Morse homotopy,
[00]
A -category,
and

Floer homologies.

by Kenji FUKAYAL

Department of Mathematical Mathematical Science Research
Sciences Institute,

University of Tokyo 1000 CentenialDrive

Hongd, Bunkyd-ku, Berkeley CA 94720

Tokyo, 113 Japan USA

Cliapter ane . N Orse homotopy

81 Witten complex
8§82 Cup product
§3 Massey product
84 A"-category

Chapter twa . Symplectic Floer theory

81 Symplectic manifolds

§2 Symplectic diffeomorphism

83 Floer homology for Lagrangian intersection
84 Arnold conjecture and Floer homology

Clapten three . Pseudo-holomorphic curve and topological o-model

81 Twotroublesin the definition of Floer homology
82 Pseudo-holomorphic sphere in symplectic manifold
83 Topological o-model and Gromov-Ruan invariant

'Research partially at MSRI supported in part by NSFgrant #DMS
9022140.



Clapten foee. Maslov index, Novikov ring, and Lagrangian homology

81 Moduli space of pseudo holomorphic disks
82 Floer homology for Lagrangian intersection
83 Lagrangian homology

§4 Quantumring

Crapter geve . Floer homology for 3 manifolds with boundary

81 A quick review of Gauge theory Floer homology

82 Symplectic versus Gauge theory in Floer homologies

83 Floer homology for 3 manifolds with boundary (1)

84 Floer homology for 3 manifolds with boundary (2)

85 Formal analogy to Jones - Witten invariant and conformal field
theory.



Thisis an extended version of the lecture by the author at Seoul National University in
July 1993.

This paper is a mixture of a survey article and a research announcement. Chapters 2
and 3 are survey of results by Gromov, Floer, Ruan, and others. Many of the material in the
other chapters are new. However these chapters aso include several parts which survey
earlier works or restate them in a bit different way. Also there may be a possible overlaps of
the results with one by other authors. (See remarks in those chapters.)

Here are rough summary of each chapter.

Chapter one is devoted to a construction which detects some information of homotopy
types of manifolds using Morse functions. The result of this chapter is a"toy model” of the
construction we will perform in later chapters.

Chapter two is a rough summary of Floer's idea on Arnold conjecture. In this chapter
we assume rather restrictive hypothesis and try to discuss the basic points without studying
various difficulties.

Those troubles we meet are discussed in Chapter three. But in this chapter we rather
discussthecase of pseudo-holomorphic sphere. (Whileoneneedsto study pseudo-holomorphic
disk for Arnold conjecture)) We apply the result on pseudo-holomorphic sphere to define
Gromov-Ruan's [R] invariant which justify several constructions in topological a-model.

In Chapter four, first we join the ideas in Chapters 2 and 3 to Maslov index and
Novikov ring and define Floer homology for Lagrangian intersection in pseudo Einstein
symplectic manifold of nonnegative curvature. Then we combine the construction of Floer
homology to one in Chapter one and define an A”—category.

In Chapter five we first recall the definition of Floer homology of 3-manifold and the
results by Dostoglou-Salamon [DS] and Yoshida [Y 2] which relate it to symplectic Floer
theory. Then, using theresult of thelast section, we define the Floer homol ogy for 3-manifolds
with boundary and discuss its properties.

Thisarticleiswritten during the authors stay in Mathematical Science Research Institute,
in Berkeley. He would like to thank MSRI for hospitality and financial support. He also
would like to thank Professor Hong-Jung Kim for his hospitality during his stay in Seoul.
The author would like to thank Professors Maxim Kontsevitch and Kaoru Ono for valuable
suggestions especialy those related to Novikov ring. A Part of the works in Chapter 5 is
done during the authors stay in University of Warwick, to which he would also like to thank
for hospitality and financial support.



Chapren 1 MWlone FHomoatopy

81 Witten Complex

This chapter consists of some ideas which may be useful to analyse homotopy types of
manifold using Morse theory. This argument may be regarded as a dual to De-Rham
homotopy theory.

First let us recall how we find a homology group of manifold using a Morse function.
((w1ij)

Let f:M - R beafunction of C”-class. We say that it is a Morse function if, for
each pOM, wefind its neighborhood and a coordinate there, such that f, with respect to

that coordinate, iswritten as either f (3, -+, %,)= %, or f(x, -, %)= Z—x + Zx
i=k+1
Wesay that p isacritical pointif df (p)=0. Let Cr(f) betheset of al critical point

of f. Inotherwords, p isacritica pointif f (x, -, X,)= z—x + Zx in aneighborhood
i=k+1

of p. Thenumber k iscaledtheMorseindexof f at p andisdenoted by p(p).
Next, we pick up a Riemannian metricon M. Then, using it, we get a gradient vector
field —grad f of f.
We consider following "moduli space” of gradient lines of f. Namely for
p,q OCr(f) we put :

a =—grad f, lE
‘R M|dt :
lim/(t)=p, lim At) = qE

t - —o0 t - 400

M(p,g) =

0 0

(Hereafter we write £(—o) = p in place of tIir_n ((t)=1p.)

We define an equivalence relation on M(p,q) by €7 &, & t)=£(C+t), and

put M (p,q)= M(p, g/ .

In general, M(p,q) is not a manifold, but, by perturbing it a bit, we can always
assume that it is a manifold. (Hereafter we write " if f isgeneric L "incase L is
satisfied after perturbing f abit.)

Lemma 1.1 : If f isgenericthen
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dimM(p,q) = u(p) - H(Q).

Let us give an example (in place of proving the lemma.) We consider M = S° and the
map f given by thefollowing figure

Figure 1.2

Then Cr(f)={p.a.r.s}. u(p)=p(r)=2,u(q)=1, u(s)=0. M (p,q) isone point
represented by a unique line joining p to q. Hence dima(p,q)=0=p(p) - p(q) - 1.
Similarly 94(r,q) isonepoint. Also M(qr)=two points. On the other hand, 2 (p,s) is

one dimensional manifold : . Hence dima(p,s) = p(p)- u(9 -1=1.

We do not prove the following :
Fact 1.3 :M (p,q) isorientable.
Now we define the complex (C,(M, f),0) asfollows:

Definition 1.4 :

1-5



Version 10/3/99

Kenji FUKAYA

(1) C.(M,f)= (D) kZ [p]. (Free abelian group, whose generator isidentified
u(p)=
with the set of critical point of Morseindex k.)
2 0:C,(M,f) - G_,(M, ) isdefined by
olpl =) <dp.q>[dl,
H()

<dp,q> =#M(p,q), (countedwithsign.)

Theorem 1.5 (Morse-Thom-Smale-Witten [W1] etc. ) :

(1) 929 =0.
(2 Ha(CLX, £))=Hy(X,2Z).

Sketch of Proof

(1) We want to use the following lemma. Assume p(p)-pH(s)=2. (Then M (p,s) is
onedimensional. (Put k=p@©)=pn({P)-2.)

Lemma 1.6 : M (p,s) iscompactified such that

oM (ps)= |1 Mp.ax(@s),

n(a)=k+1

as oriented manifolds.

In place of proving the lemma, let us consider the case of Figure 1.2 we discussed
before. Aswe explained M (p,s) =

= arc. The boundary of it consists
of two points, which corresponds to that are
Ry T
p IlJI L]

F J." Y

L
1
a

d"r

rm———————

L R Lt
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Thus 0M (p,q) =M (p,r)x M(r,s), here M(p,r) =onepoint, H(r,s)= two points.
The lemmafollows.

By lemmawe have

<0p,q><09,s>=0
H(@)=k-1

for each p,sOCr(f), p(p)=u(s)+2. Itfollowsimmediately 00 =0.

In place of proving (2) of Theorem 1.5 (the proof is a good exercise of Morse theory) ,
let us compute H(C(M,f)) for our example in Figure 1.2. We have
M(p,q) = M(r,q) =one points, M(q,s) = two points. Hence <ap,q>=<ar,q>=1. And
if one defines the orientation appropriately, one finds the contributions from two points of
M (q,r) cancel to each other, hence < dq,r >= 0. Thuswe have:

golpl = ola] =[],

0o[ql =0,
Ho[g =o0.
We conclude:
EZ k=2,
Hy(CAM, )= 00 k=1
Hz k=0.

