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1. Normal operators

General framework

H: a complex Hilbert space
T a closed operator with domain Dom(T")

®(T): the numeriacl range of T' defined by

O(T) := {(Tu,u); u € Dom(T)}.

T is called accretive If

R(Tu,u) >0, VYVu € Dom(T)

T is called m-accretive if Ran(T — ¢) = H for some ¢ € C.



o T is called sectorial if ©(T') C S, 6 € [0, 5 ) where
So = {z € C; |arg z| < 6}

e T is called quasi-sectorial if T' + ~ Is sectorial for some v > 0.



Normal operators

A is called normal if
A*A = AA*"
A has an spectral decomposition:
A= / zE(dz)
C
A*:. an adjoint operator of A.

A* = [CEE(dz)



From now on, we assume that A is normal and m-accretive.
VA is defined by
VA = /C VzZE(dz)
with

Dom(vVA) = {u € H; /C 1z|(u, E(dz)u) < oo}.

Dom(vA) = Dom(v/A*)
a. a sesquilinear form associated with A is given by
a(u,v) = (Au,v), wu,v € Dom(A)

A symmetric part of a is defied by

(Au,v) + (A*u, v)
2

b(u,v) = s, u,v € Dom(A).



b can be written
b(u,v) = / Rz(u, E(dz)v).
C
(b, Dom(b)) is closed where

Dom(b) = {u € H; /(CﬁRz(u,E(dz)u) < oo}

Dom(+v'A) C Dom(b)

Theorem 1. Dom(v/A) = Dom(b) if and only if 1 + o(A) C Sy for some
0 c (0,7/2).




2. Nomal operators and generalized Dirichlet forms

Introduced the generalized Dirichlet form.

We will show that Markovivan semigroup generated by a normal opetator can be
formulated in the framework of generalized Dirichlet form.

M : a Hausdorff topological space
(M, m): o-finite measure space
H = L?(m)

2(. a normal operator

We assume that 21 and 2(* is m-dissipative
(l.,e., —2A and —21* IS m-accretive)

By spectral decomposition,

(1) —%z[CzE(dz).



We define
(2) L= / ReE(dz), —A = / iS2E(dz).
C C

L and A are seld-adjoint with domains
Dom(L) = {f; [ [R=[*(f.B(d=)) < =},
Dom(A) = {f: [ 182*(f. B(d=)f) < oo}.
L generates a semigroup. Symmetric bilinear form € is defined by

E(f.g) = /@ Rz (f, E(dz)g)
with the domain
Dom(£) = {f; /@ R2|(f, E(d2)f) < oo}.

We set V = Dom(€).

Similarly, A generates a semigroup denoted by {U; }+>0.



Proposition 2. {U;} is a Cp-semigroup in V.

We regard A: Dom(A) NV — V'’ as an operator from V to V’. Its closure is
denoted by (A, F).

Proposition 3. f € F if and only if

/«3(84?121 T §Rz) (f, E(dz)f) < oo.

Similar argument can be done for the dual semigroup U, of U,. The generator is

A = —/i%zE(dz).
C
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Now we can apply the theory of generalized Dirichlet form. The Dirichlet form is

defined by

£(f.g) E(fsg) — (Afg), ffeF,.geV,
| E(f.9) — (Ag, f), iffeVv.geF

Assuming the Markovian property, we can define the capacity.

We assume the quasi-regularity of £. Now applying the following theorem, we can
get a Markov process associated with 2(.

Theorem 4. (Stannat 1994) Under the following condition (D3), there exists an
m-thght special standard process.

(D3) There exists a linear subspace Y C L?(m) N L°°(m) suchthaty N Fis
dense in F, limy_ o0 €aG. u—w = 0in H for all w € Y and for the closure Y of
Y in L*°(m) it follows thatu Ao € Y foru € Y and a > 0.



