The ultracontractivity of a non-symmetric Markovian semigroup and its applications

Ichiro Shigekawa

Kyoto University

August 5, 2011

Tohoku University

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

1. Convergence of the transition probability

Killing at the boundary

- ullet M: a compact connected Riemannia maniflod with a boundary ∂M .
- m: normalized Riemannian volume
- Δ: the Laplace-Beltrami operator
- b: a vector field
- X_t , Y_t : diffusion processes generated by \triangle and $\triangle + b$ respectively:

generator fundamental solution

$$egin{array}{lll} \triangle & & p(t,x,y) \ & \Delta + b & q(t,x,y) \end{array}$$

We assume $\operatorname{div} b = 0$ and we impose the Dirichlet boundary condition.

Probablistic point of view

$$P_x(X_t \in dy) = p(t, x, y)m(dy)$$

 (X_t) dies when it reaches the boundary.

Differential equation point of view

 $u(t,x)=\int_M p(t,x,y)f(y)m(dy)$ satisfies the following differential equation:

$$\left\{egin{array}{lll} rac{\partial u}{\partial t} &=& riangle u \ u(0,x) &=& f(x) \ u(t,x) &=& 0, & x \in \partial M. \end{array}
ight.$$

$$p(t,x,y)
ightarrow 0, \ q(t,x,y)
ightarrow 0.$$

How fast?

$$ilde{\lambda}_{1 o \infty} = -\lim_{t o \infty} rac{1}{t} \log \sup_{x,y \in M} p(t,x,y),$$
 $\lambda_{1 o \infty} = -\lim_{t o \infty} rac{1}{t} \log \sup_{x,y \in M} q(t,x,y).$

Our aim is to show that

$$\tilde{\lambda}_{1\to\infty} \leq \lambda_{1\to\infty}$$
.

A Non-symmetric diffusion dies quicker than the symmetric diffusion.

Convergence to an invariant measure

- M: a compact connected Riemannia maniflod without boundary.
- X_t , Y_t : diffusion processes generated by \triangle and $\triangle + b$ respectively:

generator fundamental solution

$$egin{array}{lll} \triangle & & p(t,x,y) \ & \Delta + b & q(t,x,y) \end{array}$$

We assume $\operatorname{div} b = 0$.

$$egin{aligned} p(t,x,y) &
ightarrow 1, \ q(t,x,y) &
ightarrow 1. \end{aligned}$$

How fast?

$$ilde{\gamma}_{1 o \infty} = -\lim_{t o \infty} rac{1}{t} \log \sup_{x,y \in M} |p(t,x,y) - 1|,$$
 $ilde{\gamma}_{1 o \infty} = -\lim_{t o \infty} rac{1}{t} \log \sup_{x,y \in M} |q(t,x,y) - 1|.$

Our aim is to show that

$$\tilde{\gamma}_{1 \to \infty} \leq \gamma_{1 \to \infty}$$
.

A Non-symmetric diffusion converges to the invariant measure quicker than the symmetric diffusion.

2. Ultracontractivity

A semigroup $\{T_t\}$ is called ultracontractive if $T_t \colon L^1 \to L^\infty$ is bounded for all t > 0.

It is well-known that the following three conditions are equivalent for a symmetric Markovian semigroup. Let $\mu>0$ be given.

(i) $\exists c_1 > 0, \forall f \in L^1$:

$$||T_t f||_{\infty} \le c_1 t^{-\mu/2} ||f||_1, \quad \forall t > 0.$$

(ii) $\exists c_2 > 0, \forall f \in \text{Dom}(\mathcal{E}) \cap L^{\infty}$:

$$||f||_2^{2+4/\mu} \le c_2 \, \mathcal{E}(f,f) \, ||f||_1^{4/\mu}.$$

(iii) $\mu > 2$, $\exists c_3 > 0$, $\forall f \in \mathrm{Dom}(\mathcal{E})$:

$$||f||_{2\mu/(\mu-2)}^2 \leq c_3 \, \mathcal{E}(f,f).$$

We extend this result for non-symmetric Markovian semigroups.

