4. The followings are equivalent to each other:

- (1) $\{T_t\}$ is hypercontractive.
- (2) $\gamma_{p \to q} > 0$ for some 1 .
- (3) $\gamma_{p \to q} = \gamma_{2 \to 2} > 0$ for all $p, q \in (1, \infty)$.

3. Sufficient condition for independence of L^p -spectrum

Normal opetator

- \mathfrak{A} : the generator of $\{T_t\}$
- \mathfrak{A}^* : the generator of $\{T_t^*\}$

We assume that \mathfrak{A} is normal, i.e.,

$$\mathfrak{A}\mathfrak{A}^* = \mathfrak{A}^*\mathfrak{A}$$

Then **A** has the spectral decomposition:

$$-\mathfrak{A}=\int_{\mathbb{C}}\lambda dE_{\lambda}$$

Multiplier

For any bounded function $\phi:\mathbb{C}\to\mathbb{C}$, define $\phi(-\mathfrak{A})$ by

$$\phi(-\mathfrak{A})=\int_{\mathbb{C}}\phi(\lambda)dE_{\lambda}.$$

Theorem 5. Assume that $\{T_t\}$ is hyperbounded. If $\phi(\lambda)$ is expressed as

$$\phi(\lambda) = h(1/\lambda)$$

for a bounded function h on \mathbb{C} which is analytic near 0. Then $\phi(-\mathfrak{A})$ is bounded in $L^p(m)$.

Using this theorem, we can show that the boundedness of the resolvent is independent of p.

Theorem 6. Assume $\mathfrak A$ is normal. Then $\sigma(\mathfrak A_p)$, the spectrum of $\mathfrak A_p$, is independent of p (1 .

4. Example of L^p -spectrum that depend on p

We give an example that the spectrum depends on p.

- ullet $M=[0,\infty)$
- $\bullet \ m(dx) = \nu(dx) = e^{-x} dx$
- The Dirichlet form in $L^2(\nu)$:

$$\mathcal{E}(f,g) = \int_{[0,\infty)} f'(x) g'(x)
u(dx)$$

with domain

 $\mathrm{Dom}(\mathcal{E})=\{f\in L^2(
u);\ f \ ext{is absolutely continuous}$ and $f'\in L^2(
u)\}.$

• The generator:

$$\mathfrak{A} = \frac{d^2}{dx^2} - \frac{d}{dx}$$

with domain

 $\mathrm{Dom}(\mathfrak{A})=\{f\in\mathrm{Dom}(\mathcal{E});\,f' ext{ is absolutely continuous}$ and $f''\in L^2(
u)$ with $f'(0)=0\}.$

To see the spectrum of \mathfrak{A} , we introduce the following unitary transformation

$$(3) If(x) = e^{-x/2}f(x)$$

and

$$I^{-1}f(x) = e^{x/2}f(x).$$

We note

$$I\circ \mathfrak{A}\circ I^{-1}f=-rac{1}{4}f+rac{d^2f}{dx^2}$$

i.e., we have the following commutative diagram:

$$egin{array}{cccc} L^2(
u) & \stackrel{rac{\mathfrak{A}}{\longrightarrow}}{\longrightarrow} & L^2(
u) \ & & & & \downarrow I \ & & & \downarrow I \ & & & & \downarrow I \ & & & & L^2(dx) & \stackrel{rac{d^2}{dx^2}-rac{1}{4}}{\longrightarrow} & L^2(dx) \end{array}$$

The boundary condition is involved as follows:

$$\mathfrak{A} \quad \text{with } f'(0) = 0$$

$$I \downarrow \\ \frac{d^2}{dx^2} - \frac{1}{4} \quad \text{with } \frac{1}{2}f(0) + f'(0) = 0$$

The corresponding Dirichlet form $\hat{\mathcal{E}}$:

$$\hat{\mathcal{E}}(f,g) = \mathcal{E}(I^{-1}f, I^{-1}g)$$

$$= \int_0^\infty f'g' dx + \frac{1}{4} \int_0^\infty fg dx - \frac{1}{2}f(0)g(0).$$

We can show that $\hat{\mathcal{E}}$ is a compact perturbation of

$$\hat{\mathcal{E}}^{(0)}(f,g) = \int_0^\infty f' g' \, dx + rac{1}{4} \int_0^\infty f g \, dx.$$

It is easy to see that spectrum corresponding to $\hat{\mathcal{E}}^{(0)}(f,g)$ is

$$[\frac{1}{4},\infty)$$

Now setting

$$A = \frac{d^2}{dx^2} - \frac{1}{4}$$

with $\mathrm{Dom}(A)=\{f,f''\in L^2([0,\infty)) \text{ with } \frac{1}{2}f(0)+f'(0)=0\},$ we have

$$\sigma(-A)=\{0\}\cup [rac{1}{4},\infty).$$

Now, by the unitary equivalence,

Theorem 7. We have

$$\sigma(-\mathfrak{A})=\{0\}\cup[rac{1}{4},\infty).$$

Now we proceed to the L^p -spectrum. The result is

First we discuss the case $1 \le p < 2$. We use the same mapping $If(x) = e^{-x/2}f(x)$ in (4) as