This coincides with H,(S%2).

82 Cup product

Next we consider three functions f, g, h on M, (which we assume to be generic.)
Weput C(f,g)=C(M,f —g) etc. We are going to define amap

Co(f,9) 1G9, h) - C(f,h).
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Let pOCr(f—-g), gqOCr(g—h), r OCr(f —h). We consider the following moduli space
M(p,a,r).

O 011 (=0,0] = M, 4, 1 (—0,0] - M, C
0 l3:[0,0) - M, C
N dv dv C
. = -grad(f- 9,52 = -grad(g -
M(p,q,r) = [(51%2,53) dv L.
O —2 = —grad(f - h) C
O dt C
0 4(0) = £,(0) = 45(0) C
O l(=0) =, l,(—0) =, (5(0) =1 C

Namely we consider the moduli space of the following configurations’ :

Lemma1.7: If f,g and h aregeneric, then % (p,q,r) isa manifold such that

dimM(p,q,r) = u(p) + p(a) - u(r).

Using the moduli  space M(p,q,r), we defines a map
N, Cy(f,9) 0 C0,h) - C(f,h) asfollows.

Definition 1.8 :

°Feymann diagram.
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no([P10MAD =% na(p.a.nl]

n2(p,a.1) =#M(p.q,r).

Proposition 1.9: n, isachain map.
Proof Proof is quite similar to onefor d0 =0. We use the following lemma.

Lemma 1.10: % (p,q,r) iscompactified such that

oM (p,a.r) = J M(p.p) x M (p,q.r) O M(a.q) xM(p.d.r)
p’ q

ol M@, ryxM(pa,r).

The elements of right hand side is written as

Now let us suppose L (p)+(q@)—p(r)=1. Then M(p,q,r) isonedimensional.
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By Lemma 1.7 we have

0 =%} <op,p >nx(p,ar)
P
£% <00,9 >nx(p.q’.r)
q
£ <ar',r>n,(p,a.r).

It follows that
n2@[q1C [r D+ n(I91C olrD+on([al U [rD= O.
This proves the proposition.
Thus 1, inducesamap
(N2)o: HoCo(F,9)) 8 HA(C(a,h)) — HA(C(f,h)).

By Theorem 1.5, all these three homology groups are isometric to H;(M;Z). Hence we
have

(N2 H(M; 2)0 Hy(M;Z2) - H(M;Z).
Proposition 1.10: (n,);(x 0 y) = PD((PD x) (PDy)), where PD isPoincaré duality.

The proof is again agood exercise of Morse theory.

83 Massey product
Next we discuss what happens when we have 4 functions, f,, i=0,12,Z. We put

Co(fi, f)=C(M; f - f). Let p, OCr(f - f.y). (Weput f,=f,.) We define the moduli
space M(Po, Py, Po,P3) asthe union of the spaces of the following three configurations.
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z &
M —erad e r, ﬂ —grad f-f
_gm¢%f1 —Tr 0z

il )

- gradf-f, - grdf |,
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We can prove the following :
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Proposition 1.11 : For generic f,, our moduli space M(pgy, Py, P>,P3) IS a smooth
manifold of dimension p(p)+H(pP)+H(P) -k (ps) +1.

We remark that the moduli space of each of the first two configurations are manifolds
of dimension p () +H(P)+H(P,)— K (ps)+1. And the moduli of the third configurations
is manifold of dimension pu(py)+H(p)+H(P,)—K(p;) - The first two moduli spaces are
patched together along the third one.

We also remark that in our moduli space we include the "moduli parameter” that is the

. -
p
length of thereal linein o N

The proof of Proposition 1.11 is a standard application of the transversality argument.
Now we use this moduli space to define a map

Na Cu(fo, 1) O G (fy, F) O C(f2, f3) - Crigs 1 (fos T2,
as follows:

Definition 1.12:

Na([Pol O [Pd OR:1) = 5 N3(Po. Pu P2, Ps) TR:]
P3 .

Na( Pos Prs P2s Ps) #M( Ry, Prs P2, P3)
Proposition 1.13 :

d(ng(@blOc))xng(@alblc)xny@lablc)+ nz@L b dc)
=n.(nx(@bb)dc)tn,(@bn,b0OCc))

Sketch of the proof As in the previous section, we consider the case when

dmM(p, P, Py P3) =1 and study the boundary of this moduli space M (pg, Py Py P3)-
The boundary is described by one of the figures we describe below. There are 10 types of
such afigures. First 8 figures are
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and similar ones. (There are 6 more.) They correspond to the left hand side of the formula.

There are two different types of figures namely :

The left figure above corresponds n,(n,(ad b) ] c) and theright figure above corresponds
n2(all ny( Uc)).
Thus we can complete the proof in asimilar way asin the proof of Proposition 1.9.
Now we are in the position to discuss the output of our propositions.
D We can prove that the product defined by n, is associative. In fact suppose

Uy OC (o, f),u OC(fy, 15), u, OC(f,, f3) suchthat du, =du, =0u, =0. ThenProposition
1.13 implies that

N2(N2Up O up) O uy) £1N5 Uy O No(Uy O W) =0Nn3Ug O u; O Wy).

The associativity (in homology level) follows.
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(2 Secondly, we can define Massey product. Let us first recall the definition of
Massey product using differential form. Let W,V,W pe closed forms. We assume that the
De-Rham cohomology classesof ulLlv and vLIw are 0. Hencethereexists x,y such that
dx=ulv anddy =vOw. Wethen consider theform xOw+uOy. We caculate

dxOwzxuly)=dxOw-ulldy =0.
We thus get a De-Rham cohomology class
[x Ow + u0y] OHpr(M;R).

This class depends on the choice of X Y. But its image in
Hor(M;R)
[Ul0 Hpr (MiR) + Hpr(M:R) O [W]

iswell defined. We call this element the Massey

triple product {u,v,w}.

Massey product and its higher analogue is used extensively in the works by Quillen and
Sullivan etc. They constructed a theory which describe rational homotopy type using
De-Rham theory. (Sullivan used formsover Q .)

Now we define Morse theory version of Massey product using our maps 1,,Ns.
Let uOC(fy, f), vOC,(f, ), wOC(f,,f3) such that du=dv=0w=0. We
assume
[NUOWVI=0 in  Hy(C(%, )
[No(vOwW)]=0 in  Hy(C(f, f3)).

Take x0OCy(fo, o), yUCy(f,f3) suchthat ax=n,uOV), dy=n,(vUOw). Now
we calculate

0N (xOwW)£n,UO y)£ nzb v w))
=n,(@xOw)x n,(ulldy) +onz(uviOw)

=N (N O VYO W)t n(un,(vO w))tonzull v w)
-Q
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by Proposition 1.13. We thus obtain the following :

Definition 1.14 :
{ulVIWE= [N XD W) £, D y) £ naB v O w)].

(Thiselement iswell defined modulo [n,(xO+)] and [n,( T y)].)

4 A”-Category

One can continue and play the same game with arbitrary many functions. Then we
get a complicated system of chain complexes and maps which satisfy some complicated
relations. To understand what we obtained in that way, we need some notions to describe
them.

In fact such a notion has been known for more than 30 years, in the study of loop
spaces. Stasheff [St] defined a notion of A”-algebra, we slightly modify this notion and
define:

Definition 1.15 : An A”-category consists of a set, (the set of objects), which we
write Ob, the set of morphisms C(a,b) for each a,b JOb, and amap n,, the (higher)

composition, such that

D Cy(a,b) isachain complex.
()] For a,, -+, UOb

Nk: Coag, a0 C@y-1,8¢) - CH@0,3),

isalinear map. (We do not specify coefficient ring here. In this chapter itis Z and
|ater it will be the Laurant polynomial ring Z [TIIT T or Z[T*IITTI)

They satisfy the following :

1-16



A”- Category Version 10/3/99

(©)] n, isachan map.
4 (ngy)@d blc)=%n,(N@lb)Oc))xn,@dn,(Oc)). (Hereand here
after oNg;=0+=nNg*xnNg=0.)