Non-symmetric Markovian semigroups

We give a framework in generall Hilbert space scheme.

- H: a Hilbert space
- $\{T_t\}$: a contraction C_0 semigroup
- $\{T_t^*\}$: the dual semigroup
- ullet ${\mathfrak A},\,{\mathfrak A}^*\colon$ the generators of $\{T_t\}$ and $\{T_t^*\}$

A natural bilinear form \mathcal{E} is defined by

$$\mathcal{E}(u,v) = -(\mathfrak{A}u,v).$$

We do not assume the sector condition and so we can not use this bilinear form.

We introduce a symmetric bilinear form. For this, we assume the following condition:

(A.1) $Dom(\mathfrak{A}) \cap Dom(\mathfrak{A}^*)$ is dense in $Dom(\mathfrak{A})$ and $Dom(\mathfrak{A}^*)$.

Under this condition, we define a symmetric bilinear form $ilde{\mathcal{E}}$ by

$$ilde{\mathcal{E}}(u,v) = -rac{1}{2}\{(\mathfrak{A}u,v) + (u,\mathfrak{A}v)\}, \quad u,v \in \mathrm{Dom}(\mathfrak{A}) \cap \mathrm{Dom}(\mathfrak{A}^*).$$

Proposition 1. Under the condition (A.1), $\tilde{\mathcal{E}}$ is closable and its closure contains $\mathrm{Dom}(\mathfrak{A})$ and $\mathrm{Dom}(\mathfrak{A}^*)$.

Covex set preserving property

- C: a convex set of H.
- ullet Pu: the shortest point from u to C

$$(u-Pu,v-Pu) \leq 0, \quad \forall v \in C.$$

Theorem 2. If $\{T_t\}$ and $\{T_t^*\}$ preserve a convex set C, then $Pu \in \mathrm{Dom}(\tilde{\mathcal{E}})$ for any $u \in \mathrm{Dom}(\tilde{\mathcal{E}})$ and we have

$$\tilde{\mathcal{E}}(Pu, u - Pu) \geq 0.$$

Markovian semigroup

- (M, m): a measure space
- $H = L^2(m)$: a Hilbert space
- $\{T_t\}$: a Markovian semigroup

We assume that $\{T_t^*\}$ is also a Markovian semigroup.

Under the assumption (A.1), we can define a symmetric bilinear form $\tilde{\mathcal{E}}$ and $\tilde{\mathcal{E}}$ is a Dirichlet form.

We have the following implications. For $\mu > 0$,

$$(\mathfrak{A}^2f, f)_2 + (\mathfrak{A}f, \mathfrak{A}f)_2 \ge 0.$$

(1) holds if \mathfrak{A} is normal, i.e. $\mathfrak{AA}^* = \mathfrak{A}^*\mathfrak{A}$.

Moreover

$$\|T_t f\|_{\infty} \leq c_1 t^{-\mu/2} \|f\|_1, \quad orall t \in (0,1]$$
 $\uparrow \quad \Downarrow \text{ under } (2)$
 $\|f\|_2^{2+4/\mu} \leq c_2 (ilde{\mathcal{E}}(f,f) + \|f\|_2^2) \|f\|_1^{4/\mu}$
 \updownarrow
 $\|f\|_{2\mu/(\mu-2)}^2 \leq c_3 (ilde{\mathcal{E}}(f,f) + \|f\|_2^2) \quad (\mu > 2)$

There there exists a constant M>0 so that for all $f\in\mathrm{Dom}(\mathfrak{A}^2)$

(2)
$$((\mathfrak{A} - M)^2 f, f)_2 + ((\mathfrak{A} - M)f, (\mathfrak{A} - M)f)_2 \ge 0.$$

L^2 theory

We introduce three indices.

