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1. Introduction

Let (X;) be a diffusion on a compact Riemannian manifold M generated by
%A + b. Its has a transition probability density p(t, , y). We can see that
p(t, x,y) converges to an invariant measure v(dx) = p(x)vol(dx).

We are interested in the convergence rrate ~:

1
v = — lim " log sup |p(t, z,y) — p(x)|.

t— o0 x,y

We give a lower bound of ~.

Our main tool is the ultracontractivity of the semigorup.



Ultracontractivity

A semigroup {T;} is called ultracontractive if T;: L' — L°° is bounded for all
t > 0.

It is well-known that the following three conditions are equivalent for a symmetric
Markovian semigroup. Let > 0 be given.

(i) Je; > 0,V f € L1

IT:flloo < ext™ /2| f]l1, Vt>o0.

(i) dez > 0, Vf € Dom(&€) N L°°:
IFIZT4" < ea E(F, £) 1 FI12/-.
(iii) p > 2,3ec3 > 0,Vf € Dom(E):

112, a2y < 3 E(SF5 S

We extend this result for non-symmetric Markovian semigroups.



2. Non-symmetric Markovian semigroups

We give a framework in generall Hilbert space scheme.

H': a Hilbert space
{T:;}: a contraction Cy semigroup
{T;}: the dual semigroup

A, A*: the generators of {73} and {T}*}
A natural bilinear form £ is defined by
E(u,v) = —(Au,v).

We do not assume the sector condition and so we can not use this bilinear form.



We introduce a symmetric bilinear form. For this, we assume the following condition:
(A.1) Dom(2() N Dom(2A*) is dense in Dom(2() and Dom (22*).
Under this condition, we define a symmetric bilinear form € by

E(u,v) = —%{(mu, v) + (u,Av)}, wu,v € Dom(2A) N Dom(A™*).

Proposition 1. Under the condition (A.1), £ is closable and its closure contains
Dom (22) and Dom (2(*).




Covex set preserving property

C: aconvex set of H.

Pu: the shortest
point from u to C

(u — Pu,v — Pu) <0, VYveC.

Theorem 2. If {13} and {T}" } preserve a convex set C, then Pu € Dom(€) for
any u € Dom(€) and we have

E(Pu,u — Pu) > 0.




Markovian semigroup

(M, m): a measure space
H = L?(m): a Hilbert space

{T;}: a Markovian semigroup

We assume that {7} } is also a Markovian semigroup.

Under the assumption (A.1), we can define a symmetric bilinear form € and
£ is a Dirichlet form.



We have the following implications.

1T f|loo < c1t™ /2| f]lz, VE>0
i+ { under (1)

IFIZTY5 < e EC1, F) IIFIVH
T

||f||§u/(“_z) <csE(f,F) (k>2)

(1) (A°f, £z + (Af, 2Af)2 > 0.

(1) holds if 2t is normal, i.e. AA* = A*A.



Moreover

IT:flloo < ext™/2||fll1, Vit € (0,1]
i+ 4 under (2)

IFNZT4" < ea(ECF, F) + NIF12) 157
T

1113, ey < es(ES 1)+ NS (1> 2)

There there exists a constant M > 0 so that for all f € Dom(2(?)

(2) (A= DM)*f, f)2 + (A - M)f,(A— M)f)2 > 0.



10

3. Dirichlet forms satisfying the sector condition

From now on, we assume the sector condition for the Dirichlet form £.

In this case, we have

IT:flloo < ext™ /2| f]l1, Vt € (0,1]

o

IFIZT2 < ea(ECL £) + NF12) NFIEH
M

1F 113, gy < cs(E(S, F) + 713 (1> 2)

Key estimate:

E(Tsf,Tsf) < CLE(F, f) + |1 fII2}



11

Theorem 3. u > 2. Suppose that there exists a constant ¢; so that for any
fel

T2 flloo < ext™ /2| f]l1, Vt € (0,1].

Then, for any i > p, there exists a constant cs > 0 so that for all f € Dom(€)

||f||§,1/(;1—2) < cs(E(f, F) + IIF113)

Key estimate: for s < 1,

(X —R0°F112 < CES ) + I1F112).
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4. Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

m IS an invariant probability measure.

J, msam= ] ram

T:1 =1 and A1 = 0.

The following inequality is called the Poincaré inequality

(3) 1f —m(H)IZ < ATEL L)

where
m(f) = [ f(@)m(de).
M
This inequality is equivalent to

IT:f — m(£)]2 < e || f — m(f)|3
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Theorem 4. u > 0. We consider the following two conditions.

(i) There exists a constant ¢; so that for all f € L1

ITef —m(f)lloo < ert™2||f|l1, VYt € (0,1].