(5) ON)0Cq OO %)= Z N O On 6 O -ox) O TX)

I<i<j<k

We remark that  A”-category is not a category in usua sense, since
n.(N.(@tdb)dc))=n,(all n,(b Uc)) doesnot holdin general. But the way how it fails
to hold is controlled by higher compositions n,, k= 3.

Now let us give an example of A”-category, which goes back to 30 years ago when the
notion A” -algebra was introduced.
Let X bean arbitrary topologica space. For each p,q X, we put

Q(p,q) ={£[01] -~ X|£(0)=p,£(D)=q} .

Thereisan obviousmap : Q(p,q) xQ(@,r) - Q(p,r) defined by loop sum.

We define an A™-category QX asfollows. Itsobjectisapoint of X. For p,qO0X, the
set of morphisms Cy(p,q) in our A”-category QX is the singular chain complex
SQ(p,g)). Then using the map : Q(p,q) *xQ@,r) - Q(p,r), we get a chain map,
N2: C(p. YU C@.r) » Co(pir).

Now we ask whether n,(n,(allb)c))=n,(@ll n,( Uc)) hold, or not.

It holds almost, but not quite, since the loop sum Q(p,q) XQ @Q,r) - Q(p,r) is not
associative but is homotopy associative. And the homotopy is quite canonical. Using them
we get :

N CP.DUG@NUGC,(,s)- CGuima(PS)-

For detail see for example, [Ad].
Now we return to our discussion of Morse homotopy and definean A”-category.
Let M be a compact manifold and we take a Riemannian metric. Then our A”

-category isasfollows:
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(@) Its object is asmooth functionon M. Namely Ob =C”(M).

2 The space C,(f;,f,) of morphisms between two elements f;, f,1C” (M) =0b
is the Witten complex C(f,, f,)=C(M, f, - f,) wediscussedin § 1.

(©)] The (higher) compositions are as we defined asin 88 2 and 3.

The discussionsin 88 2,3 imply that they satisfy the axiom of A™-category. We will
writeit Ms(M).

We remark here that in Ms(M) the set of morphisms are not defined for all pair of
objects but only a dense subset of it. Also the (higher) composition is defined only in a
dense subset. One can define a notion of topological A”-category to analyses such a
situation. We omit the detail.

Problem 1.16 : How much of the homotopy type of M isdetermined by Ms(M) ?

Using the relation of higher compositions and Massey product it might be possible to
show that Ms(M) determines the rational homotopy type of M.

As we mentioned before, our A”-category is parallel to the construction of De-Rham
homotopy by Sullivan etc ([Q],[S]) . One disadvantage of our approach is that it is more
complicated than differential graded algebra used in De-Rham homotopy. But it has an
advantage that isit works over integer.

Problem 1.17 : How can one involve Steenrod square in our story ?

In A”-category, the structures related to the asssociativity of cup product are involved
but not the commutativity. To study this problem, one need to analyse how we can
understand commutativity in our setting.

Remark : Aswas mentioned in introduction, this article is essentially an enriched version
of author's lectures in Seoul national university. After Soul the author participated Geogia
International Congress on Topology. There he got two informations related to this chapter,
which we describe below.

D Marty Betz mentioned in Geogia that he did a similar work as this chapter
independently. Moreover he said he found how to involve Steenrod square in the story. His
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main ideais to use the automorphism of the graph.® These results will be the contents of his
PHD Thesis. ([BC])

(2 V.A. Smirnov told the author that he had used the notion essentially the same as
A”-Category and A”-functor in his paper [Sm1]. Alsoin his recent work related to stable
homotopy group of spheres he found the following. ([Sm2]) Let us consider the stable
homotopy category SH. Namely its object is the spectrum (X ,¢;) where X s the
spaces and ¢; is amap from the suspension ZX; of X, to X.;. The set of morphisms
C,(0%,9;),¢Y, W) IS a graded Abelian groups such that
Ce((X,97), (Yi, W) = indlim{X, ;,Y}. (Here {X,Y} denotes the set of based homotopy
class of maps from XI }; Y.) We regard them as chain complexes with trivial boundary
operator. Then Smirnov constructed higher composition and proved that they satisfy the
axiom of A”-category.

His construction suggests that it is natural to regard stable homotopy category as an
A” -Category. Thenevery operatorsand secondary operators between generalized cohomol ogy

theories can be described in that way.

In the theory of Floer homology, its periodicity etc. is similar to the objects in stable
homotopy category. Severa peopleistrying to realize "Floer homotopy type" as an objects
in stable homotopy category. (See [CJS].) In regard with the result of this article, it seemsto
the author that it is natural to find something like "quatized stable homotopy category" and
realize Floer homotopy type there. In fact in later chapters we quantize the contents of this
chapter.

*0n the other hand it seems that the moduli parameter is not included
in his story.
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Cliappten 2 Symplectic Floer theory

81 Symplectic manifolds
First let usrecall several basic facts on symplectic geometry.

Definition 2.1: A symplectic manifold (X,w) isa 2n-dimensional manifold X with
a2-form w onit such that

(@) dw =0,

2 w" # 0, everywhere.

Definition 2.2: An n-dimensiona submanifold A" of (X*",w) iscaled aLagrangian
submanifold of it if wl, , therestrictionof w to A", vanishes.

Example 2.3:

(1) CP" has a natural symplectic structure. (Kahler form of Fubini-Study metric.)
Every complex submanifold of CP" has also symplectic structure.

(2 Let M be amanifold, then its cotangent bundle T"™M has a natural symplectic
structure as we describe below.

Let pOM, choose acoordinate x',---,X"

in aneighborhood U of p. Thenan
element of T-U (the cotangent bundle of U) isgivenby (g,u) where qOU, uOT, M.
We put u=YpdX and let (x,,x") be the coordinate of . Then
o, x",ph--, p")  will be the coordinate of  (g,u). With respect to this coordinate

system, our symplectic form w isgivenas
W= z dp' Odx'.
There is more intrinsic way to describe this symplectic structure. Let (q,u)DTDM.

Let T:T"M — M bethe projection. Its differential gives Tiy: T, (T"M) — T,(M). This

map is surjective and its kernel isidentified to TqDM . Hence we have an exact sequence:
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0-T,M = TquyTM®TM - C
We defines one form ® on T-M by 8, (V)=u(mV). (V OTq,T M.) Inour loca
coordinate 6 = Z pidxi . Thenwe have w=d0. (Thissecond description impliesthat w
is globally well defined.)
One important notion in symplectic geometry is a Hamiltonian vector field which we

will now describe.

Let (XZ”,w) be a symplectic manifold and f:X - R be a smooth function on it.
Then the Hamiltonian vector field H; isonewhich satisfy

w(H;,V)=df (V).

for arbitrary V OTX.
If, for example, (X,w) = (Rzn,dei Odx'), then

< of 0 of 9
T2 50K T 2od a8

If n=1, and f :x2+p2 then H; isdescribed by the following figure :

Now we consider the ordinary differential equation :
dé
— {t)=H; E)).
5 O~ Hi€W)

We are interested in its periodic orbit. Namely the solution of ~ which satisfies
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2t+D=£@),
in addition. Then we have:

Theorem 2.4 (Eliashberg): Let (X,w) bea compact symplectic manifold and f bea
Morse function. Then the number of solutionsof  satisfying isnot smaller than

z rank H (X;R).

Proof First we remark that if p OCr(f) thenthecurve £(t)= p satisfies , ,since

H; (p) = 0. Hence we are only to show
#Cr(f)2 ) rank Hi(XR).

(Thisis the classical Morse inequality.) To prove it, we recall the construction of the last
section. There, we defined achain complex (C;(X, f),0) such that

#Cr(f) = z rank G (X, f)
and
H,(X;2) OH, (C5(X, )).
It follows immediately
#Cr(f) = Z rank H,(X;R),

asrequired.

