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1. Convergence of the transition probability

Killing at the boundary

M : a compact connected Riemannia maniflod with a boundary oM.
m: normalized Riemannian volume

A\ the Laplace-Beltrami operator

b: a vector field

X;, Y;: diffusion processes generated by A and A + b respectively:

generator fundamental solution
A p(ta €Ly y)
A+b Q(ta €Ly y)

We assume div b = 0 and we impose the Dirichlet boundary condition.



Probabilistic point of view

P,(X; € dy) = p(t,z,y)m(dy)

(X;) dies when it reaches the boundary.

Xt OM



Differential equation point of view

u(t,z) = [,, p(t, z,y) f(y)m(dy) satisfies the following differential

equation:

How fast?

( ou
— = Au
ot
< ’LL(O, 513) — f(CU)
| u(t,z) = 0, x€IM.

p(ta €L, y) — 0,

q(t,z,y) — 0.
3 1
Alsoo = — lim —log sup p(t,z,y),
—oo i xz,ycM
1
Alsoo = — lim —log sup q(t, z,y).



Our aim is to show that

5\1—>c>o S >\1—>c>0°

A Non-symmetric diffusion dies quicker than the symmetric diffusion.

Convergence to an invariant measure

M : a compact connected Riemannia maniflod without boundary.
X;, Y;: diffusion processes generated by A and A + b respectively:

generator fundamental solution

A p(t, z,y)
A +b q(t,z,y)

We assume div b = 0.



p(ta €L, y) — 1,

Q(ta €L, y) — 1.
How fast?
- .1
Y1—oo = — lim —log sup |p(¢,z,y) — 1],
. 1
Yi—oo = — lim —log sup |q(t,z,y) — 1|.

Our aim is to show that

Y1—o00o < Y1—oo-

A Non-symmetric diffusion converges to the invariant measure quicker than the
symmetric diffusion.



2. Ultracontractivity

A semigroup {T:} is called ultracontractive if Ty : L* — L°° is bounded for all
t > 0.

It is well-known that the following three conditions are equivalent for a symmetric
Markovian semigroup. Let o > 0 be given.

(i) 3c1 > 0,Vf € L.
1T lloo < c1t™/2(|f]l1, VE>O0.
(i) deg > 0, Vf € Dom(E) N L*°:
IFIZT" < ca €(£, ) N1
(i) > 2,3es > 0, VFf € Dom(E):
1F15,) a2y < s ECF, f)-

We extend this result for non-symmetric Markovian semigroups.



Non-symmetric Markovian semigroups

We give a framework in generall Hilbert space scheme.
H': a Hilbert space
{T:;}: a contraction Cy semigroup
{T; }: the dual semigroup
21, 2A*: the generators of {1} and {7}

A natural bilinear form & is defined by
E(u,v) = —(Au, v).

We do not assume the sector condition and so we can not use this bilinear form.



We introduce a symmetric bilinear form. For this, we assume the following condition:
(A.1) Dom(2() N Dom(2A*) is dense in Dom(2A) and Dom (2A*).

Under this condition, we define a symmetric bilinear form £ by

E(u,v) = —%{(Qlu,v) + (u,2Av)}, u,v € Dom(2() N Dom(2A*).

Proposition 1. Under the condition (A.1), € is closable and its closure contains
Dom(2() and Dom (2(*).
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Covex set preserving property

C: aconvex set of H.

Pu: the shortest
point from u to C

(u — Pu,v — Pu) <0, VYveC.

Theorem 2. If {T;} and {T}*} preserve a convex set C, then Pu € Dom(€) for
any u € Dom(€) and we have

E(Pu,u — Pu) > 0.
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Markovian semigroup

(M, m): a measure space
H = L?(m): a Hilbert space
{T;}: a Markovian semigroup

We assume that {T*} is also a Markovian semigroup.

Under the assumption (A.1), we can define a symmetric bilinear form € and
£ is a Dirichlet form.



