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1. Essential self-adjointness

(B,H, μ): an abstract Wiener space

• B: a Banach space

• H: a Hilbert space ↪→ B

• μ: the Wiener measure with

∫
B

e
√−1〈x,ϕ〉μ(dx) = exp

{
−1

2
|ϕ|2H∗

}
,

ϕ ∈ B∗ ⊂ H∗.
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FC∞
0 : f : B → R such that

f(x) = F (〈x, ϕ1〉, . . . , 〈x, ϕn〉),
F ∈ C∞

0 (Rn), ϕ1, . . . , ϕn ∈ B∗.

L− V : Schrödinger operator on L2(μ)

L: the Ornstein-Uhlenbeck operator

V : a scalar potential

Question:

Is L− V essentially self-adjoin on FC∞
0 ?
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‖ ‖2: L
2-norm

V+ := max{V, 0} (the positive part)

V− := max{−V, 0} (the negative part)

Proposition 1.1. Assume

• V+ ∈ L2+ =
⋃
p>2L

p,

• there exist 0 < a < 1, b > 0 such that

‖V−f‖2 ≤ a‖Lf‖2 + b‖f‖2.

Then L− V is essentially selfadjoint on FC∞
0 .
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What is sufficient for

‖V−f‖2 ≤ a‖Lf‖2 + b‖f‖2 ?

(Defective) logarithmic Sobolev inequality∫
B

|f |2 log(|f |/‖f‖2) dμ ≤ αE(f, f) + β‖f‖2
2.

• (B, μ): a probability space

• E: a Dirichlet form

• L: the associated generator
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We assume

• E admits a square field operator Γ.

• E has a local property.

Hence E has the following form

E(f, g) =

∫
B

Γ(f, g) dμ(1.1)

and Γ has the derivation property.

E.g. On an abstract Wiener space:

• Γ(f, g) = ∇f · ∇g, ∇: the gradient operator
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Theorem 1.2. Assume∫
B

|f |2 log(|f |/‖f‖2) dμ ≤ αE(f, f) + β‖f‖2
2.

Then, for any ε > 0, there exist positive constants K1,

K2 such that∫
B

f2log2
+ f dμ

≤ α2(1 + ε)‖Lf‖2
2 +K1 +K2‖f‖6

2.

cf. Feissner(1975), Bakry-Meyer(1982)
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Hausdorff-Young inequality

Set

Φ(x) = x log2
+ x, ψ−1(x) = Φ′(x),

ψ(x) = e
√
x+1−1.

Define the complimentary function

Ψ(x) =

∫ x

0
ψ(y)dy.

Hausdorff-Young inequality:

xy ≤ Φ(x) + Ψ(y) ≤ x log2
+ x+ 2

√
ye

√
y
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Theorem 1.3. Assume the logarithmic inequality∫
B

|f |2 log(|f |/‖f‖2) dμ ≤ αE(f, f) + β‖f‖2
2

and v ≥ 0,

ev ∈ L2α+ =
⋃
p>2α

Lp.

Then, there exist constants 0 < a < 1 and b ≥ 0 such

that

‖vf‖2 ≤ a‖Lf‖2 + b‖f‖2.(1.2)
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We now return to an abstract Wiener space.

Gross’ logarithmic Sobolev inequality∫
B

|f |2 log(|f |/‖f‖2) dμ ≤
∫
B

|∇f |2 dμ

⇒
∫
B

f2 log2
+ f dμ ≤ (1 + ε)‖Lf‖2

2 +K1 +K2‖f‖6
2.

Theorem 1.4. Assume

• V+, eV− ∈ L2+.

Then L− V is essentially self-adjoint on FC∞
0 .

cf. Segal(1969), Glimm & Jaffe(1970), Simon(1973),

Simon & Høegh-Krohn(1972)
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2. Domain of Schrödinger operator

We consider a Schrödinger operator A = L− V +W

on an abstract Wiener space (B,H,μ).

Basic assumptions

(A.1) V ≥ 1, V ∈ L2+.

(A.2) W ≥ 0 and there exists a constant 0 < α < 1

such that eW ∈ L2/α.

⇒ A = L− V +W is essentially self-adjoint on FC∞
0
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Aim : To determine the domain,

i.e., Dom(A) = Dom(L) ∩ Dom(V )

Main tools

• The Lax-Milgram theorem.

• The intertwining property, i.e.,

√
V A = A

√
V .
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How to define an operator A?

We define a vector field b by

b =
∇V
2V

=
1

2
∇ log V.

and a bilinear form EA by

EA(f, g) = (∇f,∇g) + (b · ∇f, g)
− (f, b · ∇g) + ((V −W − |b|2)f, g).

By a formal computation, the associated generator is

given by

A = L− 2b · ∇ + (∇∗b− V +W + |b|2).(2.1)
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Decompose EA as

EA(f, g) = ÊA(f, g)
������������

symmetric

+ ĚA(f, g)
������������

skew-symmetric
where

ÊA(f, g) = (∇f,∇g) + ((V −W − |b|2)f, g),
ĚA(f, g) = (b · ∇f, g) − (f, b · ∇g).