Now we want to generalize our equation  toonewhere f dependson t.
Namely, suppose we have a family of functions f, such that f,,=f.. We then
consider the equation
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ad
' — ) =H; (¢
- O=HCO)
with condition . Arnold [Ar] proposed the following :

Conjecture 2.5 : Let al the solutionsof ' satisfying are nondegenerate®. Then the

number of such solutionsis not smaller than
z rank H (X;R).

This conjecture was proved by various mathematicians under various additional assump-
tions. One remarkable result is due to Floer, who proved it under the assumption that

(X,w) ismonotone.
82 Symplectic diffeomor phism

Before discussing Floer's result, let us change our point of view a bit. That is, let us
count the number of fixed point of a symplectic diffeomorphisms in place of counting the
number of periodic orbits.

Given a family of functions f,, we defineamap ¢:X - X asfollows. Let pUX,

we consider acurve £:[0,1] - X such that

0 dé _
o E(t) —Hft(ﬂ(t))_

O €0 =p

There is aways a unique solution of this equation. We put ¢ (p)=/(1). Thus we get a
diffeomorphism ¢:X - X.

One can easily verify that ¢ w =w. Wesay that ¢ isasymplectic diffeomorphism
If ¢Doo =w. Wesay that ¢ isan exact symplectic diffeomorphism if there exists f, such
that ¢ isobtained fromitin the way we described above. Let Diff (X,w) bethe set of all
symplectic diffeomorphismsand Diff, (X,w) theset of all exact symplectic diffeomorphisms.

“This notion will be explained later.

*The definition of it will be explained later.
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Namely

Diff(X,w) {0 :x = X|¢w=w)

Diffy(X,0) {6:X = X| T, ¢(p) = «1) where ¢ satisfies .}
Infact, Diffy(X,w) isthe connected component of Diff (X,w) if H,(X;R)JO. Then
Arnold conjecture is restated as follows.

Conjecture 2.6 : Let ¢ bean exact symplectic diffeomorphism of X toitself. Assume
that every fixed point of ¢ isnondegenerate®. Then the number of fixed point of ¢ isnot
smaller than Z rank H (X;R).

Now we rewrite this conjecture a bit more using the notion of Lagrangian submanifold.
(Definition 2.2)

We consider the manifold Y = X x X with symplectic form w-w. Then for each
symplecticdiffeomorphism ¢ itsgraph A, = { x,0 (X)) xO X} isaL agrangian submanifold.
In particular the diagonal A ={(x,x)| x OX} isaLagrangian submanifold.

We remark that the set of fixed point of ¢ isidentified to the intersection An A, .
We define that a fixed point p of ¢ isnondegenerateif A, and A aretransversa to
each other at (p, p).

Arnold conjectureis generalized asfollows :

Conjecture 2.7 : Let A be aLagrangian submanifold in a symplectic manifold (Y,w)
and ¢:Y — Y bean exact symplectic diffeomorphism. Suppose that ¢ (A) istransversal
to A. Then

#O(N)nA) 2 rank H(AR),
83 Floer homology for L agrangian inter section
Now we are going to explain the ideas employed by Floer to prove this conjecture

under additional assumptions. In this section we consider the case when 1;(A) = T,(Y) = 1.
(This is the case which Floer studied in [FI1]. Later he dealed with more general case.

®The definition wil be given soon.
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([FI13])) In fact this assumption is rather restrictive. But the basic idea appeared in a most
simply way in this case. In next chapter we consider what kind of troubles arise when we
study more general case and how one can handle those troubles.

The idea employed by Floer to this problem is Morse theory in infinite dimension. Let
us take two Lagrangian submanifolds A,N\, of Y and assume that
T, A\ = 1 (A,) = T, (Y)=1. We study the following infinite dimensional manifold.

QAL ALY)={E[0,0 - Y| £(0)OA L (D) DA} .

(Here we do not mention how much differentiability of £ we assume. Asusual, to develop
necessary analysis to justify this kinds of arguments, one needs to fix a function space. But
we do not try to do it here.)

We define a function o on it as follows. First we define o(#,,£#,) for each two
elements £,,£, of Q(A;,A\,Y). For this purpose, we first take a path £,, tCO[01] in
Q(A;,A\5Y) joining £, and £,." Now we put

_ O
o(#,.8)= J[O,l}([oll]ﬂ W .

Here £:[0,]x[01] - Y isdefined by £(st)=#,(). Now we prove

Lemma 2.8: 0(#y,£,) isindependent of the choice on the homotopy #£,, t[01]

joining £, and £,.

Proof Let £ be the another homotopy. Then patching £, and #£; we find a map
h: [0xS - Y suchthat

o. _ o, _ 0
J[O,l]xslh w _J[O,l]X[O,l]E W J[o,l]x[o,l]E W .

and that

’Since we do not assume that m,(Y)=1, the space Q(A;,\,;Y) may not
be connected. So, in fact, we consider the function on a component of it,
which contains a constant path.
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hdg xSHO A,
hd3 xSHOA,.

Since T (A\,)=m(A,)=1, we canfinddisks D OA; suchthat aD = h({i} xS).
We can patch disks D OA, with h: [0xS' - Y andobtain h: S - Y. Since A,
are Lagrangian it follows that ]qoo = 0. Therefore

_ 0
fopgh® =fehw .
On the other hand, since T,(Y)=1, there exists D° which bounds h(S%). Hence by
Stokes' theorem, we have :

e o
foho _IaDstho =[»d(h'w) =0.
Thus we conclude

— g _ '
0= foorf @ ~ oaxpou® w

asrequired.
It iseasy to verify
0(£g,£) +OE,,£,)=0Eo,L5).

Thus we can define 0 : Q(A,A5Y) >R by o@)=0Ey¥#). Where £, isa point of
QN\,N\5Y). (0 isindependent of £, up to constant.)

Wewant to discussMorsetheory of thisfunctionon Q(A,,A\,;Y), aninfinitedimensional
manifold.

To follow the argument of the last chapter, we need to study the gradient vector field of
this function. So let us calculate it. For this purpose we need a Riemannian metric on
Q(A1,N\5;Y), which we now define.

First consider a linear map J:TY - TY. We say that J is an amost complex

structure if J% = -1. (Given such J, thereal vector bundle TY will be a complex one
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suchthat J = x/=1.)

Definition 2.9 : The symplectic structure w is said to be compatible with an amost
complex structure J if

D w(X,J(X))= 0, theequality holdsonly if X=0C.
2 wW(IX,IX) =w (X, X).

It is known that each symplectic structure has compatible almost complex structure and
the space of compatible almost complex structures are connected. ([Gr])

Now, given a symplectic manifold (Y,w) and a compatible almost complex structure
J, wedefine aRiemannian metric g on Y by

g(V,W) =w(V,IW).
We have
gW,V)=wW,JV) = (W, JJV) = -0 (IW,V) = w(V,IJW)=g(V,W),
by Condition (2). Similarly g is nondegenerate by Condition (1). Then g isa
Riemannian metricon M.

In fact, three structureson Y, symplectic structure w, amost complex structure J,
and Riemannian metric g are closely related to each other in this situation and each two of
them determine the third structure. If the almost complex structure J isintegrable then the
metric g isaKahler metric.

Now we use such structures g, J to define Riemannian metric on Q(A;,A,;Y). We
remark that

T(QALALY)=TETY).
For U,V Or @°TY), we define metric by

(UV) = gUOVO) d.
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Lemma 2.10 :  Thegradient vector grad o isgiven by
grad,o = J[dmmr(zﬂw)

Proof : We calculate

do &) _dps 1 %Da o, 0o
ds leo - dsJodSJodt “rrorps DEDD&t% -
- ha % 29 O3 0O 1
o O CosO™ Tt
s=0
= (o200
\ s=0
Hor

Here we put £(st)=4#.(). We recal that ED[B C is the tangent vector at s=0 of the

path £, in Q(A;,A5;Y). Thelemmafollowsimmediately.

Thus we find the gradient vector field. The lemmaimmediately implies the following :
Corollary 2.11 : £ 0Q(A;,AL;Y) isacritical point of o onlyif ¢ = constant.

