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1. Essential self-adjointness

(B, H, u): an abstract Wiener space

B: a Banach space
H: a Hilbert space «— B

p: the Wiener measure with

1
/ e\/—_1<w,so>u(d:n) — exp{—§|go|il*},
B

p € B* C H".
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FC3°: f: B — Rsuch that

.f(w) — F(<m7 901>9 JEICN <w7 §0n>)7
F e CP(R"), p1,...,0n € B”.

L — V: Schrodinger operator on L?(p)

L: the Ornstein-Uhlenbeck operator

V. a scalar potential

Question:
Is L — V essentially self-adjoin on FC3° 7
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| ||2: L*norm

V. := max{V,0} (the positive part)

V_ := max{—V, 0} (the negative part)

Proposition 1.1. Assume

Vi € L*T =, L?,

p>2

there exist 0 < a < 1, b > 0 such that

[V-_Ffll2 < al|lLf|2

bl| fl2-

Then L — V is essentially selfadjoint on FCgF°.
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What is sufficient for

IV-fll2 < allLf]lz + bl[fll2 7

(Defective) logarithmic Sobolev inequality

/B 72 log(1£1/ 11 fll2) die < «E(F, ) + B FII2-

(B, i): a probability space
E: a Dirichlet form

L: the associated generator
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We assume

E admits a square field operator I'.

£ has a local property.

Hence £ has the following form

(1.1) E(f,9) =/Bl“(f,g) du

and I' has the derivation property.

E.g. On an abstract Wiener space:

I'(f,g) = Vf-Vg, V: the gradient operator
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Theorem 1.2. Assume

/B 72 log(1£1/11£]l2) di < a€(F, £) + BIFI2.

Then, for any € > 0, there exist positive constants K7,
K5 such that

| #1082 £ ap
< a*(1+ )| LS5+ K + K fl5-

cf. Feissner(1975), Bakry-Meyer(1982)
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Hausdorff-Young inequality

Set
@(z) = zlog’ w, ¥ (z) = ¥(a),

$() = "I,
Define the complimentary tfunction
V(@)= [ bu)dy.
0

Hausdorfi-Young inequality:

zy < B(z) + U(y) < zlog? = + 2,/ge?
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Theorem 1.3. Assume the logarithmic inequality

/B 7P 1og(1£1/11f1l2) du < a€(f, £) + BIIF |2

and v > 0,

e’ € L[22F = U LP.

pP>2¢x

Then, there exist constants 0 < a < 1 and b > 0 such
that

(1.2) [vfllz < allLf]l2 + bl £]]2-
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We now return to an abstract Wiener space.

Gross’ logarithmic Sobolev inequality

[ 1#10851/15 1) dn < [ 1951 g
B B

:>/f210gifd“§ (14 e)||Lfl5 + K1+ K2 fll5-
B

Theorem 1.4. Assume

V_|_, GV_ — L2+.

Then L — V is essentially self-adjoint on FCg°.

cf. Segal(1969), Glimm & Jaffe(1970), Simon(1973),
Simon & Hgegh-Krohn(1972)




2. Domain of Schrodinger operator

We consider a Schrodinger operator 2l = L — V + W
on an abstract Wiener space (B, H, u).

Basic assumptions

(A1) V >1,V € L**.

(A.2) W > 0 and there exists a constant 0 < a < 1
such that e" € L%/

= A = L — V + W is essentially self-adjoint on FCg°
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Aim: To determine the domain,

i.e., Dom(2() = Dom(L) N Dom(V)

Main tools

The Lax-Milgram theorem.

The intertwining property, i.e.,

VVA = AVV.
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How to define an operator A?

We define a vector field b by

vV 1
——— = _-VliogV.
oV 2

and a bilinear form €4 by

‘SA(.fag) — (Vfavg) + (b'vag)
o (.fab’Vg) + ((V_ W — |b|2)fvg)°

By a formal computation, the associated generator is

given by
21) A=L—-2b-V+(Vb—V +W + |b]?).
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Decompose €4 as

Ea(f,9) = €a(f,9) + Ealf,9)

symmetric  skew-symmetric
where

éA(fv g) — (Vfa Vg) =+ ((V - W — |b|2)f9 g)v
Ea(f,9)=((b-Vf,g)— (f,b-Vg).
Moreover, we set

éA—A(fa g) — éA(fv g) + )‘(fv g)'

The bilinear form associated to L — V is

gL—V(fvg) — (Vfa Vg) + (Vfag)'
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Clearly
Dom(€;_yv) = Dom(V) N Dom(vV).
We will show that Dom(€4) = Dom(&r_v).

