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L= {(LK,bK)} A finite set of pairs
L. (relatively spin) Lagrangian submanifolds

b, € H* (L;Ay) weak bounding cochains

Q A cyclic unital filtered A inifinity category

L set of objects

& ((L,b),(L"\b"))=H(LNL";A,)

set of morphisms

F, Oh, Ohta, Ono (FOOO) (+ Abouzaid FOOO (AFO0OQ))



HH (Q,Q) Hochshild cohomology

HH* (Q,Q) Hochshild homology

HC (g) Cyclic cohomology

HC, (Q) Cyclic homology

q:H(X)—> HH (2. <)
p:HH.(Z . 2&)— H(X)

p, :HC.(&Z)— H(X)

Open closed maps FOOO, AFOOO




Gromov-Witten invariant

GW,,:H(X;A)® — A

Counting genus g pseudo-holomorphic maps intersecting with cycles in X

¢:2 — X; X:Riemann surface, ¢ :holomorphic

Q, Q,

Q. :cycleson X

Qs



Problem to study

x, cHH.(Z, &) . X, e€HC. (L)

Compute

in terms of the structures of Q



A_ structure.
B.< ((L,b),(L',b")
= @D (@ ((Lyb)(L,5) @ @ ((Ly by ) (L))

(Lk ’bk ):(L‘,b ’)
(Ll ’bl ), izl,. . .,k_l

m, : B2 ((L,b),(L',b")) = & ((L,b),(L',b"))

Aoo relation

ki
0= 2 E‘imk1 (xl,...,mk2 (xl.,...,kaz_l),...,xk)






Inner product and cyclicity

& ((L,b),(L'\b"))=H(LNL";A,)
( Y:2((L,b),(L",b"))® Z((L',b"),(L,b))— A

is (up to sign) a Poincare duality on H(L M L';AO)

<mk(x1,. ..,xk),x0> = -|_-<mk(x0 , X, 5 ..,xk_l),xk>

cyclicity



Problem to study

x,cHH.(2Z. <) x, € HC,(2)

Compute
GW,, (p(Xl),. °-aP(Xz))

in terms of the structures of Q

_T

m, : B2 ((L,b),(L',b")) — & ((L,b),(L',b")

( Y: 2 ((L,b),(L"\b"))® Z((L',b"),(L,b))— A




is determined by the structures of 104

in case g=0, ¢{=73

In general we need extra information.

| will explain those extra information below.

It is Lagrangian Floer theory of higher genus (loop).
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dIBL structure (differential involutive bi-Lie structure) on B

3 kinds of operations

d:B—B differential dd =0
{ }'B®B—>B Lie bracket Jacobi
H{:B—>B®B - co Lie Bracket co Jacobi

{ } is a derivation

}{ is a coderivation with respectto d



O { } is compatible with }{ yai= Zal,ca2,c
Zial,c {a, ..b}*a, {a, b}

+Y tb, {b,..a} b, {b,..a}
+}{a,b}{=0

b a b

N

Q Involutive
Z{al,caZ,c} — O



IBL infinity structure = its homotopy everything analogue

operations :

> EB—EB EB=B® --®B/S

Homotopy theory of IBL infinity structure is built (Cielibak-Fukaya-Latschev)



(C’< > ’d) chain complex with inner product

k
B = (chcc) (dual cyclic bar complex)  has a structure of dIBL algebra
‘ (cf. Cielibak-F-Latschev)

(RS (BCyCC) , ¢il---ik _ gp(eil et €, basisof C

g"=(c’e)  (g,)=(g")"



Q {QD l//}ll"'lk+k'_2 — 2+g ngl°"la—1Sla+b+1'”ic l//la"'la+bflc"'lk+k'—2
’ — Ot

1}

Q }¢{i1 gl — Eigstq)ia"’ia—15jb°'°jb—1f

19



There is a category version.

%k
Dual cyclic bar complex B = (chcg) has dIBL structure

Remark: This structure does NOT (yet) use Aoo operations m,
except the classical part of m,, that is the usual boundary operator.



Cyclic Aoo stucture (operations m,) on (&

%k
‘%0 eB= (chcg) satisfying Maurer-Cartan equation

0y =0

b

1
d%o +5{%0,%

This is induced by a holomorphic DISK
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C/Z/f’o eB= (chcg) is given by

oKXy 5ee s Xy ) = <mk_1(x1,

| 1
d%0+5{%0,%0}20

v

A_  relationamong M1,

...,xk_l),xk>
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d v,

Theorem (Lagrangian Floer theory of arbitrary genus) (to be written up)

There exists «%,g S EgB such that BV master equation B= (chcg)

g 2 2 {%1 817 52 82 }OUt+}%—1,g {+{‘%+1,g—l}int =0

is satisfied.

