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Normal case

Spectra of a Non-normal Operator

We discuss
& d
dx  dx
acting on L2(R, vg(dX)).
Here,
ve(dX) :={(1-0)+0e}dx 0<6<1

is the invariant measure of A.

(1)
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Normal case

@ 0 =1, Ais self-adjoint.

@ 0=0, Ais normal.

@* d
dx2  “dx

@ 0<0<1, Ais not even normal.

A= -

#4240 d
dx  Tdx  gp(x) dX

where pg(X) := {(1 - ) + 8 %%} is the density of vy
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Normal case

Normal case; with spectral representation

Normal (including self-adjoint) operators have spectral
representation.

Theorem (Spectral representation)

Let A be a normal operator on a Hilbert space H. Then there
exists a partition of unity {E(2)} such that

(Af,g) = fc zdE@DT, g}y, f e Dom(A),ge H. @)

Here the support of d(Ef, )4 is in the spectrum of A ..
Conversely we can construct a normal operator from a partition of
unity {E(2)}.
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Normal case

Partitiion of Unity

Partition Unity of E(2) satisfies
Q E(x+iy)E(u+iv) = E((XxAU)+i(yAV))
Q Xy /o0, YN 00, = E(Xy +iyn) — ldy
Q X3\, 00, ¥\ —0 = E(X +iyn) > O
Q Xn \L X, Yn VY, then E(X, + iyn) — E(X+iy)
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Normal case

By the Fourier transform, for 6 = 1

mnwn=f¢U@9WHg€ﬁ%

- ([ S)rtnfe-S)rtafe- S

So we can construct a partition of unity for A acting on L?(R, v1).
Here ¥ : L3R, dx) — L%(R, dx) is the Fourier transform.
Note that

f|f|2e‘cxdx< 00 = flfe‘czx|2dx< 0.
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Normal case

For6=0
(Af.9), = [ (19 +cfg)dx
- [ (r17TeT + o1 Tl e
- [ (¢~ cei) rrTTEIGe

By this calculation, we can construct a partition of unity for A acting
on L2(R, ).
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Normal case

Let g, 01 be spectra of Afor 8 = 0, 1, respectively. Then
0'0:{Z=X+iy€C;C2X=y2}, 3

and

0'1:{§+t;0§t}. (4)
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Normal case

The figure of o



Generator of BM with drift
00000 e0

Normal case

The figure of o1
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Normal case

\

Does spectrum move along avobe arrow ?
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Non-Normal Case

Non-normal Case

Now we consider the case 0 < 0 < 1.
Note that vo(dX) = (1 — 6)vo(dX) + 6v1(dX), and

L%(R,vg) = L?(R, vp) N L3(R,v1) (5)
If linear operator T : L?(vj) — L2(vj) (j = 0, 1) satisfies
IT fll, < Collflly, VeL*R,v0), IITdlh, <Cilidl, YgeL*R,v1)

Then,
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Non-Normal Case

Non-normal Case

Now we consider the case 0 < 0 < 1.
Note that vo(dX) = (1 — 6)vo(dX) + 6v1(dX), and

L%(R,vg) = L?(R, vp) N L3(R,v1) (5)
If linear operator T : L?(vj) — L2(vj) (j = 0, 1) satisfies
IT fll, < Collflly, VeL*R,v0), IITdlh, <Cilidl, YgeL*R,v1)

Then,
IT fll,, < \/CZVCIfll,, VYfeL%R,v).
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Non-Normal Case

For@ € C\ (0o U 01), (@ — A~ is bounded on L%(R, vo) and
L(R, v1)

= C\ (0 U 1) is in the resolvent set of A on L%(R, v;)

We check whether A € o9 U o1 is the spectrum of A.



Generator of BM with drift
[ele] lelelelele}

Non-Normal Case

Sufficient Condition to be a Spectrum

We use the following sufficient condition to be in the spectrum;

Theorem
Let L be a closed linear operator on a Banach (X, || - |x) and A € C.
If there exists a sequence {f,} ¢ Dom(L) such that || f,|lx = 1land

lim [l fn = Afallx = 0. (6)

Then A € Spec().

Here, we call this {f,} a sequence of approximate-eigenfunctions
for A or approximate-eigenfunctions for A.



Generator of BM with drift
000@0000

Non-Normal Case

(G i
For oo 3 A0 1= — +1t, letay := - %, and () := e"*.

