Exponential convergence of Markov Processes

Ichiro SHIGEKAWA Kyoto University, Japan, E-mail: ichiro@math.kyoto-u.ac.jp

KEY WORDS: logaritmic Sobolev inequality, spectrum, Markov processes

MATHEMATICAL SUBJECT CLASSIFICATION: 60J25

Abstract: Let $\{T_t\}$ be a Markovian semigroup in $L^2(M,m)$. We also assume that its dual $\{T_t^*\}$ is Marikovian. Then $\{T_t\}$ defines a Marikovian semigroup in L^p for any $p \in [1, \infty)$. We assume that μ is an invariant probability measure and $T_t 1 = T_t^* 1 = 1$. We are interested in the exponential convergence rate of $T_t f$ to $\int_M f \, dm$ as $t \to \infty$. To be precise, set

 $\gamma_{p \to q} = -\limsup \frac{1}{t} \log ||T_t - m||_{p \to q}$

where m stands for an operator $f \mapsto m(f) = \int_M f \, dm$ and $\| \|_{p \to q}$ denotes an operator norm from L^p to L^q . We are interested in how $\gamma_{p \to q}$ depends on p and q.

We show that under the assumption of hyper-contractivity of the semigroup, $\gamma_{p\to q}$ does not depend on p and q (p, q > 1). Moreover, if we assume the symmetry, we can show that L^p spectrum of the generator are independent of p > 1. Without the hyper-contractivity, we can construct an example of which the spectrum depends on p. We can also discuss the convergence rate in the setting of the Zygmund space $L \log L$.

This is a joint work with Seiichiro Kusuoka.

References

[1] J-D. Deuschel and D. W. Stroock, "Large deviations," Academic Press, San Diego, 1989.