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1. Introduction

Let (Xt) be a diffusion on a compact Riemannian manifold M generated by
1
2
� + b. Its has a transition probability density p(t, x, y). We can see that

p(t, x, y) converges to an invariant measure ν(dx) = ρ(x)vol(dx).

We are interested in the convergence rrate γ:

γ = − lim
t→∞

1

t
log sup

x,y
|p(t, x, y) − ρ(x)|.

We give a lower bound of γ.

Our main tool is the ultracontractivity of the semigorup.



3

Ultracontractivity

A semigroup {Tt} is called ultracontractive if Tt : L1 → L∞ is bounded for all
t > 0.

It is well-known that the following three conditions are equivalent for a symmetric
Markovian semigroup. Let μ > 0 be given.

(i) ∃c1 > 0, ∀f ∈ L1:

‖Ttf‖∞ ≤ c1t−μ/2‖f‖1, ∀t > 0.

(ii) ∃c2 > 0, ∀f ∈ Dom(E) ∩ L∞:

‖f‖2+4/μ
2 ≤ c2 E(f, f) ‖f‖4/μ

1 .

(iii) μ > 2, ∃c3 > 0, ∀f ∈ Dom(E):

‖f‖2
2μ/(μ−2) ≤ c3 E(f, f).

We extend this result for non-symmetric Markovian semigroups.
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2. Non-symmetric Markovian semigroups

We give a framework in generall Hilbert space scheme.

• H: a Hilbert space

• {Tt}: a contraction C0 semigroup

• {T ∗
t }: the dual semigroup

• A, A∗: the generators of {Tt} and {T ∗
t }

A natural bilinear form E is defined by

E(u, v) = −(Au, v).

We do not assume the sector condition and so we can not use this bilinear form.
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We introduce a symmetric bilinear form. For this, we assume the following condition:

(A.1) Dom(A) ∩ Dom(A∗) is dense in Dom(A) and Dom(A∗).

Under this condition, we define a symmetric bilinear form Ẽ by

Ẽ(u, v) = −1

2
{(Au, v) + (u, Av)}, u, v ∈ Dom(A) ∩ Dom(A∗).

Proposition 1. Under the condition (A.1), Ẽ is closable and its closure contains
Dom(A) and Dom(A∗).
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Covex set preserving property

• C: a convex set of H.

• Pu: the shortest
point from u to C

(u − Pu, v − Pu) ≤ 0, ∀v ∈ C. C

�

�

�

Pu

u

v

Theorem 2. If {Tt} and {T ∗
t } preserve a convex set C, then Pu ∈ Dom(Ẽ) for

any u ∈ Dom(Ẽ) and we have

Ẽ(Pu, u − Pu) ≥ 0.
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Markovian semigroup

• (M, m): a measure space

• H = L2(m): a Hilbert space

• {Tt}: a Markovian semigroup

We assume that {T ∗
t } is also a Markovian semigroup.

Under the assumption (A.1), we can define a symmetric bilinear form Ẽ and
Ẽ is a Dirichlet form.
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We have the following implications.

‖Ttf‖∞ ≤ c1t−μ/2‖f‖1, ∀t > 0

⇑ ⇓ under (1)

‖f‖2+4/μ
2 ≤ c2 Ẽ(f, f) ‖f‖4/μ

1

⇑
‖f‖2

2μ/(μ−2) ≤ c3 Ẽ(f, f) (μ > 2)

(A2f, f)2 + (Af, Af)2 ≥ 0.(1)

(1) holds if A is normal, i.e. AA∗ = A∗A.
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Moreover

‖Ttf‖∞ ≤ c1t−μ/2‖f‖1, ∀t ∈ (0, 1]

⇑ ⇓ under (2)

‖f‖2+4/μ
2 ≤ c2(Ẽ(f, f) + ‖f‖2

2) ‖f‖4/μ
1

⇑
‖f‖2

2μ/(μ−2) ≤ c3(Ẽ(f, f) + ‖f‖2
2) (μ > 2)

There there exists a constant M > 0 so that for all f ∈ Dom(A2)

((A − M)2f, f)2 + ((A − M)f, (A − M)f)2 ≥ 0.(2)
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3. Dirichlet forms satisfying the sector condition

From now on, we assume the sector condition for the Dirichlet form E .