12

We have the following implications. For . > 0,

ITeflloo < cst™/2||fll1, V>0
i+ 4 under (1)
111374 < e E(F, £) IFNTH
0
1F13, ey S s €SS ) (1> 2)

(1) (2Cf, f)2 + (ASf,Af)2 > 0.

(1) holds if 20 is normal, i.e. AA* = A*2A.



Moreover

13

|T:flloo < cat™ 2| fll1, Vte€ (0,1]
i+ { under (2)
IFI3TY" < caE(F, £) + IIF12) IIF1137H
)
11120 ) a2y < cs(E(S, F) +IFI3) (1> 2)

There there exists a constant M > 0 so that for all f € Dom (1?)

(2) ((Ql_M)zfaf)Z+((2[_M)fa(m_M)f)220°




L? theory

We introduce three indices.

£t | ]

3 Ao =int{ S0 7 £ 0] e, AellfIE < (1),
2

(4) Aas2 = = Jim —log||Ti]la 2.

(5) A = inf R(o(—2A)).

(3) is equivalent to

(6) |T:fl12 < e M| fll3, Vt>o.

14
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Theorem 3. We have the following inequalities:

(7) Ap < Az252 < AB

Theorem 4. If 21 is norml, then we have

(8) Ap = A252 = AB.

From these theorems, we have As_5 < Aa_,o.
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Ultracontractivity

We introduce the following index:

1
(9) Al—oo = — lim " log || T%||1—00-

t—o0

Theorem 5. Let 1 > 0 be given. Assume that there exists a constant c; > 0
such that

(10) IS < (£, PIIFIITH, VF € Dom(€) N LY.
Then we have A\1_soo = A2a_,2. Therefore

(11) >‘1—>oo Z S\1—>oo-
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3. Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

m is an invariant probability measure.

f,nsam= ] ram

T;1 = 1 and 21 = 0 and 1 is the unique eigenvalue.

m(f) = /M f () m(da).



18

We have the following implications. For . > 0,

ITef —m(lloc < crt™2(|fll1, VE>0

i+ { under (12)

1f —m(HETY" < e £, 1) IIF — m(F)]1}*
0
1F = m (5 ez S s EFS F) (1> 2)

(12) (A°f, f)2 + (Af,2Af)2 > 0.
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Moreover

1T f — m(f)lloo < ext™ 2| fll1, Vit € (0,1]
A+ { under (13)

1f —m(HETYH < ca(ES F) + IFIP) IIF — m(F)]1F7H
0
1 —m(P)3 uezy < cs(ESF) +IFIZ) (v > 2)

There there exists a constant M > 0 so that for all f € Dom (1?)

(13) ((Ql_M)zfaf)Z+((2[_M)fa(m_M)f)220°
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L? theory

We introduce the following three indices:

e EED A< £

14) 9p = inf{ s £ () | e wllf —m()IE < E(F.1).
1

(15) Y2—2 = — lim - log || Tt — m||2—2

(16) —vsc = sup R(a(2A) \ {0}).

~p is called a Poincaré constant. (14) is equivalent to

(17) 1T f —m(H)5 < e ?M|If —m(f)5, Vvt >o0.



We have the following theorems.
Theorem 6. We have the following inequalities:

(18) TP < Y252 < YsG-

Theorem 7. If 2 is normal, then we have

(19) TP = Y22 = VSG-

From these theorem, we have

Y22 < Y22.

21



Ultracontractivity

We introduce another indes 1 _, o as follows:

. 1
(20) Moo = = Jim ~10g T, — mll1-roo

t— 00

Proposition 8. We have

(21) Y100 < Y2s2-

Moreover, if v1 500 > —o0, then the identity holds.

