Generator of BM with drift

Spectra of Non-symmetric Operators

Yusuke IKENO Ichiro SHIGEKAWA

Kyoto University

Kyoto University

6, Nov. 2009

Stochastic Analysis and Related Topics at Tohoku University

Table of Contetnts

- Generator of Brownian motion with drift
- Laplacian with rotation (2-dimensional)
- Ornstein Uhlenbeck Operator with rotation (2-dimensional)

Spectra of a Non-normal Operator

We discuss

$$A := -\frac{d^2}{dx^2} + c\frac{d}{dx},$$

acting on $L^2(\mathbf{R}, \nu_{\theta}(dx))$.

Here,

$$v_{\theta}(dx) := \{(1 - \theta) + \theta e^{-cx}\} dx \qquad 0 \le \theta \le 1$$
 (1)

is the invariant measure of A.

- $\theta = 1$, A is self-adjoint.
- $\theta = 0$, A is normal.

$$A^* = -\frac{d^2}{dx^2} - c\frac{d}{dx}$$

• $0 < \theta < 1$, A is not even normal.

$$A^* = -\frac{d^2}{dx^2} - c\frac{d}{dx} - \frac{2\varphi_{\theta}'(x)}{\varphi_{\theta}(x)}\frac{d}{dx},$$

where $\varphi_{\theta}(x) := \{(1 - \theta) + \theta e^{-cx}\}$ is the density of ν_{θ}

Generator of BM with drift

Normal case; with spectral representation

Normal (including self-adjoint) operators have spectral representation.

Theorem (Spectral representation)

Let A be a normal operator on a Hilbert space \mathcal{H} . Then there exists a partition of unity $\{E(z)\}$ such that

$$(Af,g) = \int_{\mathbf{C}} z d(E(z)f,g)_{\mathcal{H}}, \quad f \in \text{Dom}(A), g \in \mathcal{H}.$$
 (2)

Here the support of $d(E_zf,g)_{\mathcal{H}}$ is in the spectrum of A. Conversely we can construct a normal operator from a partition of unity $\{E(z)\}$.

Partitiion of Unity

Partition Unity of E(z) satisfies

$$2 x_n \nearrow \infty, y_N \nearrow \infty, \Rightarrow E(x_n + iy_n) \to \mathrm{Id}_{\mathcal{H}}$$

By the Fourier transform, for $\theta = 1$

$$(Af,g)_{\nu_1} = \int \mathcal{F}[f'e^{-\frac{cx}{2}}])\mathcal{F}[g'e^{-\frac{cx}{2}}]d\xi$$
$$= \int \left(\xi^2 + \frac{c^2}{4}\right)\mathcal{F}[f]\left(\xi - \frac{ic}{2}\right)\overline{\mathcal{F}[g]\left(\xi - \frac{ic}{2}\right)}d\xi$$

So we can construct a partition of unity for A acting on $L^2(\mathbf{R}, \nu_1)$.

Here $\mathcal{F}: L^2(\mathbf{R}, dx) \to L^2(\mathbf{R}, dx)$ is the Fourier transform.

Note that

$$\int |f|^2 e^{-cx} dx < \infty \Rightarrow \int |f e^{-\frac{cx}{2}}|^2 dx < \infty.$$

For
$$\theta = 0$$

$$(Af,g)_{\nu_0} = \int \{f'g' + cf'g\} dx$$

$$= \int \{\mathcal{F}[f']\overline{\mathcal{F}[g']} + c\mathcal{F}[f']\overline{\mathcal{F}[g]}\} d\xi$$

$$= \int (\xi^2 - c\xi i)\mathcal{F}[f]\overline{\mathcal{F}[g]} d\xi$$

By this calculation, we can construct a partition of unity for A acting on $L^2(\mathbf{R}, \nu_0)$.

Theorem

Let σ_0, σ_1 be spectra of A for $\theta = 0, 1$, respectively. Then

$$\sigma_0 = \left\{ z = x + iy \in \mathbb{C} \; ; \; c^2 x = y^2 \right\},$$
 (3)

and

$$\sigma_1 = \left\{ \frac{c^2}{4} + t \; ; \; 0 \le t \right\}. \tag{4}$$

The figure of σ_0

The figure of σ_1

Does spectrum move along avobe arrow?

Non-normal Case

Now we consider the case $0 < \theta < 1$.

