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1. Witten Laplacian in finite dimension

®: a C? function on R, (Hamiltonian)

v: a measure on R defined by

v(dz) = Z e **dx, Z = / e *%dx

a Dirichlet form &:

8(fag) — RN(Vfan)dV(w)a
where V = (015...,0nN), O = d;::k'

the dual of 9; is

0F = —8; + 20;®.



the generator 2( is

(11)  Af =) (97f —20;89;f) = Af —2(VD, V]).
J
2 is essentially self-adjoint in C°(RY).

Witten Laplacian

We now define a Witten Laplacian. Let I: L?(dz) — L?*(v) be
defined by

(1.2) If(z) =e®f.
Lwt X; be an operator defined by

Xj — e_q’ajeq’ — 33' —|— 83(13
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Then the following is commutative:

L%(dz) — L*(v)

le laj
L%(dz) — L%(v)

We use the convention that

* stands for the dual operator in L?(v)

~

stands for the dual operator in L?(dx)

~

X has the following form:

~

—Pax P
X;=—-0;+0;P =e€ 8je .
The operaotr A associated with the generator 2l = —» . 870; is

A=e"Ue®=-> X;X; =0+ 4% — |V

J
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Definition 1. A = A + A® — |V®|? in L?(dx) is called a
Witten Laplacian.

Proposition 1.1. In L?(v), we have

(1.3) [87?963': = U,
(1.4) [0;, 83* = 20,0;9,
(1.5) [3;‘, 83* -

Further, in L?(dx), we have

(1.6) Xi, X;] =0,
(1.7) X, X;] = 20;0,®,
(1.8) X, Xj] =




2. Witten Laplacian acting on differential forms

differential forms

tensor product
t: a p-linear functional, s : a g-linear functional
A tensor product t Q s is defined by

tQ S(V1yeeeyUpyUpiiyeesyUpiq)
= t(V1y. e ey Up)S(Vptiye vy Upig)-
the alternation mapping A,:
1
At(v1y...,0p)) = ol Z sgN 0 L(Vo(1)s + + + » Vo (p))-
T oEG,

0 is called alternating if A,0 = 0.
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o AP(RM)*: the set of all alternating functionals of degree p

e the exterior product 8 A 13 is defined by
(p + q)'

O AN = AO®n), 0¢ /\(RN) , M€ /\(RN)

e Taking an orthonomal basis 0y, ...,0xN in (RYV)*, the followings

form a basin in AP(RY)*

(2.1) Hil/\"'/\g'

lp

e We define an inner product in AP (R™)* so that (2.1) become an

0.1n.b.
o AP(RN) = RN x AP(RN)* is an exterior bundle.

o A differential form: a section of AP(R™).



o T'(AP(RMN)): The set of all sections, identified with AP (RV)*

valued functions.

Creation and anihilation operator

o ext(0): AP(RM)* — APTH(RN)* is defined by
ext(Q)w = 0 A w
o int(0): AP(RN)* — AP~ (RN)* is defined by
int(v)w(viy...yVp_1) = W(V,V1yeeeyVp_1).

e Taking a standard basis {eq,...,en} of RY and its dual basis
{61,...,6N},



we define

a' = int(e;)

(a')* = ext(8?).

They satisty the following commutation relation:

(2.2) [a’,a’]L =0
(2.3) [a’, (a?)"]+ = &
(2.4) [(a®)"; (a”)"]+ = 0

Here [a*, a’]; = a‘d’ + a’a’.
For differential forms, the covariant differentiation V can be defined.

More generaly, the covariant differentiation V is defined for tensor

fields as follows:



e the covariant differentiation V:

Vit = Zei R O;t.

e The dual operator of V:
VY 0°Qt) =) Ot

e the covariant Laplacian

V*VE =) 070t =— > (97 — 20;99))t.

e the exterior differentiation:

d = Zext(@i)(’?i = Z(ai)*a,-.
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the dual operator of d
d* = Z aic‘?;" :

the Hodge-Kodaira Laplacian: —(dd* 4+ d*d)

Theorem 2.1. We have the following identity.

dd* + d*d = V*V + 2 ) (a')*a’9;0;%.

(2¥)
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Unitary equivalent expression

By the isomorphism I: L?(dx) — L?*(v), we can compute

associated operators under the the Lebesgue measure.

D = e %de®,

D = e *d*e®.

and the Hodge-Kodaira operator DD + DD.

Theorem 2.2. We have the following identities:

DD+DD =) X;X;+2) (a')*a’0;0;.

3¥
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3. Spectral gap for Witten Laplacian in a lattice

spin system

A spin system

A spin system is characterized by a Gibbs measure on X = RZ?,

Hamiltonian:

d(x) = Z J(x" — 27)* + Z U(x").

i,jezd 174

inj
Here 2 ~ 7 means that

i =317 = (1 —J1)* + -+ (i —J1)* = 1.
a (Gibbs measure:

v =Z1e 2@ dg, (formal expression)
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e A: a finite region, m: a boundary condition

Prn(z)=> J@E@ -2/ +> UH+2 Y T —7n)
A i€EA A e

e Define a measure v, , on RA by

UNp = Z_le_zq)A’"(w)d:BA

e the Gibbs measure is characterized by the following

Dobrushin-Lanford-Ruelle equation:

EV[ . |CUAc = 'I”Ac] p— VA,’I’](de) ® 577Ac(d(.UAc)
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Theorem 3.1. Assume
U=V +W,V"”">c>0,W is bounded.

Wiaup: supremum of W, Wiy infimum of W satisfy 2(c +
8d.J ) e 2Weuw—Wint) > 16d.7 .

For p > 1, the bottom of the o(dd* 4+ d*d) acting on p-forms is
greater than {2(c 4+ 8d.J)e 2Wsuw=Wint) _ 16d.7 }p and so there

1s no harmonic forms.

Theorem 3.2. Assume U(t) = at* —bt? and vV/3a—b—4dT >

0, then the same conclusinon as Theorem 3.1 holds.
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4. The Hodge-Kodaira decomposition

Theorem 4.1. The following Hodge-Kodaira decomposition holds:
for p = 0,

L?*(v) = { constant functions } @ Ran(d").
and for p > 1,

L*(v; AP(RY)*) = Ran(d) @ Ran(d*)
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