(3)
$$\lambda_{\mathrm{P}} = \inf \left\{ \frac{\tilde{\mathcal{E}}(f,f)}{\|f\|_{2}^{2}}; f \neq 0 \right\} \quad \text{i.e.,} \quad \lambda_{\mathrm{P}} \|f\|_{2}^{2} \leq \tilde{\mathcal{E}}(f,f).$$

(4)
$$\lambda_{2\to 2} = -\lim_{t\to\infty} \frac{1}{t} \log ||T_t||_{2\to 2}.$$

(5)
$$\lambda_{\mathbf{B}} = \inf \Re(\sigma(-\mathfrak{A})).$$

(3) is equivalent to

(6)
$$||T_t f||_2^2 \le e^{-2\lambda t} ||f||_2^2, \quad \forall t > 0.$$

Theorem 3. We have the following inequalities:

(7)
$$\lambda_{P} \le \lambda_{2 \to 2} \le \lambda_{B}$$

Theorem 4. If $\mathfrak A$ is norml, then we have

(8)
$$\lambda_{\mathbf{P}} = \lambda_{\mathbf{2} \to \mathbf{2}} = \lambda_{\mathbf{B}}.$$

From these theorems, we have $\tilde{\lambda}_{2\rightarrow 2} \leq \lambda_{2\rightarrow 2}$.

Ultracontractivity

We introduce the following index:

(9)
$$\lambda_{1\to\infty} = -\overline{\lim_{t\to\infty}} \, \frac{1}{t} \log ||T_t||_{1\to\infty}.$$

Theorem 5. Let $\mu>0$ be given. Assume that there exists a constant $c_2>0$ such that

(10)
$$||f||_{2}^{2+(4/\mu)} \le c_{2}\tilde{\mathcal{E}}(f,f)||f||_{1}^{4/\mu}, \quad \forall f \in \text{Dom}(\tilde{\mathcal{E}}) \cap L^{1}.$$

Then we have $\lambda_{1\to\infty}=\lambda_{2\to2}$. Therefore

$$\lambda_{1\to\infty} \ge \tilde{\lambda}_{1\to\infty}.$$

3. Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

m is an invariant probability measure.

$$\int_M T_t f\,dm = \int_M f\,dm$$

• $T_t 1 = 1$ and $\mathfrak{A} 1 = 0$ and 1 is the unique eigenvalue.

•
$$m(f) = \int_M f(x) m(dx)$$
.

We have the following implications. For $\mu > 0$,

$$(\mathfrak{A}^2f, f)_2 + (\mathfrak{A}f, \mathfrak{A}f)_2 \ge 0.$$

Moreover

There there exists a constant M>0 so that for all $f\in \mathrm{Dom}(\mathfrak{A}^2)$

(13)
$$((\mathfrak{A} - M)^2 f, f)_2 + ((\mathfrak{A} - M)f, (\mathfrak{A} - M)f)_2 \ge 0.$$

L^2 theory

We introduce the following three indices:

$$(14) \quad \gamma_{\mathrm{P}} = \inf \left\{ \frac{\tilde{\mathcal{E}}(f,f)}{\|f-m(f)\|_2^2}; \, f \neq m(f) \right\} \text{ i.e., } \gamma_{\mathrm{P}} \|f-m(f)\|_2^2 \leq \tilde{\mathcal{E}}(f,f).$$

(15)
$$\gamma_{2\to 2} = -\lim_{t\to 1} \frac{1}{t} \log ||T_t - m||_{2\to 2}$$

(16)
$$-\gamma_{SG} = \sup \Re(\sigma(\mathfrak{A}) \setminus \{0\}).$$

 $\gamma_{\mathbf{P}}$ is called a Poincaré constant. (14) is equivalent to

(17)
$$||T_t f - m(f)||_2^2 \le e^{-2\lambda t} ||f - m(f)||_2^2, \quad \forall t > 0.$$

We have the following theorems.

Theorem 6. We have the following inequalities:

$$\gamma_{\rm P} \le \gamma_{2\to 2} \le \gamma_{\rm SG}.$$

Theorem 7. If $\mathfrak A$ is normal, then we have

$$\gamma_{\mathbf{P}} = \gamma_{\mathbf{2} \to \mathbf{2}} = \gamma_{\mathbf{SG}}.$$

From these theorem, we have

$$\tilde{\gamma}_{2\to 2} \leq \gamma_{2\to 2}$$
.