Note that $v_{\theta}(dx) = (1 - \theta)v_0(dx) + \theta v_1(dx)$, and

$$L^{2}(\mathbf{R}, \nu_{\theta}) = L^{2}(\mathbf{R}, \nu_{0}) \cap L^{2}(\mathbf{R}, \nu_{1})$$

$$\tag{5}$$

If linear operator $T: L^2(v_j) \to L^2(v_j)$ (j = 0, 1) satisfies

$$||Tf||_{\nu_0} \le C_0 ||f||_{\nu_0} \quad \forall f \in L^2(\mathbf{R}, \nu_0), \quad ||Tg||_{\nu_1} \le C_1 ||g||_{\nu_1} \quad \forall g \in L^2(\mathbf{R}, \nu_1)$$

Then,

Non-normal Case

Now we consider the case $0 < \theta < 1$.

Note that $v_{\theta}(dx) = (1 - \theta)v_0(dx) + \theta v_1(dx)$, and

$$L^{2}(\mathbf{R}, \nu_{\theta}) = L^{2}(\mathbf{R}, \nu_{0}) \cap L^{2}(\mathbf{R}, \nu_{1})$$

$$\tag{5}$$

If linear operator $T: L^2(v_j) \to L^2(v_j)$ (j = 0, 1) satisfies

$$||Tf||_{\nu_0} \le C_0 ||f||_{\nu_0} \quad \forall f \in L^2(\mathbf{R}, \nu_0), \quad ||Tg||_{\nu_1} \le C_1 ||g||_{\nu_1} \quad \forall g \in L^2(\mathbf{R}, \nu_1)$$

Then,

$$||Tf||_{\nu_{\theta}} \le \sqrt{C_0^2 \vee C_1^2} ||f||_{\nu_{\theta}} \qquad \forall f \in L^2(\mathbf{R}, \nu_{\theta}).$$

Non-Normal Case

For
$$\alpha \in \mathbb{C} \setminus (\sigma_0 \cup \sigma_1)$$
, $(\alpha - A)^{-1}$ is bounded on $L^2(\mathbb{R}, \nu_0)$ and $L^2(\mathbb{R}, \nu_1)$

$$\Longrightarrow$$
 C \ $(\sigma_0 \cup \sigma_1)$ is in the resolvent set of *A* on $L^2(\mathbf{R}, \nu_r)$

We check whether $\lambda \in \sigma_0 \cup \sigma_1$ is the spectrum of A.

Generator of BM with drift

Sufficient Condition to be a Spectrum

We use the following sufficient condition to be in the spectrum;

Theorem

Let L be a closed linear operator on a Banach $(X, \|\cdot\|_X)$ and $\lambda \in \mathbb{C}$. If there exists a sequence $\{f_n\} \subset Dom(L)$ such that $||f_n||_X = 1$ and

$$\lim_{n \to \infty} ||Lf_n - \lambda f_n||_X = 0.$$
 (6)

Then $\lambda \in \operatorname{Spec}(L)$.

Here, we call this $\{f_n\}$ a sequence of approximate-eigenfunctions for λ or approximate-eigenfunctions for λ .

Non-Normal Case

For
$$\sigma_0 \ni \lambda_t^0 := \frac{t^2}{c^2} + it$$
, let $\alpha_t := -\frac{it}{2}$, and $e_t^0(x) := e^{\alpha_t x}$.

Then $Ae_t^0 = \lambda_t^0 e_t^0$. Let $s \in C^{\infty}(\mathbf{R})$ satisfy

$$2 1 < |x| < 2 \Longrightarrow 0 < s(x) < 1$$

and, $s_n(x) := \frac{1}{\sqrt{n}} s(\frac{x}{n})$. Then $e_t^0 s_n$ divided by its $\|\cdot\|_{\nu_0}$ satisfy the codition of approximate eigenfunctions for λ_t^0 in $L^2(\mathbf{R}, \nu_0)$.

Recipe of approximate eigenfunctions with ν_{θ}

Here is the recipe of approximate eigenfunctions for σ_0 . You can construct for σ_1 with almost same recipe.

- I. Let f_n be the approximate functions for A on $L^2(\mathbf{R}, \nu_0)$
- II. $\tilde{f}_n := \tau_n f_n := f_n(\cdot 2n^2)$, then

$$\|\tilde{f}_n\|_{\nu_0} = \|f_n\|_{\nu_0}, \qquad \|\tilde{f}_n\|_{\nu_1} = e^{-cn^2} \|f_n\|_{\nu_1}$$

III. τ_n is commutative with differential. Therefore,

$$\begin{split} \|A\tilde{f}_n - \lambda_t^0 \tilde{f}_n\|_{\nu_0} &= \|Af_n - \lambda_t^0 f_n\|_{\nu_0} \to 0 \quad n \to \infty \\ \|A\tilde{f}_n - \lambda_t^0 \tilde{f}_n\|_{\nu_1} &= e^{-cn^2} \|Af_n - \lambda_t^0 f_n\|_{\nu_1} \end{split}$$

