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1. Introduction

{(X3), P, } : adiffusion on a state space D.

¢ : the explosion time.
The diffusion conditioned to be non-explosive is defined as follows:

1. If P,[¢ = oo] > 0,

2. 1f P,[( = oo] =0,

(1.2) lim P,[-|¢ > T).

T—oo

Thelimit (1.1) iscalled a surviving diffusion.



We discuss the following issues:

1. When does the surviving diffusion exist?
2. Characterizasion of the surviving diffusion.

Strategy:
Since

e Px, (¢ > T — ]
P.[¢ > T] ’

our problem is reduce to show the existence of the limit

(1.2) M, = lim HenBxlc> T 1

and to show that (M) isamartingale.
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To do this, we show that there exist a ¢ with ——£ L = Ay 0 that

PC>T—1]  oy)e

1.3 lim

&9 MRS T )
and

(1.4) M = 1{c>t}90(Xt)e>‘t/90(w)-

The surviving diffusion is given by

p(Xy)eM

E - 1=E,| -1
[ ] {{>t} (,0(:13)




2. Onedimensional diffusion processes

D= (1_,1;).

{(X3), P} : a(minimal) diffusion on D (Dirichlet boundary condition)
s(x) : the sclae function

dm(x) : the speed measure (standard measure)

¢ : theexplosion time

d d
. the generator
dm ds
df d
Dirichlet form E(f,g) = —f—gds

p dsds



From dm, we define aright continuous non-decreasing function m as

m(y) — m(x) = / dm

(z,y]

Takeany a € (1-,1) and define

S(x) = /( {m(y) — m(@)}ds(y) = / {s(x) — s(u)}dm(u),

(a,z]

M(x) = 1s(y) — s(a)}dm(y) = {m(z) — m(u)}ds(u).

(a,z] (a,z]
S(l+) < oo =14 iscaled exit.
S(l+) = oo = [, iscaled non-exit.
M(l+) < oo = 14 iscaled entrance.

M (l+) = oo = 1, iscaled non-entrance.
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(X:) isconservative < S(l+) = occand S(I-) = oo

h-transfor mation

Let v be a A-harmonic function, i.e.,

d d
v = Av.
dm ds
Define dm = v?dm, ds = 2. Then
2.1 (L X)) = =
| v\ dm ds T dmds?

isthe h-transform of -£-£ — X,

d d
dim d3 ds



3. Thecase P.[( = o] > 0

Theorem 3.1. Let (X;) be adiffusion process on (0, 1) with a natural
scale s(x) = a and aspeed measuredm. Assumethat O isexitandl is
non-exit. Then P,[¢ = oo] > 0 and the associated surviving diffusion
has the scale —1 /= and the speed measure z*dm.




4, Exit - exit boundaries
D = (0,1), the natural scale s(x) = x, the speed measure dm.
1/2
/ xdm(x) < oo.
0

/ (I — x)dm(x) < oo.
1/2

We assumet that there exists+y > 0 and M so that

y
/ rdm(x) < My".
0

l
(I —x)dm(x) < My".
l—y



In this case, the Green operator is of trace class. We define A\ > O tobea
lowest eigenvalue of ——2--L and ¢, be its eigenfunction. ¢ has the
following asymptotics:

po(x) ~cix asx — 0

po(x) ~ ca(l —x) sz — L.
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Under these conditions,

Theorem 4.1.

T—o0

In particular,

. PC>T -t
lim

Aot P0(Y)
900(113)

The surviving diffusion exists and it has a scale ds

speed measure din = pidm.

lim e P,[¢ > T] = po(x) /D%(y)dm(y)-

ds/p?¢ and a
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5. (exit & entrance) - (non-exit & non-entrance)
boundaries

D = (0, 00), the natural scale s(x) = x, the speed measure dm. We
assume
(5.1) m(z) ~ /P 1K (zx) asx — oo

where0 < p < 1 and K isaslowly varying function. Define aslowly
varying function L so that the function y — y* L(y) isan inverse of the
functiony — y'/* K (y).
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Under these conditions,

Theorem 5.1.

P[¢ > t] ~ 2{p(l — )T+ p) "t L(t)™" ast — oo.

In particular,
. Py[¢>T —{ Yy
lim = —.
T—oo P, > T] x
The surviving diffusion exists and it hasa scade s(x) = —1/x and a

speed measure dim = x*dm.
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6. exit - (non-exit & entrance) boundaries

D = (0, 00), the natural scale s(x) = x, the speed measure dm. From
the boundary condition,

/OOO rdm(x) < oo.

We assumet that there exists~ > 0 and M so that
Yy
/ xdm(x) < My”’, y > 0.
0

In this case, the Green operator is of trace class. We define Ay > 0 tobea
lowest eigenvalue of ——%--2 and ¢, be its eigenfunction.

po(x) ~cpx asx — 0
po(x) ~ cy asx — oo.
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Under these conditions,

Theorem 6.1.

lim e™'P;[¢ > T] = po(2) /D po(y)dm(y).
In particular,
(6.1) lim € >T =t oY)

T—oo  Pi[¢ > T po(x)

The surviving diffusion exists and it has a scale d§ = ds/¢; and a
speed measure din = pidm.
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/. Examples

exploding © surviving Bessel diffusions on (0, co)

diffusion : diffusion d d 1d2 d—14d

dmds 2dx? 2 dx

Ot ----->¢4 d = dimension
d— 2

V= ———

2
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exploding surviving
diffusion : diffusion

Interval curvature
length

Brownian motion on an interval

(0,1)
7T
ground state : sin T:B

The radial motion of the Brownian
motion on a 3-dimensional sphere

1
radial part of —A :

1 d
———I—\/Ecot\/_ac—

2 da?
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8. Proof of Theorem 4.1

Since the Green operator 1s compact, the transition function has the
following expression

@)

p(t,z,y) = Z e 'pi(x)pi(y)

Here \; are eigenvalues of —-% £ and ¢; are eigenfunctions. The
following estimate is crucial: thereexist C > 0 and N so that

/Ol [pi(y)|dm(z) < C’)\é\’{/ol %(y)zdm(w)}l/z
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O. Invariant function

p(t, x, dy) : atransition probability
o Iscaled ainvariant function if
p(x) = /DSO(y)p(t,w,dy), vt > 0.
It IS easy to see
w Isinvariant < h-transform by ¢ Is conservative.

By the argument before, we can show that any one-dimensional (minimal)
diffusion has ainvariant function if the lowest eigenvalue is 0.
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| eft right D eigenvalue | h-transform
exit | exit
casel (0,1) Ao >0 po(x)
non-exit )
' 0, oo
case 2 exit — (0,00) >0 | s(x) ==
— | \((), 1)
non-entrance
non-exit
exit —
case 3 (0, 00) Ao >0 po(x)
— —

entrance
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Thanks!
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