3. Criterion for nomal operators

H': a Hilbert space
A, B: accretive operators on D

Assume that A, B are m-accretive

11

Theorem 5. Assume that AD C D, BD C D and

AB = BA onD,

Then A is normal and A = B.

(Au,v) = (u, Bv), wu,v € D.




Examples on a Riemannian manifold

M : a complete Riemannian manifold

m. the Riemannian volume

We take a function U € C'°°(M) and define a measure v by

vV = e_Um

Define an operator on H = L?(v) by

1

where A, = —V V. Then

1
A = Ay —b—div, b.

Here div, denotes the divergence with respect to v.

We give a criterion for 224 = A, + b being a normal operator.
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Theorem 6. Assume that div, b iIs bounded from below. Then 2 is normal if and
only if b is a Killing vector field and the following identies hold:

1
(540 +b)div, b =0,
[VU, b] + V div, b = 0.
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4. One-dimensional Brownian motion with a drift

We consider an operator 2 = d‘f; — c% on L?(R, vy). Here v, is a measure
defined by
(3) v1(de) = e~ “®dx.

Then 2 is a self-adjoint operator with

(2Af,g) = — / f'(2)g' () vy (de).

To investigate the spectrum of A, we use the following isometric map
I: L?(v1) — L?(dzx):

If(x) =e /2 f(x).

We have

IleoI_lzdz—f—ﬁ
dx? 4’
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l.e., the following diagram is commutative:

Lz(l/l) _— Lz(l/l)

1| |

d? 2
L2(dz) <=2, L[2(dx)
Hence the spectrum —21 is
C2
(4) o(—2) = [ 00).

We now consider an perturbation of (. Let b be an vector field defined by

d
b=kE—.
dx

We consider an operator of the form 2( 4+ b. We are interested in how the spectrum
changes. b is clearly an Killing vector field. The divergence of b with respect to v,

div,, b = —ck
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and so it satisfies

(A + b) div, b = 0,
[(VU)*, b] + V div, b = 0.

Here U (x) = cx. By Theorem 6, 2 + b is a normal operator. Under the
transformation of I, we have

IO(Q[+b)OI_1:d—2+ki_C(C_2k),
dx? dx 4

f —i r)e “® d
f(é)—m/Rf() da.

This gives an isometry from L?(dz) onto L?(d¢). Note that

/ (5 k) f(2)g(@) d = / (—€2 + ike) F(€)5(€) de



which means that

d? d
U(@ + k%) = {—&% + k&€ € RY.
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Theorem 7. We have

2

o (=20) = [, 00)

and

(c — k)
2

o(—2A — b) = {= + €2 4 iké; € € R},




Q

Y

c(c—2k)
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Now we take a different point of view.
We fix an operator 2( = j—; — c% but we change a reference measure. For
@ € [0, 1], define

vo(dx) = (1 — 0)dx + e ““dx

Vg IS an invariant measure for A. vo(dx) = dx, v1(dx) = e “* dx.
The computation above implies
o(—2A) = {&? —icg; € € R} in L?(v)

o(—2A) = [cz,oo) in L?(vy).



P!

Y

W.rt. vg = dx

What happens if we take the measure vg?

Y

W.rt. vy = e~ “®“dax
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Does the spectrum chage continuously?

A

W.r.t. vg

Y

21
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Theorem 8. For 0 € (0,1), o(—21) in L?(vg) is

2
{62 — iké; € € R} U, 00).

P!

Y
Y
Y

W.r.t. vg = dx W.I.t. vg w.rt. 1 = e ““dx




5. Perturbation by rotation

Laplacian on R?