Then A€ = A0€P.
Let se C*(R) satisfy
Q X>2 = 9(x) =0
Q 1<|X¥<2=0<sx)<1
Q X<1 = 9s(x)=1
and, s(X) := %S()ﬁ(). Then €s, divided by its || - ||, satisfy the
codition of approximate eigenfunctions for /l? in L2(R, ).
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Non-Normal Case

Recipe of approximate eigenfunctions with Vo

Here is the recipe of approximate eigenfunctions for o.
You can construct for o1 with almost same recipe.

l. Let f, be the approximate functions for A on L%(R, vo)
1. fr = tnfn = fa(- — 2n?), then

Ifalbo = Ifallvg.— [1fallyy = €I fally,
Il. Th is commutative with differential. Therefore,
AT = 22 fallvo = AT = P fally >0 N— o0

IAf, = 2Fill,, = € S IAf — A2fll,
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Non-Normal Case

Recipe of approximate eigenfunctions with

IV. since suppf, € [-2n, 2n].
ATy — A1 folly, < €A, — A1 Fally,

Therefore
IAfy = A0fall,, — 0

V. fille = (L= O)llfally, = 1— 6
VI. Therefore

fn
Il fnlly,

is a sequence of approximate-eigenfunctions for /l? in
L2(R, vy).
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Non-Normal Case

For 0 < 0 < 1, the spectrum of A'is oo U 01.




Generator of BM with drift
0O000000e

Non-Normal Case

The spectrum of A on L%(R, v).
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Laplacian with Rotation

Let L be

Vi 9 0 2
pva a_yZ + (x@ — ya_x) on L4(R, dxdy)



Laplacian with Rotation

Laplacian with Rotation

Let L be

2 2
& _ aa_yz N (xﬁ - yﬁ) on L3(R, dxdy)

ady ~oX
In polar coordinate,

10 0 10* 0 2
_Fﬁrﬁ_r_zﬁ+% on L=([0, e0) x [0, 27), rdrd6)



Laplacian with Rotation

For normal A,

A+A A-A
A — + 1 A ’
2 2
and &2 A& are self-sdjoint.

So, the spectrum of Ais contained

(X+iy; X € Spec%),y € Spec%)}




Laplacian with Rotation

For normal A,

A+A A-A
A — + 1 A ’
2 2
and &2 A& are self-sdjoint.

So, the spectrum of Ais contained

(X+iy; X € Spec%),y € Spec%)}

Therefore the spectrum of L is contained in

{1+in;A>0,ne Z}



Laplacian with Rotation

Assume a smooth function f = R(r)®(6) satisfies for some
A=>0,neZ,

199 18 9
ror or r296% 06

)R(D = (1 +in)RD® 7)

Dividing by R® and differetiating with 6

10 182<D 0100

290 ® 962 69(13 0

Then
Q" = koD, D =k D.

Since @ is periodic ® = cd™ for some me Z.



Laplacian with Rotation

0
Since the imaginaty part of the spectrum comes from ETh we take

m=n.
Then (7) is
10 8R n?
= AR 8
rar ar 2 r2 2R ®
Let s= Var. Then (8) becomes
d’R 1dR n?
- 2T R=
ds sds+(1 32) 0 ®)

This is the difeerential equation which Bessel function satisfies.



Laplacian with Rotation

Theorem
The spectrum of L is

{1+in; >0, ne Z} (10)

and the corresponding eigenfunction to A + in is Jy( Var)en?,
where Jn, is the Bessel functions of first kind of order m. Here (r, 6)
is the usual polar coordinate.
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52

The spectrum of —9—

X2 6y2 Is;

3

{€€%||€% = A} corresnponds to 1 > 0



Laplacian with Rotation

The spectrum of L is;

J(Var)e" corresnpondsto A +in  (1>0neZ



Laplacian with Rotation

For Laplacian, we know Fourier inversion formula;

f(x) = f ( f f(u)e—i“'fdu)éf'ng (11)

By "Fourier Bessel integral” ,

a0 = [ it ( [ Ag(A)Jl(pA)dﬂ) do.



Laplacian with Rotation

For Laplacian, we know Fourier inversion formula;

f(x) = f ( f f(u)e‘i”"fdu)eif'xdg-‘ (12)

By "Fourier Bessel integral” , we have the following formula for L;

COEDY f { f ( f f(/l,¢)e‘i”¢d¢) Jml(pﬂ)aou} In(ro)e"pdp

under the polar coordinate.
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Ornstein-Uhlenbeck Operator with Rotation

Let L, be

VL R R WL
ox2  gy? ox y@y ay Yox

X2+
acting on L?(R, & Tyzdxd)).
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Ornstein-Uhlenbeck Operator with Rotation