Infact, grado =0 implies O:§
When £ 0Q(A;,A,;Y) is constant we have £(0)=#£(D0OA,n A,. Therefore, we

have
Cr(o) A nA,.

In this way, we can find a relation between A,;n A, and the critical point of o,
(whichisrelated to the topology of Q(A;,A5;Y)).

We next remark that for pOA;n A, , the element £,=p of Q(A;,ALY)
nondegenerate critical point of o if andonly if A; and A, aretransversa at p.

Now we study the moduli space of gradient linesof o. Weput E=R x[01] and
regard it as a subset of complex plain C  with complex coordinate z= s+ /=1t. (In other
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words aﬁt =J§S.) Now let£, sOR beapathin Q(A,ALY). Weput h(st) =£.(@).

Lemma212 : h isaholomorphicmap: E - Y ifandonlyif £, isagradient line of
0 . Inother words

4
hJ=J, - a—S:—gradZSo.

Thislemmais aso animmediate consequence of Lemma 2.10.

The study of symplectic manifold using holomorphic map from complex plainisinitiated
by Gromov. We discuss a part of it in next chapter.

Weput , for each p,qOA; nA,,

[ 9/ C
st 'R - Q(A,A\Y) F —gradésoE

Msymp( p’q;/\r/\z)

{h:E~ Y| hy) =Jh}

Wewrite M,,{p,q) incase no confusion can occur.

Theorem 2.13 (Floer):  Suppose ;(\;) =T (A,)=1,(Y)=1 and A, is transversal
to A,. Thenthereexistsamap p:A;nA, - Z, suchthat, for each p,q0OA; nA,, the
space Mg, m{P,q) isasmooth manifold of dimension p(p)- K ().

(In fact Theorem 2.13 holds only after appropriate perturbation. We omit the discussion
about it.)

This theorem is parallel to Chapter 1 Lemma 1.1. But one essential difference is that
the Morse index in usual sense, (that is the number of negative eigenvalues of the Hessian),
is infinite in our situation. Hence the map p:A;nA, - Z isa"renormalized" Morse
index, namely usual Morse index minuse /2.

We take an equivalence relation , h(st)” h(s+s,t) on My (p,q) and let
BT/[SymF(p,q) be the quotient space with respect to this action. We can aso prove the
following analogy of Lemma 1.6.

Theorem 2.14 (Floer): In the dtuation of Theorem 213, we can compactify
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MymdP.) such that
ag‘—/[symp(p’q) = U Msym’(pl r)X ﬂsym;(r’q)-
r

Now we define Floer complex of Lagrangian intersection as follows.

Definition 2.15:
CR(\LN\)= b Lz Opl,

OATN A,
n(p)=k

1)
(2 9:CR.(AuA,) — CF_,(ALA,) isdefined by

o[p] = <0p,q>[d],
n(a)

<opqg> =#Mgmp(P.0). ( counted with sign.)

Then we can use Theorems 2.13, 2.14 in the same way as the proof of Theorem 1.5
Chapter 1to provethat d0 =0. So we define Floer homology of the Lagrangian intersection

by
HRE (AL AL) = H (CRy(A L, AL)).

Floer proved that it is independent of the choice of amost structure J, perturbation etc.
and is an invariant of symplectic manifold Y and its Lagrangians.

84 Arnold conjecture and Floer homology

Now we want to discuss the way Floer homology is applied to study Arnold conjecture.
Let Y beasymplectic manifoldand A OY isalagrangian submanifold. Let ¢:Y - Y
be an exact symplectic diffeomorphism. We assume that i;(A)=1,(Y)=1 and A is
transversal to ¢ (A). In this case, Conjecture 2.7 asserts #( (A) n A) = Z rank H,(A;R),
which we want to prove. (In fact our assumption 1, (A) = T,(Y) =1 is quite restrictive and
hence our case does not imply nontrivial result to Conjecture 2.5 but does have an application
t02.7.)
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We remark that

> rank CR (AL, A,) =#(A N A,).
k

Henceto show #(® (A) n A) = Z rank H;(/\;R) one only needsto prove
(2.16) H A Z) OHR A0 (M),
inour situation. Floer proved thisin the following two steps.
(A) If ¢ is C*-closeto identity then (2.16) holds.

(B) Let ¢.:Y - Y Dbe aone parameter family of exact diffeomorphisms. Assume
that ¢, (/\) istransversal to A for t =Q1. Then,

HR (A9 (A\)) THR A, 0,(A)).

Sketch of Proof of (B)

We put A, =¢,(A). We first assume that A, istransversal to A for arbitrary
td[01]. Then #(\, n A\) is independent of t[O1] and there exists smooth maps
p:[0 - Y i=1-k suchthaA, n A={p,@®),pQ)}.
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7,0) ?
Pyl
p2(0) \\

We consider the space

MG, ))= U Mympe(R @, B E)AN,).

to[ox]

Lemma 2.17 : The space M(,]j) isamanifold of dimension n(p)-n(p;). It canbe
compactified such that

09, j) U U Mymp (RO, PN A) X, mp(pk(o,p,-(t);/\,/\t)
t[[O:I] k

We omit the proof. Let us consider the case when n(p )- n(p;) =1. Then by Lemma
2.17 we have

#ﬂsymp ( H (0), pj (0);A1/\0)_#9T/[symp( H (1)1 pj (1);/\,/\1)

(2.18) = # U U My (0O, P OA A X Mg (B0, By 1A A
to1] k
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-

=0 =1

X o= (ol My (B )P A, )X (PREL P T A )

Let usremark that the virtual dimension of
My (B D) B (0N A) X Mgy, (P(E), P 0, A
M) -HPEI-D+EPI-up)-D=-1.

(Weremark that n(p,(t)) isindependent of t. Hencewewriteit n(p,).)
It follows that Mg, (B (1), B i, A) X Mg (L), By (1A, A, isempty for generic
t. But there may be finitely many t for which it is not empty but is a finitely many point.
In other words, 1-dimensional family of —1-dimensional spacesis O-dimensional. Thusthe
right hand side of (2.18) makes sense.

So one needs to study the moduli space U m_/[symp(pn(t), pP(t);AA) in case
t00,1]
H(p,) - 1(p,)=0. By subdividing the interval if necessary, we may assume that there is a
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number t,J[0Q] and a par n#m such that if p(p)-u(p;)=0 then the set
9\_/[53,mp(p(t),pj (t);AA;) isnonempty only if t=t, and (,j)=(m,n). We may assume
aso #Mym, (P(t), PN A ) =1.° Hence (2.18) implies that for i,j  with
u(R)-H(p,)=1 wehave

<0p(0), B (0) >
(2.19) <0p,(0), p; (0) >
<0p;(0), pn(0) >

<op; (D), p (D) > if iZn j#m,
<0p, (1), p; (D) >+ <0py,(1), p; (1) >,
<0pi(D), pn (D) > =< p;(0), p,(0)>.

Wedefine I: CR,(A\,A\y) - CR(A,A\;) by

1([Pa(O)])
I([r (O))

[P @] [Pn(D],
[p @] if i #n.

Then (2.19) impliesthat | is a chain map and it gives chain homotopy equivalence
between CR (A, A\g) and CR(AAY).

Next we consider the case when A, isnot necessary transversal to A at some t. By
subdividing the interval [0,1] and perturbing the family A, we may assumethat A, is
transversal to A for t#1/2, andthat for t=1/2 A, istransversa to A outside one
point say p,. We may also assume that there exists p, t):[0,] - Y i=34,---,k and
P t):[01/2) - Y for i =12 suchthat An A, ={p,(), -, p.()} for t0[11/2) and
An A ={ps@), -, p.@®)} for t0(A/2,1. (Seefigurebelow.)

®By taking a perturbation if necessary.
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& A 12+
& e
H': 12-5) //
& 1e-r

Then to show that HF,(A, A, /o_ )OO HFE(A, A1/2 ), we are only to show the following
lemma. (Infact thelemmaimpliesthat p,(1/2-¢) and p,(1/2-¢) cancels.)