Let A be

5) A=t

02 o , ( o o
ox?  Oy?

oy Ox
2 2
The spectrum of — 225 — 25 is [0, 00).
For the spectrum of A, we recall the Bessel functions:

NEANE = (i /2)%
Ju(@) = (5) ;)l!I‘(V—I—l—I—l)’ >0

which satisfies the following differential equation

2
I”—l—lI’—l—(l—V—)I:O

€T xr2

— — y—) on L?(R?, dxdy).
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Since our space is R?, we only need the case that v is a non-negative integer. We

use the plar coordinate:

x = r cos 0,
r >0, 6 € [0,27m)
Yy = rsin6,

Using this, 2( can be written as

o — 82+18+1 0? —|—k8
 Or2 ror r200? 00

If F = f(r)e'™?, then

82 1 8 2 1 n6 . 0o
UL :(ﬁ —|— ;E — N r—z)f('r')e -I— Zk:’nf(’l“)e .
Further
9> 190 , 1
— 4+ - — —n2 ) J,(Ar) = =)32J,, (7).
(8r2 + r Or " r2> (Ar) (Ar)
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The spectral decomposition is given by

f(r,0) =) /{/(%/f(p, p)e " dcb) J|n|(>\p)pdp}ei"9J|n|(AT)AdA-

nez

Theorem 9. The spectrum of —21 Is
(6) (N> —ikn; A>0, n €Z}

and the corresponding eigenfunction to A? — ikn is J|,, (Ar)e'n?.




the spectrum of —

82

ox

2

82

Oy?

3k
2k

s)

—2k
—3k

the spectrum of A
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Ornstein Uhlenbeck operator on R?

Let L, be

7 L. 02 02 0 0 < 0 0 )

T o2 o2 “or Yoy “\%ay  You

1 2, .2
acting on L?(RR2, 2—6_("” 9/ 2dxdy).
iy

The spectrum of Ornstein-Uhlenbeck operator Ly is {0, —1, —2,... }. In fact,
define Hermite polynomials by

NP
H,(x) = (—1)"e® /12—~ % /2,
dx™

Then
LoHy(xv)Hp—k(y) = —nHy(x) Hn—k(y)-

To get the spectram of L., we need the complex Hermite polynomials defined by

(8) Hyq(2,2) = (—~1)PH9e¥ (%)p <%)qe_%_.



Here, we regard R? as C with z = = + iy. We denote

o0 1<8 ,8) o0 1<8+,8>
— = |, —=—|—4+1— .
0z 2\ Ox Oy 0z 2\ 0x oy

In the sequel, we write

for short. We have

(9) 9" = -8+
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Proposition 10. The following identities hold:

p = q
BHp,q — EHp—l,qv aHp,q — §Hp,q—19

0"Hpq = Hpi1,q; 5*Hp,q = Hp g1,
(200 — 20)H,,, = —pH, 4
(200 — 20)H, . = —qH, 4
(20 — 20)Hp,q = (p — @) Hp,q

We can write
Lo = (200 — 20) + (200 — z0) + ai(z0 — z0).
Hence

LoHpq = (—p—qg+ (p— Q)ai)Hp,q'
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Theorem 11. The spectrum of — L, IS

(10) {(p+4q) — (p—q)ai}

and corresponding eigenfunctions are H, , respectively.

(0 @]
P,q—=0




the spectrum of — Lg

the spectrum of — L,
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Connection to the Laguerre polynomials

The eigenfunction H,, ,, for the eigenvalue 2n, (n € Z ) is rotation invariant since
(mi — ya%) H, , = 0. So H,_, is a function of r = |z| and

Oy
d? 1 d d
dr? r dr dr ’ ’

Now, by the change of variable r = v/ 2u, we have

F(u) = H, ,(r) satisfies

2 d2F—|—2(1 )dF—l— F=0
U—— —u)— nkF = 0.
du? du

The Laguere polynomial satisfies this differential equation. Here the Laguere
polynomial polynomial is defined by

(11) L,=———(%x")
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Now we have

Theorem 12. Complex Hermite polynomials H,, ,, are expressed as following;

(12) H, o (z,5) = D" (ﬁ)

2m 2

where ¢ IS a constant.
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Thanks a lot!