Ultracontractivity

We introduce another indes $\gamma_{1\to\infty}$ as follows:

(20)
$$\gamma_{1\to\infty} = -\lim_{t\to\infty} \frac{1}{t} \log ||T_t - m||_{1\to\infty}$$

Proposition 8. We have

$$\gamma_{1\to\infty} \le \gamma_{2\to 2}.$$

Moreover, if $\gamma_{1\to\infty} > -\infty$, then the identity holds.

Theorem 9. Let $\mu > 0$. Assume the following Nash inequality: there esists a constant $c_2 > 0$ such that

$$(22) \|f-m(f)\|_{2}^{2+(4/\mu)} \leq c_{2}\tilde{\mathcal{E}}(f,f)\|f-m(f)\|_{1}^{4/\mu}, \quad \forall f \in \text{Dom}(\tilde{\mathcal{E}}) \cap L^{1}.$$

Then $\gamma_{1\to\infty}>0$ and so $\gamma_{2\to2}=\gamma_{1\to\infty}$. Therefore we have

$$(23) \tilde{\gamma}_{1 \to \infty} \le \gamma_{1 \to \infty}.$$

4. Compact Riemannian manifold with a boundary

- M: d-dimensional compact Riemannian manifold with a boundary ∂M .
- m: normalized Riemannian volume.
- The generator is given by

$$\mathfrak{A} = \triangle + b.$$

We assumet that $\operatorname{div} b \geq 0$ nad we impose the Dirichlet boundary condition:

$$(25) f = 0 on \partial M.$$

The dual operator is

(26)
$$\mathfrak{A}^* = \triangle - \nabla_b - \operatorname{div} b.$$

Associated symmetric form is

(27)
$$\tilde{\mathcal{E}}(u,v) = \int_{M} (\nabla u, \nabla v) \, dm + \frac{1}{2} \int_{M} uv \operatorname{div} b \, dm.$$

Theorem 10. We have

$$\tilde{\lambda}_{2 \to 2} \le \lambda_{2 \to 2}$$
.

If $\mathfrak A$ is normal, then $\tilde\lambda_{2 o 2}=\lambda_{2 o 2}.$

Since M is compact, the following Nash inequality holds:

$$||f||_2^{2+(4/d)} \le c_2 \tilde{\mathcal{E}}(f,f) ||f||_1^{4/d}.$$

Theorem 11. We have

$$ilde{\lambda}_{1 o\infty} \leq \lambda_{1 o\infty}.$$

If $\mathfrak A$ is normal, then $\tilde\lambda_{1\to\infty}=\lambda_{1\to\infty}$.

The semigroup T_t has a transition density q(t, x, y) w.r.t. ν . q(t, x, y) is C^{∞} from the hypoellipticity. From the definition,

$$\lambda_{1 o\infty} = -\lim_{t o\infty}rac{1}{t}\log\sup_{x,y\in M}q(t,x,y).$$

Similary for $ilde{\mathcal{E}}$, there exists a transition density p(t,x,y) w.r.t. u and

$$ilde{\lambda}_{1 o\infty} = -\lim_{t o\infty}rac{1}{t}\log\sup_{x,y\in M}p(t,x,y).$$

We have

$$\tilde{\lambda}_{1\to\infty} \leq \lambda_{1\to\infty}$$
.

Theorem 12. We have

(28)
$$\tilde{\lambda}_{2\to 2} \le \lambda_{2\to 2} = \lambda_{B}.$$

If $\tilde{\lambda}_{2\to2}=\lambda_{2\to2}$, then $\mathfrak A$ has an eigenvalue $-\tilde{\lambda}_{2\to2}$ and its eigenfunction coincides with the eigenfunction φ of $\frac{1}{2}(\mathfrak A+\mathfrak A^*)$ for the eigenvalue $-\tilde{\lambda}_{2\to2}$. The vector fields b satisfies

(29)
$$b\varphi = -\frac{1}{2}(\operatorname{div} b)\varphi.$$

Example: the unit disc

- $\bullet \ M=\{x\in \mathbb{R}^2; |x|\leq 1\}$
- div b = 0.
- $r = (x_1^2 + x_2^2)^{1/2}$.

$$br
eq 0 \quad \Rightarrow \quad \tilde{\lambda}_{2
ightarrow 2} < \lambda_{2
ightarrow 2}$$

5. Compact Riemannian manifold without boundary

Let us return to the diffusion on a Riemannian manifold M generated by

$$\mathfrak{A}f = \triangle f + bf = \triangle f + (\nabla f, \omega_b).$$

If M is compact, then there exists an invariant probability measure.