The gauge equivalence class of {%g} is well-defined.
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Remark added after talks

After this talk M. Kontsevitch commented that we may not need all of
Y Y Y
A, ,€EB butonly W,

that is enough to determine the way how "Hodge to de Rham degeneration’
occurs.

This point is related to K. Costello’s paper
The partition function of a topological field theory, J. Topol. 2 (2009), no. 4, 779--822.

| talked with Kontsevitch, Soibelman, Katzarkov, Costello, Abousaid during Miami
conference 2012 January.

They mostly persuaded me.
However it is still necessary to study more to claim that stronger statement as a Theorem.
Anyway the theorem in the last page should be written up before really established.



Note: { }:B®B—>B induces

{ } :EB®EB-SE

n+m-—1

B and

{ +.EB—>FE B

{xln.xn’ylu.ym}out :Zi{xi’yj}-xl"'.)/(\:l-"’xny1“-
ij

{x-x )} :zi{xi,xj}xl...;ci...xj...yn
i



}{ZB —>B&®B induces

W{:E_B—>EB

}Xl...xn{:Eﬂl...}xi{...fcj...yn



W, , € (EKB)*

is obtained from moduli space of genus g
bordered Riemann surface with { boundary components
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d% + ~ Z Z {%1 .81 "% 05,85 }out+}% l,g {+{J l+1,g— 1}1nt =0

61 +€2—£+1 gl +g2

oo 5

}%15;{ {

r+1,g— 1}1nt
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Remark:

(1): In case the target space M is a point, a kind of this theorem appeared
in papers by various people including Baranikov, Costello Voronov, etc. (In
Physics there is much older work by Zwieback.)

(2): Theorem itself is also expected to hold by various people including F for
a long time.

(3): The most difficult part of the proof is transversality. It becomes
possible by recent progress on the understanding of transversality
issues. It works so far only over IR . It also requires machinery from
homological algebra of IBL infinity structure to work out the

problem related to take projective limit, in the same way as A infinity case
of [FOOO]. This homological algebra is provided by Cielibak-F-Latshev.

(4): Because of all these, the novel part of the proof of this theorem is
extremely technical. So I understand that it should be written up carefully

before being really established.

(5): In that sense the novel point of this talk is the next theorem (in slide 33)
which contains novel point in the statement also.



Relation to "'A model Hodge structure’

We need a digression first.

Let X; EHH*(Q,Q) Put Z(Xl,Xz):<p(X1),p(X2)>

We (AFOOOQ) have an explicit formula to calculate it based on Cardy relation.



Formula for Z(Xl,Xz) — <p(X1),p(X2 )>

X1®X1—X X, =X, Xl,X'leH(Ll) XZEH(Lz)

SNl
@ G
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2 gabng<m3(x1,x'l,ea),ec><m2(x2,eb),ed> + Z gabng <m2(x1,ea),ec><m3(x2,eb,x'l),ed>

abed a,b,c,d

\ Theorem (AFOOO, FOOO ....)

Z(X,,X,)= <P(X1)’P(X2 )>

€, abasisof HF(L,,L,) 8w =(€.06)



_ Hochshild complex

let  B,CH.(Z.Z)—CH, (2 2)

be the operator obtained by ‘circle' action.

i

Hochshild homology HH (Q(L),Q(L))

is homology of the free loop space of L.

B;H.(L(L))— H.,,(L(L))

is obtained from the S! action on the free loop space.
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r Hochshild complex

let  B,CH,(2,2)—CH,, (2 2)

be the operator obtained by ‘circle' action.

Proposition  Z(BX,,X,) = (}%0 {)(X1 X, )

it implies that there exists K ; CH., (gg) — CH.,, (QQ)
such that 5K + K5 =B BK =0 if Z is non-degenerate

because i}%o{ — d%,o + {%,0 7%0}out<7

2"d of BV master equation
30



Corollary (Hodge — de Rham degeneration) (Conjectured by Kontsevitch-Soibelman)

If Z is non-degenerate then

HC(Z ;A= HH (2, 2;A)® A[[S]]

Remark: This uses only ‘%,O : moduli space of annulus.

To recover GWg,g (P(X1 ) g0 e ,p(Xf ))

we must to use all the informations %,g

31




Remark: Why this is called 'Hodge — de Rham degeneration' ?