Moreover, we set

ÊA−λ(f, g) = ÊA(f, g) + λ(f, g).

The bilinear form associated to L− V is

EL−V (f, g) = (∇f,∇g) + (V f, g).
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Clearly

Dom(EL−V ) = Dom(∇) ∩ Dom(
√
V ).

We will show that Dom(ÊA) = Dom(EL−V ).

Additional assumptions

We assume either

eW+|b|2 ∈ L2/α(B.1)

or there exists a constant C > 0 such that

|b|2 ≤ αV + C.(B.2)
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Proposition 2.1. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then there exists a constant β such that

(W + |b|2f, f) ≤ α
��

appeared in (A.2)

EL−V (f, f) + β(f, f)

and hence

(1 − α)EL−V (f, f) ≤ ÊA(f, f) + β(f, f)

≤ (1 + α)EL−V (f, f) + β(f, f).

Therefore

Dom(ÊA) = Dom(EL−V ) = Dom(∇) ∩ Dom(
√
V ).
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Estimate of ĚA

Proposition 2.2. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then, for sufficiently large λ, there exists a

constant K > 0 such that

|ĚA(f, g)| ≤ KÊA−λ(f, f)1/2ÊA−λ(g, g)1/2.

Therefore EA satisfies the sector condition.

EA = ÊA + ĚA is a closed bilinear form.
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Intertwining property

Instead of
√
V A = A

√
V ,

we show

EA(f,
√
V g) = EA(

√
V f, g).(2.2)

Proposition 2.3. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then (2.2) holds for f ,g ∈ FC∞
0 . Moreover,

we have, for f ∈ Dom(A), g ∈ Dom(A∗),

(Af,
√
V g) = (

√
V f,A∗g).(2.3)
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Domain of the Schrödinger operator

Theorem 2.4. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then Dom(A) = Dom(L) ∩ Dom(V ).

Moreover, for sufficiently large λ, there exist positive

constants K1, K2 such that

K1‖(A − λ)f‖2 ≤ ‖Lf‖2 + ‖V f‖2

≤ K2‖(A − λ)f‖2.

Remark. K1, K2 depend only on constants in (A.1),

(A.2), (B1), (B.2).
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3. Spectral gap of Schrödinger operator

A Schrödinger operator A = L− V +W on an abstract

Wiener space (B,H, μ).

σ(A): the spectrum of A = L− V +W .

Bounded potential

Theorem 3.1. Assume V is bounded and W = 0.

Then l = supσ(A) is a point spectrum of multiplicity

one and the associated eigenfunction can be chosen to be

positive. Moreover, the spectrum is discrete on (l−1, l],

i.e., it consists of point spectrums of finite multiplicity.
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General potential

Theorem 3.2. Assume (A.1), (A.2) and one of (B.1)

and (B.2). Then l = supσ(A) is a point spectrum of

multiplicity one and the associated eigenfunction can be

chosen to be positive. Moreover, the spectrum is discrete

on (l− 1, l], i.e., it consists of point spectrums of finite

multiplicity.
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Proof of Theorem 3.1

Approximation method

{ϕi}∞
i=1 ⊆ B∗: a c.o.n.s of H∗.

Fn := σ(ϕ1, ϕ2, . . . , ϕn).

Vn = E[V |Fn].

⇒
{
σ(L− Vn) is discrete on (λ(Vn) − 1, λ(Vn)]

where λ(Vn) = supσ(L− Vn).
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We set

G(n) = (λ− L+ Vn)
−1,

G = (λ− L+ V )−1.

claim: G(n) → G in norm sense

G−G(n) = G(n)(V − Vn)G.

We show ‖(V − Vn)G‖op → 0.

By the logarithmic Sobolev inequality and the

Hausdorff-Young inequality xy ≤ x log x− x+ ey
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‖(V − Vn)Gf‖2
2

= E[(V − Vn)
2(Gf)2]

=
1

N
E[N(V − Vn)

2(Gf)2]

≤ 1

N
E[(Gf)2 log(Gf)2 − (Gf)2 + eN(V−Vn)2]

≤ 1

N
{2E[|∇Gf |2] + ‖Gf‖2

2 log ‖Gf‖2
2

− ‖Gf‖2
2 + E[eN(V−Vn)2]}.
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Now replacing f with f/‖Gf‖2,

‖(V − Vn)Gf‖2
2

≤ 1

N
{2E[|∇Gf |2] + E[eN(V−Vn)2 − 1]‖Gf‖2

2}

≤ 1

N
{E[f2] + E[(Gf)2] + E[|V |(Gf)2]

+ E[eN(V−Vn)2 − 1]‖f‖2
2}

≤ 1

N
{(2 + ‖V ‖∞)‖f‖2

2 + E[eN(V−Vn)2 − 1]‖f‖2
2}.

Hence

‖(V − Vn)G‖2
op ≤ 1

N
{2 + ‖V ‖∞ + E[eN(V−Vn)2 − 1]}
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Now letting n → ∞ and then letting N → ∞, we have

lim
n→∞ ‖(V − Vn)G‖op = 0.

This completes the proof.
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