Let L, be

IV L A L ﬁ
X2 9y2 X y@y ay Ya

X2+
acting on L?(R, & Tyzdxdyb.
Ornstein-Uhlenbeck operator Lg is understood by Hermite

polynomials,
n 2

Hu(x) = (-1)'e? e
My dx
These polynomials satisfy,
LoHk(X)Hn-k(y) = nH(X)Hn-k(Y)

{Xk-0 HK(X)Hn-k(Y)Ic € C} is the eigenspace corresponding to n.
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Ornstein-Uhlenbeck Operator with Rotation

X— +Y— + | X— —y—

N 9 9
T gy Tox oy dy ’ax

X2+
acting on L%(R, & Tyzdxd)).
{Xk-0 HK(X)Hn-k(Y)Ich € C} is also invariant by L,, but
corresponding matrix is too complicated to determine its spectrum.



Ornstein-Uhlenbeck Operator with Rotation

We use "complex Hermite polynomials”,

Hpa(z.2 1= (- 1>Wﬂe?(;1)p(gg)qe-.

9 _1(o 9y o4 _1(9 .9
9z 2\ox dy 9z 2\ox dy

and z= X+1y.

N‘N\

where



Ornstein-Uhlenbeck Operator with Rotation

We use "complex Hermite polynomials”,

Hpa(29) = (- 1N“ﬂe?(‘9)p(13)qe- ,

N‘N\

0z) \0z

9 _1(o 9y o4 _1(9 .9
9z 2\ox dy 9z 2\ox dy

and z= X+1y.

where

They satisfy
a0 0 00 _0
2——+27—|Hpq=pH 2——+ Hpgq=qH
( 9207 Zaz) pa = Phipa ( 920z az) pa = Apa

and 5 5



Ornstein-Uhlenbeck Operator with Rotation

Under complex coordinate

L 4£2+ 2+z(9 +al zﬁ—fg
¢ 020z "0z oz iz “oz)’



Ornstein-Uhlenbeck Operator with Rotation

Under complex coordinate
Lo = 4£2+ 2+z(9 +al zﬁ—fg
¢ 020z "0z "0z 0z "0z)°
Then,

LeHpg = (P+Q)Hpq+ (P—QlaiHpqg



Ornstein-Uhlenbeck Operator with Rotation

The spectrum of L, is

{(p+0a)+ (P-dailggo (13)

and corresponding eigenfunctions are Hpq respectively.
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Spectrum of Ornstein-Uhlenbeck operator

{Hpq}p+g=nCorresponds to each point n.
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A

[ ]

[ ]
[ ] [ ]

—@ @
[ ] [ ]

[ ]
[ ]

Spectrum of L,

Hy.q is the corresponding the eigenfunction of (p + ) + (p — Q).
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)
Since {Hpglpq is dense in L2(R2, e~ 2" dxdy).

L2(R% &+ dxdy) = @ P cHpq

n=0 p+g=n
This corresponds to the action of U(1) = {z€ C; |4 = 1}.
Note;
Hpglwzwz) = P Hp4e(z2) weU()



Ornstein-Uhlenbeck Operator with Rotation

Since {Hpg}pg is dense in L2(R?%, e ‘7dxd9
X2+ i
L2(R% &+ dxdy) = P P cHoq
n=0 p+g=n

This corresponds to the action of U(1) = {z€ C; |7 = 1}.
Hnn is invariant under rotation.

Hn’n(a)z, (U_Z) = Hp’q(z, 2) w € U(l)

Then,
0
a—an,n = 0,



Ornstein-Uhlenbeck Operator with Rotation

Under the polar coordinate,

16 0 a 18 0
Lo=——-—r—+l————+a_ 14
ror or * or r2692+a89 (14)

So,

{ldd d

rdrdr ' dr }Hn”_annn’
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Letu:= ; then

ﬂ—)

+ an’n = O
Remind that Laguerre polynomial Lm(u) = %%(e‘“um) satisfies
d2L
—_n a—) +mm 0
So
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Theorem
Complex Hermite polynomials Hp, are expressed as following;

IZI2
Hnn(z 2) = clLq = (15)

where L, = & & (e7*x") are Laguerre polynomials and cis a
constant.
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Hn.n is expressed by usual Hermite polynomials by

n,n 4n Z k'( HZK(X)HZn ZK(Y)

Corollary
Laguerre polynomials L, are expressed as following;

NERY: L nl
Ln( 2 ): a kz;) kn—tgr 220 (19)

X2 g, %2 : :
where Hp = (-1)"e? g=(e”2) are Laguerre polynomials and cis a
constant.
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Thank You
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