Hodge structureuses o9, o with 85 + 53 = 0Jo = % =0

One main result of Hodge theory is  Kerd ~ Ker_a _ Kerd d=0+0
Imd Imod Imd

we may rewrite thisto ¢ = +ud H(d )= Kerd, isindependent of u
" Imd

u

Wehave OB+ BO=BB=00=0

Put du:5+l/tB

Kerd,
Imd,

SK+K8=B BK=0 H(d,)=

is independent of u



construction will be generalized and rewritten in this categorical language.

objects in this paper || generalization
(f,Crtly A A-category
(compact, smooth, Calabi-Yau)
Jy HH*(A,A) Hochschild cohomology
(i1, dfN) (Co(A, A),b) Hochschild chain complex
Q HH,(A, A) Hochschild homology
d B Conne’s differential
ot u parameter of degree 2
Hy HP,(A) periodic cyclic homology
cho) HC, (A) negative cyclic homology
Qr[[0,M] HH (A, A)[[u]] Hodge to de Rham
= H;O) = HC, (A) spectral sequence
% —u?L flat connection on HC (A)
with poles of order 2 at u =0
K; ? higher residue pairings
Jy S Q HH*(A,A) primitive form
2 HH,(A, A) (at the origin 0 € S)

Floer's boundary operator

/=PO Landau-Gizburg potential

Table from
Saito-Takahashi's
paper

FROM PRIMITIVE FORMS
TO FROBENIUS MANIFOLDS

(Similar table is also in a paper
by Katzarkov-Kontsevich-Pantev)

Z  plus paring
between HH. and HH" 33

If one takes A in the list as the de enhancement of the category of sincularity. then one



MainTheorem (work in progress)

The gauge equivalence class of {

for

X, € HH.(Z. &)

if Z is non-degenerate.

%

9

g} determines Gromov-Witten invariants
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The story of {%g} fits naturally to the on going project

to prove homological Mirror symmetry by family Floer homologies.
So we can expect that it can be used to enhance

homological Mirror symmetry and classical Mirror symmetry

to include arbitrary genus.

(B sides should be quantum Kodaira-Spencer theory. (BCOV).)



Idea of the proof of Main theorem

Metric Ribbon tree — Bordered Riemann surface

Example: 2 loop
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R =r+r,
R =r,+r,

1’3 Rc:rl+r3
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Moduli of metric ribbon graph — 77{1 X Rl

X

etc.
Moduli of genus g Riemann surface

with [ marked points

This isomorphism was used in Kontsevich's proof of Witten conjecture



[
X R,

is identified with moduli space of bordered Riemann surface.

and consider the family R(¢c)=(cC,,++,cC,)

2(c) parametrised by c € R>0

YeZ,,




Consider one parameter family of moduli spaces

2, ,(c;B)={(u,2)| u:(X(c),0Z(c)) > (X,L)
L holomorphic, [u] = B}




Study the limit when

c—0

c—>0 C—

C—> oo
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2(c)

C —> oo

c—0
etc.
(various combinatorial types
depending on Z.)

( ]

7N
~—— \Glued
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Counting &

gives GW1,2(P(X1)aP(X2))

More precisely integrating the forms X, ,X, ,...

on the moduli space lclilg 7 (c)

by the evaluation map using the boundary marked points
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Counting

\Glued

We obtain numbers that can be calculated from {%g}
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Actually we need to work it out more carefully.

let  xe HH.(Z, &)
and try to compute GVVg’1 (P(X))

Need to use actually
M, (c.B)={(u,Z,7)| u:(X(c),0X(c)) - (X,L): holomorphic

[u]= B, gunusof =1, 9X(c)=S'
z € 0dX(c): boundary marked point.}

., =] 7, (.p

c=0



Forgetting Iy defines T . %z l(ﬁ) — %Z 1

%* is identified with the total space of complex line bundle over

g1
ES
%g,l (the fiber of JT :%g,l — %g,l

is identified to the tangent space of the unique
interior marked point.)

7, B=] 7, cp

(The absolute value corresponds to ¢ >0

the phase S! corresponds to the extra freedom to glue.)



w . o M

gl gl

Tr Tr

7%;1( B) o The space in tegration on which calculate

= Zero Section

Gromov-Witten invariant

k
. % % is not a trivial bundle. (Its chern class is Mumford-Morita class.
P gl — g.1 ( )

So %

= /ero Section s not homlogous to a class in

gl
the boundary.



(/4

gl

= /ero Section

is homol?gous to a class on the boundary 8%21 (ﬁ)
and 7T (D)

7~ (D) > D
T T
w, —m,

here D is Poincare dual to the ¢!

(/4

= Zero Section

8.l

a class on the boundary
n (D)
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%
J (Y (X) = something coming from boundary.
PN (D)

Because 7T_1P_1(D) is a union of S* orbits, 7T_1P_1(D) =S'W

then

Llw ev (X) = JW ev (Bx) = JW ev (0KX) = Jaw ev (Kx)
oK +Ko=B8B

Hodge to de Rham degeneration

oW =0 W +S'W'

BIW - B%ZI(ﬁ) and JSIW'eV*(KX) = JW,GV*(BKX) =0
KB=0



* * *
€V (X) = eV (X)+
J‘ﬂ—l (., ) ( ) JA ( ) W (Y (KX) A aclass on the boundary

JA ev (X) and Jawl eV’ (Kx)

are determined by {%,g} and X € HH* (gg)

QED