Recipe of approximate eigenfunctions with ν_{θ}

IV. since supp $f_n \subset [-2n, 2n]$.

$$||Af_n - \lambda_1 f_n||_{\nu_1} \le e^{2cn} ||Af_n - \lambda_1 f_n||_{\nu_0},$$

Therefore

$$||A\tilde{f}_n - \lambda_0 \tilde{f}_n||_{\nu_1} \to 0$$

V.
$$||\tilde{f}_n||_{\nu_{\theta}} \ge (1 - \theta)||f_n||_{\nu_0} = 1 - \theta$$

VI. Therefore

$$\frac{\tilde{f_n}}{\|\tilde{f_n}\|_{\nu_{\theta}}}$$

is a sequence of approximate-eigenfunctions for λ_t^0 in $L^2(\mathbf{R}, \nu_{\theta})$.

Non-Normal Case

Theorem

For $0 < \theta < 1$, the spectrum of A is $\sigma_0 \cup \sigma_1$.

Non-Normal Case

The spectrum of A on $L^2(\mathbf{R}, \nu_\theta)$.

Laplacian with Rotation

Let L be

$$-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) \quad \text{on } L^2(\mathbf{R}, dxdy)$$

Laplacian with Rotation

Let L be

$$-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) \quad \text{on } L^2(\mathbf{R}, dxdy)$$

In polar coordinate,

$$-\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r} - \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\partial}{\partial \theta} \quad \text{on } L^2([0,\infty) \times [0,2\pi), rdrd\theta)$$

For normal A,

$$A = \frac{A+A^*}{2} + i\frac{A-A^*}{2i},$$

and $\frac{A+A^*}{2}$, $\frac{A-A^*}{2i}$ are self-sdjoint.

So, the spectrum of A is contained

$$\{x + iy; x \in \operatorname{Spec}(\frac{A + A^*}{2}), y \in \operatorname{Spec}(\frac{A - A^*}{2i})\}$$

For normal A,

$$A = \frac{A+A^*}{2} + i\frac{A-A^*}{2i},$$

and $\frac{A+A^*}{2}$, $\frac{A-A^*}{2i}$ are self-sdjoint.

So, the spectrum of A is contained

$$\{x+iy; x \in \operatorname{Spec}(\frac{A+A^*}{2}), y \in \operatorname{Spec}(\frac{A-A^*}{2i})\}$$

Therefore the spectrum of *L* is contained in

$$\{\lambda + in; \lambda \ge 0, n \in \mathbf{Z}\}\$$

Assume a smooth function $f = R(r)\Phi(\theta)$ satisfies for some $\lambda \geq 0, n \in \mathbf{Z}$,

$$\left(-\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r} - \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\partial}{\partial \theta}\right)R\Phi = (\lambda + in)R\Phi \tag{7}$$

Dividing by $R\Phi$ and differentiating with θ

$$-\frac{1}{r^2}\frac{\partial}{\partial\theta}\frac{1}{\Phi}\frac{\partial^2\Phi}{\partial\theta^2} + \frac{\partial}{\partial\theta}\frac{1}{\Phi}\frac{\partial\Phi}{\partial\theta} = 0$$

Then

$$\Phi^{\prime\prime}=k_2\Phi,\qquad \Phi^\prime=k_1\Phi.$$

Since Φ is periodic $\Phi = ce^{im\theta}$ for some $m \in \mathbb{Z}$.

Since the imaginaty part of the spectrum comes from $\frac{\partial}{\partial \theta}$, we take m=n.

Then (7) is

$$-\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial R}{\partial r} + \frac{n^2}{r^2}R = \lambda R. \tag{8}$$

Let $s = \sqrt{\lambda}r$. Then (8) becomes

$$\frac{d^2R}{ds^2} - \frac{1}{s}\frac{dR}{ds} + \left(1 - \frac{n^2}{s^2}\right)R = 0$$
 (9)

This is the differential equation which **Bessel function** satisfies.

Theorem

The spectrum of L is

$$\{\lambda + in \; ; \; \lambda \ge 0, \; n \in \mathbf{Z}\} \tag{10}$$

and the corresponding eigenfunction to $\lambda + in$ is $J_{|n|}(\sqrt{\lambda}r)e^{in\theta}$, where J_m is the Bessel functions of first kind of order m. Here (r, θ) is the usual polar coordinate.