Lemma 2.21 :
<op (1/2-¢),p;(1/2-€)> = <op (1/2+¢),p;(1/2+¢€) > I,] >3
<dp,(1/2-¢),p,(1/2-¢€)> = 1

The first formula in Lemma 2.21 follows immediately from a lemma similar to 2.17.
The number 1, in the second formula corresponds to the following element of

Mo (PL(L/2 = ), P(L/2 -€)).
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Bypomg ]

7123

B2

= elementof 2, (py{1/ 2— 2] pa(1/ 2- 2))

We omit the detail.

Sketch of Proof of (A)

Let A, A, betwo Lagrangian submanifolds which are C*-close to each other. We

want to prove
(2.21) HE,(ALA,) OHA(AGZ).

Let us take the cotangent bundle TD/\1 of A;. Aswe explained at the beginning of
this chapter, TD/\1 has a canonical symplectic structure. We identify A, to the zero
section of T'A,. Given a Riemannian metric on A,, we define an almost complex
structure on T"A, as follows. The Riemannian metric on A, induces an isomorphism
I:TA, - T'A,. We have  TquyTAD=T A OTA,. Then  we put
JOY)=((Y),-I '1(X)). One can prove the following :

Lemma 2.22: There exists a neighborhood U of A, in T°A; and V of A, in Y
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such that (U,A\;) is symplectic diffeomorphic to (V,/A;). The symplectic diffeomorphism
preserves almost complex structuresat A;.

We may assume that A, iscontained in V. Hence we may consider that A, isa
submanifold of T"A,. Also, since the tangent space of A, iscloseto one of A,, it
followsthat A, istransversal to the fibore of T"A,. Therefore there existsa 1-form u on

A\, suchthat A, isagraphof u. Herewe usethefollowing :

Lemma 2.23: Let M beamanifoldand u bea 1-formonit. Then the graph of u
isa Lagrangian submanifold of T"M if and onlyif du= 0.

The proof is an easy calculation. Now we use the assumption Hl(/\l;R) =0 to show
that there exists afunction f:A; - R suchthat u=df. We consider the Witten complex
we discussed at the beginning of Chapter 1. Here we write the moduli space of gradient line
8 Myose(P.0). (p,qUCr(f)), in order to distinguish them from the moduli space of
pseudo-holomorphic maps. We remark that A;n A, ={x0OA,|du(x)= 0} = Cr(f). Hence
to prove (2.21) we are only to show the following :

Theorem 2.24: If A; is C'-close to A, then 9,,,(p,q) is homeomorphic to
Mymp(P,Q) for each p,q OCr(f).

Sketch of the proof.

Let £R - A, beacurve. Wedefine h,:E — T"A, by

he(st)= sldf E(1)).
(Werecal E=[Q1]xR.) Thenwe have
: . adr
Lemma 2.25: hJ=Jh at {3xR ifandonlyif p =—grad f.

Proof  Let X OyA1 0 Te.ofT AD) and Y OTy N O Te.0(T A . (We recall
O — 70U —
Teo.0(T N =TayN\1 U Tay\1.) Thenwecalculateat s=0
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/%'xmy\

\ ds /

{df (¢(1)).Y)

= go(Y,grad f)
= -w(Y,J(grad 1)).

By the definition of the almost complex structure on cotangent bundle we have
~w(X, I(grad f)) =—17(X)(grad f).

On the other hand, we have

/ED_hD \_/a_h _ PV WP «
\JDatDXDY/—\at,( 1(Y),l (X))/—I g

The lemmafollows.

ds

Kenji FUKAYA

At (s,t), s#Q, theequivalence hJ =Jh = prs =—grad f does not hold strictly. But

this formula gives afirst approximation.

So, givenanelement £ of M,,,(P,0), agradientlineof f joining p and q, we

find that h, is an approximate solution of h-.J=Jh.. Hence using implicit function

theorem, one can find an element of Mg, (pg) in its neighborhood. Thus we can

construct amap My qse(P,d) = Mgmp(P,0) . By reversing this procedure we can prove that

it isadiffeomorphism. The details are omitted.

Thisisan outline of the proof by Floer of Arnold conjecture with additional
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Crtaptern 5 Poeuda lolomornplice carve,
and topological G- model

81 Twotroublesin the definition of the Floer homology

In the last chapter, we discussed the definition of the Floer homology of Lagrangian
intersection under the assumption 14 (A) =1,(X)=1. Here X is a symplectic manifold
and A isaLagrangian submanifold of it. We discuss first what happens if we remove
these two assumptions. We show two examples.

Example 3.1:
We first consider X =T? the two dimensional torus. We consider circles in it as
Lagrangians. (Figure 3.2)

Figure 3.2

The two circles A; and A, intersect to each other at two points p, q and
Ay n Ag=0. Then werecall Lemma2.21 in last section and may imagine that d[p] = [q].
It would then follow that HF(A,A,) OHF(A;, A\3). But, thisis not correct. In fact, one
findsthat d[p]=0. Because there aretwo elementsof 2/ (p,q) asin Figure 3.3.
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Figure 3.3

Thus we have HF(A,,\,) # HF(A\,A3). Namely Floer homology is not an invariant
of the deformation of the Lagrangian in this case.

Let us look at this example in a bit more detail. In case when p and q are
sufficiently close to each other, we see that one of the element of 9/ (p,q) has very small
volume but the symplectic areaof the other element is not so small.

If we examine the proof of Lemma 2.21, one finds that the proof is roughly speaking to
show that there is only one element in 94 (p,q) which has very small symplectic area. In
the case when 1 (A)=1,(X)=1 we find that the symplectic area of the element of
M (p,q) isindependent of the element and dependsonly on p and q. (See Lemma2.8)
{0p,q) =1 follows. But in our case when the assumption T;(A)=1 is not satisfied, thisis
not the case. The proof of Lemma 2.8 does not work and in fact the boundary curve of the
two element of A (p,q) is not homotopic to each other. Thus we found an example where
the Floer homology is not a deformation invariant.

Example 3.4 :

We next consider the case when X =S =C [ {0} and the Lagrangians are circles.
(See Figure 3.5.) In this case there are at least two elements A,B of 9/ (p,q) which are
shown in Figure 3.5.
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Figure 3.5

( These two elements do not have the same volume since our Lagrangians are not simply
connected. But this point is not of our main interest here.)

The point we want to discuss here is that there are infinitely many components of
M(p,q) whose dimensions depend on the component. So let us find another element of
M(p,q). Let us consider a holomorphic map z z?. We choose an element ¢ of
P (2C) = Auto(CPY) such that ¢(-1F=p, d(D°=qg and ¢(0),d () DA. We put
f(2)=d(2)°. Then f *(A) isconnected and is an annulus and f ~*(B) has two components
f'l(B)l,f'l(B)2 each of whichisdiffeomorphicto adisk. (SeeFigure3.6.) Thecomplement
of f_l(A) in CP' consists of 2 component. Let D;, D, be those component containing

f(B),, f '(B),, respectively.
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f_1|:B:|1 f_1|:_¢'1]_:|
s Ly
= '=l-r::-_
Figure 3.6

Wetakean element y of PSL(2C) suchthat ¢ (D?)=D,0 f (A, P (+1) = +1.
(Here we put DZZ{ZDC||Z|<]} ) Now we set h=f=yp:D?- S°. Then h isa
holomorphic map and belongsto 94 (p,q).

We will study the component of 9/ (p,q) containing h. We perturb the map z— z?,
to, for example, z= z?+az+b, then we can perform the same construction to obtain an
element of # (p,q). Thus the component of #(p,q) containing h contains a set which
is diffeomorphic to the neighborhood of z—+z® in the moduli space of rational map of
degree 2. Here we define degree of the rational map as follows.

Definition 3.7: Let ®:CP' - CP' be a holomorphic map. We say that @ is a

rational map of degree k, if there exists a polynomials P,Q such that ®(Z)= gg;

max{deg P,degQ} =k andthat P and Q are primeto each other.
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We remark that the real dimension of the moduli space of rational maps of degree k is
4k + 2, since in general such an element are written as

K ...
az+ a2+ 8

k 1
bz"+--+b_,z+h

and two such elements are equal if and only if (@,,---,b) =A@y, -~ ).