In this case, we have

‖Ttf‖∞ ≤ c1t−μ/2‖f‖1, ∀t ∈ (0, 1]



‖f‖2+4/μ

2 ≤ c2(Ẽ(f, f) + ‖f‖2
2) ‖f‖4/μ

1

⇑
‖f‖2

2μ/(μ−2) ≤ c3(Ẽ(f, f) + ‖f‖2
2) (μ > 2)

Key estimate:

Ẽ(Tsf, Tsf) ≤ C{Ẽ(f, f) + ‖f‖2
2}
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Theorem 3. μ > 2. Suppose that there exists a constant c1 so that for any
f ∈ L1

‖Ttf‖∞ ≤ c1t−μ/2‖f‖1, ∀t ∈ (0, 1].

Then, for any μ̃ > μ, there exists a constant c3 > 0 so that for all f ∈ Dom(Ẽ)

‖f‖2
2μ̃/(μ̃−2) ≤ c3(Ẽ(f, f) + ‖f‖2

2)

Key estimate: for s < 1
2

,

‖(1 − A)sf‖2
2 ≤ C(Ẽ(f, f) + ‖f‖2

2).



12

4. Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

• m is an invariant probability measure.∫
M

Ttf dm =
∫

M

f dm

• Tt1 = 1 and A1 = 0.

The following inequality is called the Poincaré inequality

‖f − m(f)‖2
2 ≤ λ−1Ẽ(f, f)(3)

where

m(f) =
∫

M

f(x) m(dx).

This inequality is equivalent to

‖Ttf − m(f)‖2
2 ≤ e−2λt‖f − m(f)‖2

2.
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Theorem 4. μ > 0. We consider the following two conditions.

(i) There exists a constant c1 so that for all f ∈ L1

‖Ttf − m(f)‖∞ ≤ c1t−μ/2‖f‖1, ∀t ∈ (0, 1].

(ii) There exists a constant c2 so that for all f ∈ Dom(Ẽ) ∩ L1(m)

‖f − m(f)‖2+4/μ
2 ≤ c2 Ẽ(f, f) ‖f‖4/μ

1 .

Then, (ii) is equivalent to (i) with the Poincaré inequality.
Under the condition (ii), there exists a constant c4 > 0 so that for all f ∈ L1

‖Ttf − m(f)‖∞ ≤ c4e−λt‖f‖1, ∀t ≥ 1.

Here λ is a constant appears in the Poincaré inequality (3).
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Proof.

‖Tt − m‖1→∞ = ‖(T1 − m)(Tt−2 − m)(T1 − m)‖1→∞

≤ ‖T1 − m‖2→∞ ‖Tt−2 − m‖2→2 ‖T1 − m‖1→2

≤ ‖T1 − m‖2→∞ e−λ(t−2) ‖T1 − m‖1→2 �

Let us investigate the convergense rete. Set at = ‖Tt − m‖1→∞ and define γ by

γ = − lim
t→∞

1

t
log at.(4)

Theorem 5. We have

γ ≥ λ

and the equality holds if A is normal. Here λ is the spectral gap (3).
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Theorem 6. μ > 2. Assume that there exists a constant c1 so that

‖Ttf − m(f)‖∞ ≤ c1t−μ/2‖f‖1, ∀t > 0

and the Poincaré inequality holds.
Then, for any μ̃ > μ, there exists a constant c3 > 0 so that for all f ∈ Dom(Ẽ)

‖f − m(f)‖2
2μ̃/(μ̃−2) ≤ c3Ẽ(f, f).
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5. Non-symmetric diffusions on Riemannian manifolds

• (M, g): a complete connected Riemannian manifold

• m = vol: the Riemannian volume

• b: a smooth vector field

We consider a diffusion generated by

A =
1

2
� + b.

