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1. Introduction

e (M,B,m) : ameasure space withm(M) =1
e {T;} : a Markovian semigroup in L?(m)
We assume
o {T;} : a Markovian semigroup in L?(m)
o 1 =T;1=1
Then {1} and {T}*} define semigroups in LP(m) (1 < p < oo). For

f € L', we denote

()= [ tam.



We are interested in the following ergodicity:

T.f — (f) ast — oo

To be precise, define the index ~,_, 4 by

(1) Yp—sq = — lim " log [Tt — m||p—q-
Here

e m :anoperator f — m(f) = [ fdm

® || ||p—gq : the operator norm from LP to L4



We are interested in how ~,,_,, depends on p and gq.

From the Riesz-Thorin interpolation theorem, we have

S Y1/s—1/s

IS concave. So if the semigroup is symmetric, vo_, o IS the largest.



2. Hypercontractivity and the exponential

convergence

Hyperboundedness

{T:} is called hyperbounded if there exist K > 0, r € (2,00) and
C > 1 such that

ITx fllr < Cllifllz, VS € L*(m).



Theorem 1. The followings are equivalent to each other:
(1) {T:} is hyperbounded.
(2) Yp—>q > 0forsome 1 < p < g < oo.

(3) VYp—q = V2—2 for all p, g € (17 OO)




Hypercontractivity

{T,} is called hypercontractive if there exist K > 0 and » € (2, co)
such that

(2) 1T fllr < I fll2s  Vf € L*(m).



Proposition 2. Under (2), we have

1T f — ()2 < (r —1)7Y2||fll2, Vf € L?*(m).

Furthermore, for any ¢ > 0, we have

ITf—(Flls < vF=T 1exp{—§log N 1}||f||2, vf € L2(m).

S—
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Proposition 3. Let » > 2. Suppose that there exist positive con-
stants Ky, K7 such that

My := || Tk, ||2—r < 00
p = sup{||Tx, f — (NHl2/IIfll=: f € L*(m) \ {0}} < 1.

Then the semigroup {T}} is hypercontractive.

Theorem 4. The followings are equivalent to each other:
(1) {T:} is hypercontractive.

(2) Yp—>q > 0forsome 1l < p < g < oo.

(3) Yp—osq = Y252 > 0forall p,q € (1,00).




3. Suflicient condition for independence of

LP-spectrum

Normal opetator

e 2A: the generator of {13}
e 2A*: the generator of {71} }

We assume that 2( is normal, i.e.,
AU* = A*A

Then 2A has the spectral decomposition:

—2l=/)\dE>\
C

10
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Multiplier

For any bounded function ¢ : C — C, define ¢(—%2A) by

H(—A) = /@ H(N)dEs.

Theorem 5. Assume that {7} } is hyperbounded.
If ¢(\) is expresed as

¢(A) = h(1/A)

for a bounded function A on C which is analytic near 0. Then ¢(—%A)
IS bounded in LP(m).
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Using this theorem, we can show that the boundedness of the resolvent
IS iIndependent of p.

Theorem 6. Assume 2( is normal. Then o (%,), the spectrum of 2(,,,
IS iIndependentof p (1 < p < o0).
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4. Example of LP-spectrum that depend on p

We give an example that the spectrum depends on p.
e M = [0,00)
e m(dx) = v(dx) = e *dx

e The Dirichlet form in L?(v):
E(f,g) = / f'(2)g (z)v(da)
[0,00)

with domain

Dom(€) = {f € L?*(v); f is absolutely continuous
and f' € L2(v)}.
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e The generator:

with domain

Dom(21) = {f € Dom(€); f’ is absolutely continuous
and f” € L?(v) with f/(0) = 0}.

To see the spectrum of A, we introduce the following unitary
transformation

(3) If(z) = e *?f(x)

and

I7'f(x) = /2 f ().