22
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Theorem 9. Let u > 0. Assume the following Nash inequality: there esists a
constant c; > 0 such that

(22) (If —m(HI3T Y < Q€(f, HIF —m(H)IY, Vf € Dom(§)NL .
Then v1 500 > 0 and sO v2_,2 = V1500 Iherefore we have

(23) Y1—o00o < Y1—oo-
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4. Compact Riemannian manifold with a boundary

M : d-dimensional compact Riemannian manifold with a boundary 9 M.
m: normalized Riemannian volume.

The generator is given by
(24) A=A +b.
We assumet that div b > 0 nad we impose the Dirichlet boundary condition:

(25) f=0 ondM.

The dual operator is
(26) A* = A — Vp — div b.

Associated symmetric form is

~ 1
(27) E(u,v) = / (Vu, Vv)dm + —/ uv div b dm.
M 2 /M
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Theorem 10. We have

Aasa < Aaya.

If 21 is normal, then Ao_.o = Ao_so.

Since M is compact, the following Nash inequality holds:

IFIIZHAYD < o €(F, HIFIIL

Theorem 11. We have
S\1—>oo S >\1—>oo-

If 2 is normal, then A1 oo = A1 _soo-
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The semigroup T; has a transition density q(t, x,y) w.r.t. v. q(t, x,y) is C from
the hypoellipticity. From the definition,

1
Alsoo = — lim —log sup q(t,z,y).

Similary for £, there exists a transition density p(t, z,y) w.r.t. v and

3 1
Alsoo = — lim —log sup p(t,z,y).

We have

5'\1—>c>o S >\1—>c>o°
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Theorem 12. We have

(28) 5\2—>2 S >\2—>2 = AB.

|f 5\2_>2 = A2_,2, then 21 has an eigenvalue —5\2_>2 and its eigenfunction co-

incides with the eigenfunction ¢ of %(2( + 2A*) for the eigenvalue —Xa_,2. The
vector fields b satisfies

(29) by = —%(div b)p.




Example: the unit disc

M = {z € R* |¢| < 1}
divb = 0.

r= (a2 +23)"2

br A0

= 2oz < A2z

28



29
5. Compact Riemannian manifold without boundary

Let us return to the diffusion on a Riemannian manifold M generated by
Af = Af+bf = AfF + (VF,wyp).

It M is compact, then there exists an invariant probability measure.
v: an invariant probability measure: v =e Ym
We use the following notations
V: the Levi-Civita covariant derivative
V*: the dual operator of V w.rt. m
V*: the dual operator of V w.r.t. v
wp. 1-form corresponding to b

We now change the reference measure to v. So our Hilbert space changes to
L?(v).



Set

We set

G, = {2; A has an invariant measure v.}

|
b= 5(VU)ﬂ + b,

1
wp = EVU + wp.

30
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Theorem 13. 21 € G, if and ony if V*w; = 0. In this case,
Af = -V Vf + (w3, V)

and
AW f=—V*VFf — (wz, V).

Further the associated symmetric Dirichlet form is given by

E(f.h) = [ (V£ Vh)av.

M




T; has a density q(t, x, y) with respect to v. Define

1
Y1500 = — lim —log sup |q(t,z,y) — 1|

Let p(t, x, y) be a transition density for £. Define

- .1
Y1500 = — lim —log sup |p(t,z,y) — 1.

32

Theorem 14. We have

Y1—00 < Y1—o0-

The equality holds if 2( is normal.
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Recall that

vsa = inf{Rn; n € o(—A) \ {0}}.

We have Y1—o00 = 7VSG-

Theorem 15. If 1,00 = 71500, then —2A has an eigenvalue £ so that R =
Y100 and its eigenfunctions is also an eigenfunction of V*V for an eigenvalue

Y1—o00-




Example: 2-dimensional torus

M =T?
(x, y): the standard local coordinate
0 0
b = — .
f(x) oy 9(¥) 5
Then

f = constant, g = constant
JF=20

f # constant, g # constant

= Y100 = Y1—roo

= Y100 = Y1—roo

= V1o < Y1—oo-
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Thanks a lot!