The construction we described above gives an element of 9/ (p,q) to each rational
map @ closeto z - 7. The two rational maps @ and P’ givesthe same element of
M(p,q) if there exists ¢ OPSL(2C) suchtha ®' = ®=¢. Therefore the elements of
M(p,q) constructed from rational map of degree k consists of 4k -4 dimensional
family.

Thuswe find that 4 (p,q) has infinitely many components each of which has different
dimension. Hence the definition of the boundary operator has a lot of trouble. This
phenomenon is related to the fact that T[2(32)¢ 0. In fact each of the components of
M (p,q) corresponds to ahomotopy class of the map.

We thus discussed two main troubles which arises when we drop the assumption
T (A\) =1,(X)=1. They are related to the study of moduli space of pseudo holomorphic
maps. S0, in this chapter, we are going to discuss those points.

82 Pseudo holomor phic spherein symplectic manifold

In this section, we discuss the case of holomorphic map from 2-sphere. For a
symplectic manifold X with almost complex structure J, we put

(3.8) M(X,3)={h:S* ~ X]| Ih; =hyJ}.

In order to imitate the argument in Chapter 1, the basic facts we need for this moduli
space isits compactification and the formulato give its dimension.

We first discuss its dimension. For this purpose we study the linearization of the
equation Jh; = hyJ, which is given as follows. Let ht:S2 - X be afamily of maps such

that hJ=Jh,, and hy,=h. Then the differential % can be regarded as a section of
h"TX. The bundle h"TX is a complex vector bundle. By differentiating the equation
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hJ = Jh,, we find that % is a holomorphic section of h"TX. We calculate the

dimension of 0(h"TX), the set of holomorphic sections of h”TX, using Rieman-Roch
theorem and obtain the dimension of the moduli space of #(X,J) . But in case when
11,(X) # O, the dimension depends on the component. So we put

M, (X, 9) ={hOM (X, )| " TX,INN [S]=K} .
Then we get

Theorem 3.9 ( Gromov ) :
dimg M, (X,J) = 2dim; X +2Kk.

In place of proving Theorem 2.2 let us verify it in the simplest case, that is X =CP*. In
this case Mk(CPl,J) is the moduli space of rational maps of degree k /2. (Recal
c'(TCPY n [CP']= 2.) Thus as we discussed before dim, 4, (CP*,J) =2k +2, as asserted
in Theorem 3.9.

Before discussing the compactification of the moduli space we want to remark that
thereis an action of Aut(CP') = PSL(2,C) on M, (CP"J). Namelyby ¢ th=he¢ . Let
m_lk(CPl,J) be the quotient space. Hence, in casethe action isfree, we have

dimg M, (X J) = 2dime X +2k - 6.

It is natural to consider 9, (CP",J) rather than %, (CP",J). But there may be a trouble
since the action is not necessary free. In that case the moduli space m_/[k(CPl,J) issingular.

We will discuss this point a bit more later.

We now discuss the compactification of the moduli space 9\_/[k(CPl,J). The basic
results on it are established by Gromov [Gr]. His result is an analogy of the results by
Sacks-Uhlenbeck [SU] on Harmonic maps. First we have::

Theorem 3.10: Let h UM (X,J) be a sequence of pseudo holomorphic spheres such
that | hDu) is bounded. Then there exists a subsequences (which we denote by the same
symbol h;) and a finitely many points py,---,py in CP! such that the restriction of h, to
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CP'—{p,.,p} convergesin C”-topology.

Let us recall the case when X =CP". In this case [hto = Sl he'(TX,J) . Hence
by its boundedness we may assumethat h; isarationa map of degree k for some number
k independent of i. We recall that the set of rational map of degree k isidentified to a
subset of CPz‘_lz{[ao’---,ak,bol---,bK]| a.b DC}, where [a,---, &,y -+, ] corresponds

to

k
aOZ +"'+ak_1Z+ak
k .
boz +. .. +h<_1z+ h(

>

Now we regard h, OCP™™. Then it has a convergent subsequence in CP*™ . Let
[ag - a.p--.0] be its limit in cP* . If  P= aozk+---+a(_1z+ a, and

Q=b, z"+---+bk_1z+bk are prime to each other then [a,-,a,by -,b ] represents an
P@ .
Q@

element of M (X,J). Inthiscasewe can provethat h; convergesin #(X,J) to
C” -topology. Hence the conclusion of the Theorem 3.10 holds for k = O.

We next supposethat P = ﬁ(z—pi)EP' , Q= |i| (z-p )@ andthat P and Q' are
prime to each other. Then we c; prove easily that,l_gn s? —{p,--,Pe}, h convergesto

P@) in C”-topology. Thus Theorem 3.10 holds in this case also. We remark that in the

Q®
later case the limit 2—8 does not belong to the same component as h,. (Namely
P'@)

9@ )DMk 2 (X,J) whileh, OM, (X,J).) We next state the following :

Theorem 3.11: Let h: & —{p, Pt - (Xw,J) be a pseudo holomorphic map such
that |, {pu h'w isfinite. Then h can be extended to a pseudo holomorphic map from
s

We remark that in case when X =CP", this theorem is Picard's theorem. Theorem
3.11 can be proved in essentially the same way as a Picard's theorem namely by using
Schwartz inequality.

Theorem 3.11 implies in particular that the limit of h, in Theorem 3.10 can be
extended to an element of M (X, J).

Let us emphasis here the role played by the assumption of the finiteness of symplectic
volume in Theorems 3.10 and 3.11. Thisis the basic point and the point where we can not
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work with an ailmost complex manifold but a symplectic manifold.

Now let h, be as in Theorem 3.10. We assume that it converges to h, on
CPl—{pl,---, P} We are trying to find what happens in neighborhoods of p;. We may
assumethat p, = 00C O CP'. By Rieman's removable singularity theorem, h; converges
dsoto h, a O if || isbounded. Hence we may assume that T =|h| converges to
infinity.  We put ﬁi (2 =h(z/T). (We have ﬁi’(O) =1.) By applying Theorem 3.10 we

A

obtain a subsequence such that ﬁi convergesto h, in C”-topology on CPl—{oa,---,qg}.

A

(0#q) Werecdl T — . Hence h, isnothingwith h,. The situation in case when
k=0,£=0 isillustrated in Figure 3.12 below. (Inthiscase ¢, = ».)

Figure 3.12

In general we can repeat the construction above and can find a finite number of pseudo
holomorphic spheres asin Figure 3.13 to which the sequence h, converges.
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Figure 3.13

We state it precisely abit later. Before doing it let us discuss the case when X = CP",
We put, for example

z(z+1J)
(z+¥i)

h (2=

Outside p, =G0, our sequence of function h,  converges in C®-topology to
h, (z)=z+1. To study the behavior of h; inthe neighborhood of p, =G, let usfollows the
discussion above. Wethenget T, = W (O)=i. Therefore

~ Z2(zi +1)
hi (Z) = ﬁ .
Hence ﬁi converges to ﬁe(z) = (zfl) outside g, = . Thus, in this example, a

sequence h, of maps of degree two rational converges to the union of two rational maps of
degree 1.

Now we are going to describe a compactification of M (X, J).
Wesay that = =I_IS isacusp curve of genus O if

) § OcP,
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(2 #S n §)<1,
(3 > isconnected and simply connected.

Namely

Isacusp curve of genus 0 but

Isnot a cusp curve of genus 0. (Sinceit isnot simply connected.)
Let = =IIS beacusp curve of genus 0. Wesay amap h:Z - (X,w,J) tobea
pseudo holomorphic map if
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D h is continuous,
(2 therestriction of h toeach § ispseudo holomorphic.

Now we state Gromov-Ruan's result on the compactification of M (X, J).

Theorem 3.14: Let h OM (X,J) beasin Theorem 3.10. Then there exists < =S5,
and cusp curve of genus 0, h:Z - X an pseudo holomor phic map, and a subsequence h, ,
such that

limh, CPYH=h(Z).

There are various ways to state the precise meaning of the convergence
kIimhk CPH=h(Z). But we do not try to do it here. We also need arguments about

perturbation and transversality, which is also omitted.