$$I \colon L^p(
u) \longrightarrow L^p(ilde{
u})$$

where

$$\tilde{\nu}(dx) = e^{(p/2-1)x} dx.$$

Then I gives an isometry between $L^p(\nu)$ and $L^p(\tilde{\nu})$. Similarly as before, setting $\tilde{\mathfrak{A}} = I \circ \mathfrak{A} \circ I^{-1}$, we have

$$ilde{\mathfrak{A}}f=rac{d^2f}{dx^2}-rac{1}{4}f$$

with the boundary condition

$$f'(0) + \frac{1}{2}f(0) = 0.$$

Proposition 8. For $1 \leq p < 2$, we have

$$\sigma_{
m p}(-\mathfrak{A}) = \{0\} \cup \{x+iy; \ x,y \in \mathbb{R}, y^2 < (rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}$$

Proof. We solve the following differential equation:

$$\begin{cases} -u'' + \frac{1}{4}u = \lambda u, \\ u'(0) + \frac{1}{2}u(0) = 0. \end{cases}$$

The solution is given by

$$egin{cases} u(x) = C_1 e^{x\sqrt{-\lambda+1/4}} + C_2 e^{-x\sqrt{-\lambda+1/4}}, \ C_1(rac{1}{2} + \sqrt{-\lambda + rac{1}{4}}) + C_2(rac{1}{2} - \sqrt{-\lambda + rac{1}{4}}) = 0. \end{cases}$$

By checking the integrability, we get the desired result.

Proposition 9. For $1 \leq p < 2$, we have

$$ho(-\mathfrak{A})\supseteq \{x+iy;\ x,y\in \mathbb{R}, y^2>(rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}\setminus \{0\}$$

Proof. For
$$\lambda \in \{z \in \mathbb{C}; \Re \sqrt{-z+1/4} > \frac{1}{p} - \frac{1}{2}\}$$
, define

$$egin{align} \phi_{\lambda}(x) &= \left(rac{1}{2} - \sqrt{-\lambda + rac{1}{4}}
ight) e^{x\sqrt{-\lambda + 1/4}} \ &- \left(rac{1}{2} + \sqrt{-\lambda + rac{1}{4}}
ight) e^{-x\sqrt{-\lambda + 1/4}}, \ \psi_{\lambda}(x) &= e^{-x\sqrt{-\lambda + 1/4}}, \ W_{\lambda} &= -2\sqrt{-\lambda + rac{1}{4}} \left(rac{1}{2} - \sqrt{-\lambda + rac{1}{4}}
ight). \end{aligned}$$

Further, define $g_{\lambda} \colon [0,\infty) imes [0,\infty) o \mathbb{C}$ otag

$$g_{\pmb{\lambda}}(x,y) = egin{cases} rac{1}{W_{\pmb{\lambda}}}\phi_{\pmb{\lambda}}(x)\psi_{\pmb{\lambda}}(y), & x \leq y, \ rac{1}{W_{\pmb{\lambda}}}\phi_{\pmb{\lambda}}(y)\psi_{\pmb{\lambda}}(x), & x \geq y. \end{cases}$$

The possible Green operator G_{λ} is given by

$$G_{\pmb{\lambda}}f(x) = \int_0^\infty g_{\pmb{\lambda}}(x,y)f(y)\,dy.$$

For $f \in C_0^{\infty}([0,\infty) \to \mathbb{C})$, we have

$$(\lambda+ ilde{\mathfrak A})G_\lambda f=f,\quad rac{1}{2}G_\lambda f(0)+(G_\lambda f)'(0)=0.$$

Now it suffices to show that G_{λ} is a bounded operator.

We can summarize as follows:

Theorem 10. For $1 \le p < 2$, we have

(i)
$$\sigma_{\mathrm{p}}(-\mathfrak{A})=\{0\}\cup\{x+iy;\;x,y\in\mathbb{R},y^2<(rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}$$

(ii)
$$\sigma_{
m c}(-\mathfrak{A})=\{x+iy;\ x,y\in\mathbb{R},y^2=(rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}$$

(iii)
$$ho(-\mathfrak{A}) = \{x+iy; \ x,y \in \mathbb{R}, y^2 > (rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}$$

Theorem 11. For p > 2, we have

(i)
$$\sigma_{\mathrm{p}}(-\mathfrak{A}) = \{0\}$$

(ii)
$$\sigma_{
m r}(-\mathfrak{A})=\{x+iy;\ x,y\in\mathbb{R},y^2<(rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}$$

(iii)
$$\sigma_{
m c}(-\mathfrak{A})=\{x+iy;\ x,y\in\mathbb{R},y^2=(rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}$$

(iv)
$$ho(-\mathfrak{A}) = \{x+iy; \; x,y \in \mathbb{R}, y^2 > (rac{2}{p}-1)^2(x-rac{p-1}{p^2})\}$$

By noting that

$$\inf\{\Re\lambda;\;\lambda\in\sigma(-\mathfrak{A})\setminus\{0\}\}=-\lim_{t o\infty}rac{1}{t}\log\|T_t-m\|$$

we have

Theorem 12. For $1 \leq p < \infty$

$$\gamma_{p\to p} = \frac{p-1}{p^2}.$$

Thanks!