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1. Witten Laplacian in finite dimension

• Φ: a C2 function on R
N , (Hamiltonian)

• ν: a measure on R
N defined by

ν(dx) = Z−1e−2Φdx, Z =

∫
RN

e−2Φdx

• a Dirichlet form E:

E(f, g) =

∫
RN

(∇f, ∇g)dν(x),

where ∇ = (∂1, . . . , ∂N), ∂k = d
dxk

.

• the dual of ∂j is

∂∗
j = −∂j + 2∂jΦ.
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• the generator A is

Af =
∑

j

(∂2
j f − 2∂jΦ∂jf) = �f − 2(∇Φ, ∇f).(1.1)

A is essentially self-adjoint in C∞
0 (RN).

Witten Laplacian

We now define a Witten Laplacian. Let I : L2(dx) −→ L2(ν) be

defined by

If(x) = eΦf.(1.2)

Lwt Xj be an operator defined by

Xj = e−Φ∂je
Φ = ∂j + ∂jΦ.
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Then the following is commutative:

L2(dx)
I−−→ L2(ν)

Xj

⏐⏐�
⏐⏐�∂j

L2(dx)
I−−→ L2(ν)

We use the convention that

• ∗ stands for the dual operator in L2(ν)

• ˜ stands for the dual operator in L2(dx)

X̃j has the following form:

X̃j = −∂j + ∂jΦ = e−Φ∂∗
j eΦ.

The operaotr A associated with the generator A = − ∑
j ∂∗

j ∂j is

A = e−ΦAeΦ = −
∑

j

X̃jXj = � + �Φ − |∇Φ|2.
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Definition 1. A = � + �Φ − |∇Φ|2 in L2(dx) is called a

Witten Laplacian.

Proposition 1.1. In L2(ν), we have

[∂i, ∂j] = 0,(1.3)

[∂i, ∂∗
j ] = 2∂i∂jΦ,(1.4)

[∂∗
i , ∂∗

j ] = 0.(1.5)

Further, in L2(dx), we have

[Xi, Xj] = 0,(1.6)

[Xi, X̃j] = 2∂i∂jΦ,(1.7)

[X̃i, X̃j] = 0.(1.8)
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2. Witten Laplacian acting on differential forms

differential forms

• tensor product

t: a p-linear functional, s : a q-linear functional

A tensor product t ⊗ s is defined by

t ⊗ s(v1, . . . , vp, vp+1, . . . , vp+q)

= t(v1, . . . , vp)s(vp+1, . . . , vp+q).

• the alternation mapping Ap:

At(v1, . . . , vp)) =
1

p!

∑
σ∈Sp

sgn σ t(vσ(1), . . . , vσ(p)).

• θ is called alternating if Apθ = θ.
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• ∧p(RN)∗: the set of all alternating functionals of degree p

• the exterior product θ ∧ η is defined by

θ ∧ η =
(p + q)!

p!q!
A(θ ⊗ η), θ ∈

p∧
(RN)∗, η ∈

q∧
(RN)∗

• Taking an orthonomal basis θ1, . . . , θN in (RN)∗, the followings

form a basin in
∧p(RN)∗

θi1 ∧ · · · ∧ θip
(2.1)

• We define an inner product in
∧p(RN)∗ so that (2.1) become an

o.n.b.

• Ap(RN) = R
N × ∧p(RN)∗ is an exterior bundle.

• A differential form: a section of Ap(RN).
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• Γ(Ap(RN)): The set of all sections, identified with
∧p(RN)∗

valued functions.

Creation and anihilation operator

• ext(θ) :
∧p(RN)∗ −→ ∧p+1(RN)∗ is defined by

ext(θ)ω = θ ∧ ω

• int(θ) :
∧p(RN)∗ −→ ∧p−1(RN)∗ is defined by

int(v)ω(v1, . . . , vp−1) = ω(v, v1, . . . , vp−1).