• ν : an invariant probability measure: $\nu=e^{-U}m$

We use the following notations

- ▼: the Levi-Civita covariant derivative
- ∇^* : the dual operator of ∇ w.r.t. m
- ∇_{ν}^* : the dual operator of ∇ w.r.t. ν
- ω_b : 1-form corresponding to b

We now change the reference measure to ν . So our Hilbert space changes to $L^2(\nu)$.

Set

$$G_{\nu} = \{\mathfrak{A}; \mathfrak{A} \text{ has an invariant measure } \nu.\}$$

We set

$$egin{aligned} ilde{b} &= rac{1}{2} (oldsymbol{
abla} U)^{\sharp} + b, \ \omega_{ ilde{b}} &= rac{1}{2} oldsymbol{
abla} U + \omega_{b}. \end{aligned}$$

Theorem 13. $\mathfrak{A} \in \mathcal{G}_{\nu}$ if and ony if $\nabla_{\nu}^* \omega_{\tilde{b}} = 0$. In this case,

$$\mathfrak{A}f = -\nabla_{\nu}^* \nabla f + (\omega_{\tilde{b}}, \nabla f)$$

and

$$\mathfrak{A}_{\nu}^{*}f = -\nabla_{\nu}^{*}\nabla f - (\omega_{\tilde{b}}, \nabla f).$$

Further the associated symmetric Dirichlet form is given by

$$ilde{\mathcal{E}}(f,h) = \int_{M} (
abla f,
abla h) d
u.$$

 T_t has a density q(t, x, y) with respect to ν . Define

$$\gamma_{1 o\infty} = -\lim_{t o\infty}rac{1}{t}\log\sup_{x,y\in M}|q(t,x,y)-1|.$$

Let p(t,x,y) be a transition density for $\tilde{\mathcal{E}}$. Define

$$ilde{\gamma}_{1 o\infty} = -\lim_{t o\infty}rac{1}{t}\log\sup_{x,y\in M}|p(t,x,y)-1|.$$

Theorem 14. We have

$$\tilde{\gamma}_{1\to\infty} \leq \gamma_{1\to\infty}$$
.

The equality holds if $\mathfrak A$ is normal.

Recall that

$$\gamma_{SG} = \inf\{\Re \eta; \ \eta \in \sigma(-\mathfrak{A}) \setminus \{0\}\}.$$

We have $\gamma_{1\to\infty}=\gamma_{\rm SG}$.

Theorem 15. If $\tilde{\gamma}_{1\to\infty}=\gamma_{1\to\infty}$, then $-\mathfrak{A}$ has an eigenvalue ξ so that $\Re\xi=\tilde{\gamma}_{1\to\infty}$ and its eigenfunctions is also an eigenfunction of $\nabla^*_{\nu}\nabla$ for an eigenvalue $\tilde{\gamma}_{1\to\infty}$.

Example: 2-dimensional torus

- $M = T^2$
- (x,y): the standard local coordinate

•
$$b = f(x)\frac{\partial}{\partial y} + g(y)\frac{\partial}{\partial x}$$

Then

$$f={
m constant},\;g={
m constant} \quad \Rightarrow \quad ilde{\gamma}_{1 o\infty}=\gamma_{1 o\infty} \ f=0 \quad \Rightarrow \quad ilde{\gamma}_{1 o\infty}=\gamma_{1 o\infty} \ f
eq {
m constant},\;g
eq {
m constant} \quad \Rightarrow \quad ilde{\gamma}_{1 o\infty}<\gamma_{1 o\infty}.$$

Thanks a lot!