(i) There exists a constant ¢, so that for all f € Dom(&) N L*(m)
If = mOIZH" < e ECF ) IFITH

Then, (ii) is equivalent to (i) with the Poincaré inequality.
Under the condition (ii), there exists a constant ¢4 > 0 so that for all f € L*!

ITef —m(f)lloo < cae™ || fll1, VE>1.

Here X is a constant appears in the Poincaré inequality (3).
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Proof.

| Tt — m|1500 = [(Th — m)(Ti—2 — m)(T1 — m)||1500

IA

Ty — m||l2—oo ||[Tt—2 — Mm||2—2 || T2 — Mm||1—2

IN

Ty — ml2oo € 72 | Ty — m||12 L]

Let us investigate the convergense rete. Set a; = ||T; — m||1— o and define « by

1
(4) v = — lim — log a;.

t—oo ¢

Theorem 5. We have

¥y> A

and the equality holds if 2( is normal. Here X is the spectral gap (3).
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Theorem 6. u > 2. Assume that there exists a constant ¢, so that
1T f — m(f)lloo < ert™2||fll1, VE>0

and the Poincaré inequality holds.
Then, for any i > p, there exists a constant cs > 0 so that for all f € Dom(€)

| f — m(f)”g,a/(ﬁ—z) < ng(fa f)-
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5. Non-symmetric diffusions on Riemannian manifolds

(M, g): a complete connected Riemannian manifold
m = vol: the Riemannian volume

b: a smooth vector field
We consider a diffusion generated by
1

We regard it as an operator in L?(m).

The dual operator is
1
A" = —A\ — b —divb.
2
Associated symmetric bilinear form € is

~ 1 1
E(u,v) = 5/ (Vu, Vv)dm + 5/ uv div bdm.
M M
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We have to show the existence of associated semigroups.

o € M:: any fixed point
d: the Riemannian distance
p(xz) = d(o,x)

We assume the following conditions:

(A.2) divb > 00

(A.3) There exists a non-increasing function «: [0, c0) — [0, co) with
fooo k(x) dr = oo so that |[Vyp| < %,

Typical example of k is k(x) = 1

CX

Theorem 7. Under the conditions (A.2), (A.3), The closure of (A, C3°(M)) gen-
erates a Cy semigroup in L?(m) and the semigroup is Markovian.
The same is true for (A*, C5°(M)).
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We denote the associated semigroups by {73} and {T}*}.

Theorem 8. Assume (A.2), (A.3) and that there exists a constant co so that for
all f € Dom(€) N L' (m)

IFIZTY 2 < e ECF, F) IIFIIV/™.

Then, there exists a constant ¢; so that for all f € L1

() T3 flloo < ext™ /2| f]l1, Vt>O0.

Remark 1. Under the condition (A.2), we have
1 R -
—/ IVu|*dm < E(u,u).
2 Jm

If the Brownian motion satisfies (5), then the diffusion satisfies (5).



Case that M is compact

If M Is compact, then there exists an invariant probability measure.

v. an invariant probability measure

vV —e m
We use the following notations

V. the covariant derivative
V*: the dual operator of V w.r.t. m
V*: the dual operator of V w.r.t. v

wp. 1-form corresponding to b

1 1
Af = JAF+bf = AF + (Vi w)

19
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We now change the reference measure to v. So our Hilbert space changes to
L?(v).

Set
G, = {2; 2A has an invariant measure v.}
We set
~ 1
b= 5(VU)Ij + b,

1
wp = EVU + wp.
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Theorem 9. A € G, if and ony if V¥w; = 0. In this case,

1
Uf = —- ViV + (w5 V)
and
sk 1 sk
1 = —EV,/Vf — (wg, VF).

Further the associated symmetric Dirichlet form is given by

~ 1
Ef.1) =5 [ (V5. Vm)a.
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Normal operator

Theorem 10. 2 is normal if and only if b is a Killing field and [VU*, b] = 0.

A vector field X is called a Killing field if L xg = 0. Itis known that X is a Killing
field if and only if VX is skew-symmetric. This is also equivalent to

div X = 0,
V*VX + Ric(X) = 0.
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Recall

Here
N, = —V;‘jV =V*V+ VU . V.
Then
AUA™ — A™A = [Vg, Ayl
Moreover

(A, Vil f = 2(Vw, V2F) 4+ (= V*Vw; + Ric(wp) + [VUY, b, V f)
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T; has a density p(t, x, y) with respect to v. Define

1

v = — lim ~log sup |p(t,z,y) — 1].
t—oo t x,yeEM

Let A be the spectral gap:

1f —v(HIZ < ATES F)

Theorem 11. We have

The equality holds if 1 is normal.
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Thank you!