The spectrum of
$$-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}$$
 is;

$$\{e^{i\xi \cdot \mathbf{x}}||\xi|^2 = \lambda\}$$
 corresponds to $\lambda \geq 0$

The spectrum of L is;

$$J_{|n|}(\sqrt{\lambda}r)e^{in\theta}$$
 corresponds to $\lambda + in$ $(\lambda \ge 0n \in \mathbf{Z})$

For Laplacian, we know Fourier inversion formula;

$$f(\mathbf{x}) = \int \left(\int f(\mathbf{u}) e^{-i\mathbf{u}\cdot\xi} d\mathbf{u} \right) e^{i\xi\cdot\mathbf{x}} d\xi \tag{11}$$

By "Fourier Bessel integral",

$$g(r) = \int \rho J_l(r\rho) \left(\int \lambda g(\lambda) J_l(\rho \lambda) d\lambda \right) d\rho.$$

For Laplacian, we know Fourier inversion formula;

$$f(\mathbf{x}) = \int \left(\int f(\mathbf{u}) e^{-i\mathbf{u}\cdot\xi} d\mathbf{u} \right) e^{i\xi\cdot\mathbf{x}} d\xi \tag{12}$$

By "Fourier Bessel integral", we have the following formula for L;

$$f(r,\theta) = \sum_{n} \int \left\{ \int \left(\int f(\lambda,\phi) e^{-in\phi} d\phi \right) J_{|n|}(\rho\lambda) \lambda d\lambda \right\} J_{|n|}(r\rho) e^{in\theta} \rho d\rho$$

under the polar coordinate.

Ornstein-Uhlenbeck Operator with Rotation

Let L_{α} be

$$-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + \alpha \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

acting on $L^2(\mathbf{R}, e^{-\frac{x^2+y^2}{2}} dxdy)$.

Ornstein-Uhlenbeck Operator with Rotation

Laplacian with Rotation

Let L_{α} be

$$-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + \alpha \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

acting on $L^2(\mathbf{R}, e^{-\frac{x^2+y^2}{2}} dxdy)$.

Ornstein-Uhlenbeck operator L_0 is understood by Hermite polynomials,

$$H_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}}.$$

These polynomials satisfy,

$$L_0H_k(x)H_{n-k}(y) = nH_k(x)H_{n-k}(y).$$

 $\{\sum_{k=0}^{n} H_k(x) H_{n-k}(y) | c_n \in \mathbb{C}\}\$ is the eigenspace corresponding to n.

Ornstein-Uhlenbeck Operator with Rotation

$$L_{\alpha} = -\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}} + x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + \alpha \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$$

acting on $L^2(\mathbf{R}, e^{-\frac{x^2+y^2}{2}}dxdy)$.

 $\{\sum_{k=0}^{n} H_k(x) H_{n-k}(y) | c_n \in \mathbb{C}\}$ is also invariant by L_{α} , but corresponding matrix is too complicated to determine its spectrum.

We use "complex Hermite polynomials",

$$H_{p,q}(z,\bar{z}) := (-1)^{p+q} e^{\frac{z\bar{z}}{2}} \left(\frac{\partial}{\partial \bar{z}}\right)^p \left(\frac{\partial}{\partial z}\right)^q e^{-\frac{z\bar{z}}{2}},$$

where

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \qquad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

and z = x + iy.

We use "complex Hermite polynomials",

$$H_{p,q}(z,\bar{z}) := (-1)^{p+q} e^{\frac{z\bar{z}}{2}} \left(\frac{\partial}{\partial \bar{z}}\right)^p \left(\frac{\partial}{\partial z}\right)^q e^{-\frac{z\bar{z}}{2}},$$

where

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \qquad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

and z = x + iy.

They satisfy

$$\left(-2\frac{\partial}{\partial z}\frac{\partial}{\partial \bar{z}} + z\frac{\partial}{\partial z}\right)H_{p,q} = pH_{p,q} \quad \left(-2\frac{\partial}{\partial z}\frac{\partial}{\partial \bar{z}} + \bar{z}\frac{\partial}{\partial \bar{z}}\right)H_{p,q} = qH_{p,q}$$

and

$$\left(z\frac{\partial}{\partial z} - \bar{z}\frac{\partial}{\partial \bar{z}}\right)H_{p,q} = (p-q)H_{p,q}.$$

Under complex coordinate

$$L_{\alpha} = \left(-4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} + z \frac{\partial}{\partial z} + \bar{z} \frac{\partial}{\partial \bar{z}} \right) + \alpha i \left(z \frac{\partial}{\partial z} - \bar{z} \frac{\partial}{\partial \bar{z}} \right).$$