We note

2
IleoI_lfz—lf | il
4 da?

l.e., we have the following commutative diagram:

L2(v) —25 L2(v)

! |

d2 1

L2(dz) 222 L2(dzx)

The boundary condition is involved as follows:
20 with f/(0) =0

/|

&5 — 1 Wwith 3£(0) + f/(0) = 0

15
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The corresponding Dirichlet form &:
E(f,9) =EUI'f,Ig)

© @) , 1 ® @) 1
=/O f'g' dx Z/o fgdx — 2 £(0)g(0).

We can show that £ is a compact perturbation of
5(0) > ’ ! L[
EYV(f,9) = f'g der+ — fgdex.
0 4 Jo
It is easy to see that spectrum corresponding to £ (£, g) is

[Z’OO)
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Now setting

_d2 1

 dx2 4

with Dom(A) = {f, f € L?([0, c0)) with  f(0) + f'(0) = 0},
we have

7(—4) = {0} U [, 00).

Now, by the unitary equivalence,

Theorem 7. We have

7(~2) = {0} U [, c0).




Now we proceed to the LP-spectrum. The result is

|
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First we discuss the case 1 < p < 2. We use the same mapping

If(x) = e */2f(x)in (4) as

I: LP(v) — LP(¥)
where

p(dz) = eP/2= D2y,

Then I gives an isometry between LP(v) and LP(v). Similarly as
before, setting A = IoAoI~1, we have

with the boundary condition

£(0) + 2 £(0) = 0.
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Proposition 8. For1 < p < 2, we have

2
op(—2) = {0} U {z +iy; z,y E R, y? < (; —1)*(x —

p—1
D2

Proof. We solve the following differential equation:

)
—u’’ + iu = \u,

' (0) + su(0) = 0.

The solution is given by

’U,(CB) — Clem\/—k—l—l/4 + Cze—a:\/—k—l—l/4’
Ci(3+ /- A+ +Ca(t —/[-A+ D =0

By checking the integrability, we get the desired result.
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Proposition 9. For1 < p < 2, we have

2
p(—2A) D {x +1iy; =,y € R,y* > (2—) —1)%(z — pp

— )31\ {0}

Proof. For A € {z € C; ®\/—2+1/4 > _ — 3}, define

dxr(x) = (% — \/—)\ + %)em\/_M‘l/‘l

1 1
. - —\ - —:B\/—)\—l—l/él’
(2 + \/ + 4)8

Pa(z) = e =V AT/,

P ve TR Ve
AT 4\ 2 1)
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Further, define gy : [0,00) X [0,00) — C [

Ly (@)va(y), =<,

gx(z,y) = | 1
R A (W) Ya(z), = 2>y

The possible Green operator GG, is given by

o @)

Grf(x) = / gx (2, y) F(y) dy.

0

For f € C§°([0,00) — C), we have

A+)GAf = f, . Gaf(0) +(Gaf)'(0) = 0.

Now it suffices to show that GG, is a bounded operator.
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We can summarize as follows:

Theorem 10. For1l < p < 2, we have

) op(—2A) = {0}u{z+iy; z,y €R,y*> < (2 —1)*(z— B5)}
(i) oc(—2A) = {z +iy; z,y € R,y? = (2 — 1)*(z — B31)}
(i) p(—2) = {z + iy; z,y € R,y? > (2 — 1)*(z — E54)}

Theorem 11. For p > 2, we have

) op(—21) = {0}
) or(—2) = {w +iy; z,y € R,y* < (2 — 1)%(x — B34}

(iii) oc(—2A) = {z +iy; z,y € R,y*> = (2 — 1)*(z — 237)}

(iv) p(—2) = {z +iy; =,y € R,y* > (2 —1)*(z — E5%)}
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By noting that

inf{RX\; A € o(—2) \ {0}} = — lim -

we have

1
—log || Ty — m||
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Theorem 12. Forl < p < o©

Tp—p —

p—1

p2




Thanks !
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