• Taking a standard basis {e1, . . . , eN} of R
N and its dual basis

{θ1, . . . , θN},
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we define

ai = int(ei)

(ai)∗ = ext(θi).

They satisfy the following commutation relation:

[ai, aj]+ = 0(2.2)

[ai, (aj)∗]+ = δij(2.3)

[(ai)∗, (aj)∗]+ = 0(2.4)

Here [ai, aj]+ = aiaj + ajai.

For differential forms, the covariant differentiation ∇ can be defined.

More generaly, the covariant differentiation ∇ is defined for tensor

fields as follows:
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• the covariant differentiation ∇:

∇t =
∑

i

θi ⊗ ∂it.

• The dual operator of ∇:

∇∗(
∑

i

θi ⊗ ti) =
∑

i

∂∗
i ti.

• the covariant Laplacian

∇∗∇t =
∑

i

∂∗
i ∂it = −

∑
i

(∂2
i − 2∂iΦ∂i)t.

• the exterior differentiation:

d =
∑

i

ext(θi)∂i =
∑

i

(ai)∗∂i.
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• the dual operator of d

d∗ =
∑

i

ai∂∗
i .

• the Hodge-Kodaira Laplacian: −(dd∗ + d∗d)

Theorem 2.1. We have the following identity.

dd∗ + d∗d = ∇∗∇ + 2
∑
i,j

(ai)∗aj∂i∂jΦ.

11



Unitary equivalent expression

By the isomorphism I : L2(dx) −→ L2(ν), we can compute

associated operators under the the Lebesgue measure.

D = e−ΦdeΦ,

D̃ = e−Φd∗eΦ.

and the Hodge-Kodaira operator D̃D + DD̃.

Theorem 2.2. We have the following identities:

D̃D + DD̃ =
∑

i

X̃iXi + 2
∑
i,j

(ai)∗aj∂i∂jΦ.
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3. Spectral gap for Witten Laplacian in a lattice

spin system

A spin system

A spin system is characterized by a Gibbs measure on X = R
Z

d

.

• Hamiltonian:

Φ(x) =
∑

i,j∈Zd

i∼j

J (xi − xj)2 +
∑
i∈Zd

U(xi).

Here i ∼ j means that

|i − j|2 = (i1 − j1)
2 + · · · + (i1 − j1)

2 = 1.

• a Gibbs measure:

ν = Z−1e−2Φ(x)dx, (formal expression)
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• Λ: a finite region, η: a boundary condition

ΦΛ,η(x) =
∑
i,j∈Λ
i∼j

J (xi − xj)2 +
∑
i∈Λ

U(xi) + 2
∑

i∈Λ,j∈Λc

i∼j

J (xi − ηj)2

• Define a measure νΛ,η on R
Λ by

νΛ,η = Z−1e−2ΦΛ,η(x)dxΛ

• the Gibbs measure is characterized by the following

Dobrushin-Lanford-Ruelle equation:

Eν[ · |ωΛc = ηΛc] = νΛ,η(dωΛ) ⊗ δηΛc(dωΛc)
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Theorem 3.1. Assume

• U = V + W , V ′′ ≥ c > 0, W is bounded.

• Wsup: supremum of W , Winf : infimum of W satisfy 2(c +

8dJ )e−2(Wsup−Winf ) > 16dJ .

For p ≥ 1, the bottom of the σ(dd∗ + d∗d) acting on p-forms is

greater than {2(c + 8dJ )e−2(Wsup−Winf ) − 16dJ }p and so there

is no harmonic forms.

Theorem 3.2. Assume U(t) = at4 −bt2 and
√

3a−b−4dJ >

0, then the same conclusinon as Theorem 3.1 holds.
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4. The Hodge-Kodaira decomposition

Theorem 4.1. The following Hodge-Kodaira decomposition holds:

for p = 0,

L2(ν) = { constant functions } ⊕ Ran(d∗).

and for p ≥ 1,

L2(ν;
∧p(RN)∗) = Ran(d) ⊕ Ran(d∗)
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