Under complex coordinate

$$L_{\alpha} = \left(-4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} + z \frac{\partial}{\partial z} + \bar{z} \frac{\partial}{\partial \bar{z}} \right) + \alpha i \left(z \frac{\partial}{\partial z} - \bar{z} \frac{\partial}{\partial \bar{z}} \right).$$

Then,

$$L_{\alpha}H_{p,q} = (p+q)H_{p,q} + (p-q)\alpha iH_{p,q}$$

Theorem

The spectrum of L_{α} is

$$\{(p+q) + (p-q)\alpha i\}_{p,q=0}^{\infty}$$
 (13)

and corresponding eigenfunctions are $H_{p,q}$ respectively.

Spectrum of Ornstein-Uhlenbeck operator

 $\{H_{p,q}\}_{p+q=n}$ corresponds to each point n.

 $H_{p,q}$ is the corresponding the eigenfunction of $(p+q)+(p-q)\alpha i$.

Since $\{H_{p,q}\}_{p,q}$ is dense in $L^2(\mathbf{R}^2, e^{-\frac{x^2+y^2}{2}}dxdy)$.

$$L^{2}(\mathbf{R}^{2}, e^{-\frac{x^{2}+y^{2}}{2}}dxdy) = \bigoplus_{n=0}^{\infty} \bigoplus_{p+q=n}^{\infty} \mathbf{C}H_{p,q}$$

This corresponds to the action of $U(1) = \{z \in \mathbb{C}; |z| = 1\}$. Note;

$$H_{p,q}(\omega z, \overline{\omega z}) = \omega^{p-q} H_{p,q}(z, \overline{z}) \qquad \omega \in U(1)$$

Since $\{H_{p,q}\}_{p,q}$ is dense in $L^2(\mathbf{R}^2, e^{-\frac{x^2+y^2}{2}}dxdy)$.

$$L^{2}(\mathbf{R}^{2}, e^{-\frac{x^{2}+y^{2}}{2}}dxdy) = \bigoplus_{n=0}^{\infty} \bigoplus_{p+q=n} \mathbf{C}H_{p,q}$$

This corresponds to the action of $U(1) = \{z \in \mathbb{C}; |z| = 1\}$. $H_{n,n}$ is invariant under rotation.

$$H_{n,n}(\omega z, \overline{\omega z}) = H_{p,q}(z, \overline{z}) \qquad \omega \in U(1)$$

Then,

$$\frac{\partial}{\partial \theta} H_{n,n} = 0,$$

Under the polar coordinate,

$$L_{\alpha} = -\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r} + r\frac{\partial}{\partial r} - \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \alpha\frac{\partial}{\partial \theta}$$
 (14)

So,

$$\left\{-\frac{1}{r}\frac{d}{dr}r\frac{d}{dr} + r\frac{d}{dr}\right\}H_{n,n} = 2nH_{n,n},$$

Let $u := \frac{r^2}{2}$, then

$$u\frac{d^2H_{n,n}}{dr^2} + (1-u)\frac{dH_{n,n}}{dx} + nH_{n,n} = 0$$

Remind that **Laguerre** polynomial $L_m(u) := \frac{e^u}{m!} \frac{d^m}{dx^m} (e^{-u} u^m)$ satisfies

$$u\frac{d^{2}L_{m}}{du^{2}} + (1 - u)\frac{dL_{m}}{du} + mL_{m} = 0$$

So

Theorem

Complex Hermite polynomials $H_{n,n}$ are expressed as following;

$$H_{n,n}(z,\bar{z}) = cL_n\left(\frac{|z|^2}{2}\right),\tag{15}$$

where $L_n = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n)$ are Laguerre polynomials and c is a constant.

 $H_{n,n}$ is expressed by usual Hermite polynomials by

$$H_{n,n} = \frac{1}{4^n} \sum_{k=0}^n \frac{n!}{k!(n-k)!} H_{2k}(x) H_{2n-2k}(y).$$

Corollary

Laguerre polynomials L_n are expressed as following;

$$L_n\left(\frac{x^2+y^2}{2}\right) = \frac{c}{4^n} \sum_{k=0}^n \frac{n!}{k!(n-k)!} H_{2k}(x) H_{2n-2k}(y).$$
 (16)

where $H_n=(-1)^ne^{\frac{x^2}{2}}\frac{d^n}{dx^n}(e^{-\frac{x^2}{2}})$ are Laguerre polynomials and c is a constant.

Thank You