Additional assumptions

We assume either
(B.1) eWHIbF ¢ 2/
or there exists a constant C > 0 such that

(B.2) b2 < aV + C.
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Proposition 2.1. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then there exists a constant 3 such that

(W +|b]°f, f) < a&v (S, f) + B(f, f)
appeared in (A.2)

and hence

(1_a)£L—V(f7f) SéA(faf)+/B(faf)
S (1‘|‘a)8L—V(f9f)‘|‘5(fa.f)

Theretore

Dom(€4) = Dom(€;_y) = Dom(V) N Dom(VV).

10




Estimate of £4

Proposition 2.2. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then, for sufficiently large A, there exists a
constant K > 0 such that

Ea(F,9)| < KEA (S, £)?Ea-x(g,9)">.

Therefore € 4 satisfies the sector condition.

Ex = £ A + €4 is a closed bilinear form.
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Intertwining property

Instead of
vVVA=AVYV,

we show

(2.2) Ex(f,VVg) = Ea(VV £,9).

Proposition 2.3. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then (2.2) holds for f,g € FCg°. Moreover,
we have, for f € Dom(2(), g € Dom(A*),

(2.3) (Af,VVg) = (VVf, A*g).
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Domain of the Schrodinger operator

Theorem 2.4. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then Dom(2() = Dom(L) N Dom(V).
Moreover, for sufficiently large A, there exist positive
constants K7, K5 such that

KA || = A fllz < [[LFllz + [V £z
< Kof[ (A = A) fll2-

Remark. K, K> depend only on constants in (A.1),
(A.2), (B1), (B.2).

19



3. Spectral gap of Schrodinger operator

A Schrodinger operator 2l = L — V 4+ W on an abstract
Wiener space (B, H, ).

o(21): the spectrum of A =L —V + W.
Bounded potential

Theorem 3.1. Assume V is bounded and W = 0.
Then I = sup o () is a point spectrum of multiplicity
one and the associated eigenfunction can be chosen to be
positive. Moreover, the spectrum is discrete on (I—1,1],

1.e., it consists of point spectrums of finite multiplicity:.
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General potential

Theorem 3.2. Assume (A.1), (A.2) and one of (B.1)
and (B.2). Then I = sup o (2A) is a point spectrum of
multiplicity one and the associated eigenfunction can be
chosen to be positive. Moreover, the spectrum is discrete

on (I — 1,1], i.e., it consists of point spectrums of finite

multiplicity.
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Proof of Theorem 3.1

Approximation method

{pite, € B*: aconsof H*
Fn = 0(P1;P2+++3Pn).

V., = E[V|F,].

[ o(L —V,) is discrete on (A(V;,) — 1, A\(V},)]

where A(V,,) = supo(L — V,,).

= 4

\
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We set

G =\N-L+V,),
G=M\N—-—L+V)

claim: G™ — G in norm sense

G -G =Gc"(V -V,)G.

We show ||[(V — V,,)G||op — O.
By the logarithmic Sobolev inequality and the
Hausdorfl-Young inequality xy < xlogx — x + €Y
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= E[(V = V.)*(Gf)]

= _E[N(V - V,)*(Gf)?)

|—t2|—k

E[(Gf)*log(Gf)? — (Gf)* + N V=V

{2E[|[VGf|*] + |G f||3 log || GS||3
— |G£112 + E[eNV V).
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Now replacing f with f/||Gf||2,

< C(2EIVGP] + BNV —1]|GF3)
< ABIf) + BUGH] + EIVI(GF)]

+ B[NV — 1] £113}

1 2
< L HIVIIFIZ + Ble™ " — 1]l £115}-

Hence

1 2
[(V = Va)GI2, < A2 + V[l + B[NV — 1}

op —
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Now letting m — oo and then letting N — 00, we have
lim |[(V — V,)G||lop = 0.

This completes the proof.
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