We regard it as an operator in L2(m).

The dual operator is

A∗ =
1

2
� − b − div b.

Associated symmetric bilinear form Ẽ is

Ẽ(u, v) =
1

2

∫
M

(∇u, ∇v) dm +
1

2

∫
M

uv div b dm.
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We have to show the existence of associated semigroups.

• o ∈ M : any fixed point

• d: the Riemannian distance

• ρ(x) = d(o, x)

We assume the following conditions:

(A.2) div b ≥ 0．

(A.3) There exists a non-increasing function κ : [0, ∞) → [0, ∞) with∫ ∞
0

κ(x) dx = ∞ so that |∇bρ| ≤ 1
κ(ρ)

.

Typical example of κ is κ(x) = 1
cx

.

Theorem 7. Under the conditions (A.2), (A.3), The closure of (A, C∞
0 (M)) gen-

erates a C0 semigroup in L2(m) and the semigroup is Markovian.
The same is true for (A∗, C∞

0 (M)).
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We denote the associated semigroups by {Tt} and {T ∗
t }.

Theorem 8. Assume (A.2), (A.3) and that there exists a constant c2 so that for
all f ∈ Dom(Ẽ) ∩ L1(m)

‖f‖2+4/μ
2 ≤ c2 Ẽ(f, f) ‖f‖4/μ

1 .

Then, there exists a constant c1 so that for all f ∈ L1

‖Ttf‖∞ ≤ c1t−μ/2‖f‖1, ∀t > 0.(5)

Remark 1. Under the condition (A.2), we have

1

2

∫
M

|∇u|2 dm ≤ Ẽ(u, u).

If the Brownian motion satisfies (5), then the diffusion satisfies (5).
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Case that M is compact

If M is compact, then there exists an invariant probability measure.

• ν: an invariant probability measure

• ν = e−Um

We use the following notations

• ∇: the covariant derivative

• ∇∗: the dual operator of ∇ w.r.t. m

• ∇∗
ν : the dual operator of ∇ w.r.t. ν

• ωb: 1-form corresponding to b

Af =
1

2
�f + bf =

1

2
�f + (∇f, ωb)
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We now change the reference measure to ν. So our Hilbert space changes to
L2(ν).

Set

Gν = {A ; A has an invariant measure ν.}

We set

b̃ =
1

2
(∇U)� + b,

ωb̃ =
1

2
∇U + ωb.
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Theorem 9. A ∈ Gν if and ony if ∇∗
νωb̃ = 0. In this case,

Af = −1

2
∇∗

ν∇f + (ωb̃, ∇f)

and

A∗
νf = −1

2
∇∗

ν∇f − (ωb̃, ∇f).

Further the associated symmetric Dirichlet form is given by

Ẽ(f, h) =
1

2

∫
M

(∇f, ∇h)dν.
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Normal operator

Theorem 10. A is normal if and only if b̃ is a Killing field and [∇U �, b̃] = 0.

A vector field X is called a Killing field if LXg = 0. It is known that X is a Killing
field if and only if ∇X is skew-symmetric. This is also equivalent to

div X = 0,

∇∗∇X + Ric(X) = 0.
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Recall

A =
1

2
�ν + ∇b̃,

A∗ =
1

2
�ν − ∇b̃.

Here

�ν = −∇∗
ν∇ = ∇∗∇ + ∇U · ∇.

Then

AA∗ − A∗A = [∇b̃, �ν ].

Moreover

[�ν , ∇b̃]f = 2(∇ωb̃, ∇2f) + (−∇∗∇ωb̃ + Ric(ωb̃) + [∇U �, b̃]�, ∇f)
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Tt has a density p(t, x, y) with respect to ν. Define

γ = − lim
t→∞

1

t
log sup

x,y∈M
|p(t, x, y) − 1|.

Let λ be the spectral gap:

‖f − ν(f)‖2
ν ≤ λ−1Ẽ(f, f)

Theorem 11. We have

γ ≥ λ.

The equality holds if A is normal.
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Thank you!