83 Topological c-model and Gromov-Ruan invariant

To apply the argument of § 2 to generalize the discussion of Chapter 2, we need to
consider its generalization to the case of pseudo holomorphic maps from a disk
D? :{ZDC |14 < :I} . Weare going to discussit in next section. In this section we describe a
construction of symplectic invariant using the result of the last section. This result is due to
Y. Ruan|[R].

First let us consider the moduli space of the configurations of n-points in CP".

Namely we put
Tho :{(217""Zn)| Z DCPl,Z Z ZJ-} )

The group PSL(2C) = Aut(CP") acts on this space in an obvious way. Then we consider
the space

M(X,IYX T, o
M(X, ) *g 20y Tno = W

We define
e M(X, ) *s .20y Tno » X'
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ev(h,(z,-,2)) = ((z),-,h(z,)).
We calculate the dimension as
dimM, (X,J) Xpg 2c) Tno =2k +2dim X +2n - 6.

There is a natura projection 1M (X,d)*Xg 2cyTn 0 T,o0- Here we put
Tho0 =Ty o/PSL(2,C). Thusif we forget all the troubles which may occur, we will get an
element

(3.15) e (PD(M([Z;0]))) = Hacszam x(X"Z).-

This coincidesto what physicists calls topological sigmamodel of genus 0, and is established
rigorously inamathematical sense by Ruan, (based on Gromov'sresultson pseudo holomorphic
curves). (Thisinvariant is one Ruan defined in Theorem B of [R].)

Let us describe this invariant in a bit more precise way. We first need to specify the
homology class u OH,(X;Z) suchthat un c(TX)=k. We put

M, (X, 3) ={h O, (X, )| h[S"1=u}.

For simplicity we consider the case when n, the number of points we take on CP*, is
three. (In fact one can prove that the invariant for general n is determined by the case
n=3.) Inthis case we rewrite the definition (3.15) as follows. We remark that PSL(2,C)
acts freely on 75, and the quotient 754 = 75,/PSL(2,C) is exactly one point. Thus we
can identify M ,(X,J)Xpg 2c) T30 = My(X,J). Now we take three cohomology classes
o, OH(X;Z), i =1,2,3. Choose cycles Z [ X representing Poincaré dual to ;. Then
Z isasubspace of codimension = 2 singularity and of dimension dimX —/;. We choose
£ and k such  that K+, +0,+0;=dimX. Then
dma,(X,J) +dim(Z, x Z, x Z;) = dimX°. Henceif we assume transversality we can define

(3.16) D, (01,0 5,03) = [ (1(0),h@),h())| hOM, (X, )} 1n [Z, % Z, x Z5]OZ .
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(Here we take three points 0,1 . This choice is quite arbitrary and any choice will give
the same resullt.)

To justify Formula 3.16 we meet two troubles. One of them is the singularity of
M, (X, J), the other is its compactification.

First we consider the problem of the singularity. We embed the space #(,(X,J) to
Map, (X) ={ f:CP* - X| f'c'(TX)n [CP']=k}. On Map,(X) there is an action of the
group Diff(CPY), givenby (¢,f)f=¢. The singularity occurs at the fixed point of
this action. Namely if f UM ,(X,J) sdtisfies f«¢ =f for some nontrivial element
¢ DDiff(CPl). Then ¢ isautomatically an element of PSL(2C). Hence f=¢ =f is
satisfied if there exists T:CP* - CP' suchthat f = f=T for some f:CP" - X. Inother
words it occurs in the case when the curve f (CPl) isreduced. The trouble caused by the
singularity is that the naive dimension counting argument do not work there. This problem
combined with the second problem causes serious trouble. We will describeit abit later.

Secondly we discuss the problem about the compactification. We mentioned it already
and we found that in the limit the elements of Mu(—XJ) may split into cusp curve of genus
one. Roughly speaking we can define an invariant like (3.13) if the boundary appear is
codimension = 2. First we give quite naive argument which in fact is not correct. We then
point out some troubles.

Let us consider a sequence of elements f, of M ,(X,J). Weremark that the symplectic
volume of elements of M ,(X,J) depends only on our cohomology class u. Hence
symplectic volume of f is bounded. Therefore, we can apply Theorem 3.14 and may
assume that f, converges to a cusp curve of genus 0. For simplicity, we assume that this
sequence diverges and the limit in the sense of Theorem 3.14 is f:¥ -~ X where ¥ is a
union of two S*'s attached at one point. (The case when f, converges to the map from the
union of more than 2 spheres can be handled similarly.) In the limit, our three points
0,10 =p, p,, p; Will besituated on S or S5. Essentially there are two cases namely
PP, O, P30S of pr,p,ps 0.

Let f;, betherestrictionof f to S§°. Weput k =(g fiy (@). Wehave k =k +k,.

Now we consider the first case, our space (Z,(py,P.,P3)) IS:
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Figure 3.17

The biholomorphic automorphism of this figure is C" which acts on 822 The moduli
space of holomorphic structure of this figure is O-dimensional. The set pseudo holomorphic
maps from 3_2 consists of 2k; +dim X -dimensional family, while the pseudo holomorphic
maps from S5 consists of 2k, + dim X -dimensional family. There is one more constraint
that is fy(@)= f»)@). Thuswe have 2k; +2k,+dimX =2k +dimX dimensional family
of moduli spaces. After dividing the C" action we have 2k +dimX-2 dimensional
submanifold in X>. Since the space M, (X,J) is 2k +dimX dimensional our boundary
corresponding to Figure 3.15 do not affect the well definedness of 3.14.
We next consider the case when p;,p,, ps S .

Figure 3.18

We can apply the same calculation and find again the codimension of the moduli space
corresponding to this configuration is not smaller than 2. Thus this boundary do not affect
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the well definedness.

Thuswe are done ? But in fact there are cheatings in the above argument.

Let us explain a trouble which may occur if we do not put additional assumption for
(X,0,J). For example let us consider the case of Figure 3.17. Let ¢,.:S; -~ S bea
rational map of degree m which branchesat q and p;. We consider a pseudo holomorphic
map hy:S - X suchthat hg(TX)n [S]= -s<0. Wechoose dimX -2s-6= 0. Then
we consider moduli space of f:Z - X  such that f,= f|§ =hy=¢,, and
f,= 1|
dimX —2sm-6 < 0. But thisset cannot perturbed to be empty. (Sincethereisno perturbation
to remove hO:S2 - X.) (This point is related to the first trouble we mentioned.) On the
other hand the dimension of M,,.,(X,J) is dimX+k+2sm-6, which can be very

Sl2D91/[k+sm(X,J). Now for large m the "virtual dimension" for f, is

large. So naive dimension counting we did before do not work. This trouble is related to
the stability of the curves which are known for along time in algebraic geometry. (Namely
S* with two pointsisnot stable.)

In order to avoid this trouble we consider the following class of symplectic manifold.

Definition 3.19: A symplectic manifold (X,w,J) is caled semipositive if for each
f:S° - X wehave | fw<C if 6-dimXs 2f{(c'(TX,J)) n [S']<0.

We remark that if f:S - X is pseudo holomorphic (and is nontrivial) then its
symplectic volume | f'w is positive. Then in semipositive symplectic manifold we have
6 —dimX>2f4c'(TX, ) n [F] or (X, I))n[S]= C. On the other hand Theorem
3.9 shows that the dimension of 97[k(X,J) is 2k+dimX-6. In the case
6 —dim X > 2f(c'(TX,J)) n [S°] this number is negative, hence there is no such pseudo
holomorphic curves’. Hence we conclude:

Lemma 3.20 : For all pseudo holomorphic curve f:S* - X in semipositive symplectic
manifold X, we have

fICc X, ) n [F]= C.

°In fact we have to consider the possibility of singular point. But one finds that this
does not occur either.
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Using Lemma 3.20 we can prove that the trouble we mentioned above do not occur and
we can justify the construction in the case when our symplectic manifold is semipositive.
Of course there is a lot of things we have to do to make the argument rigorous. (For
example the transversality.) But we do not mention them here. See[R].

Before closing this chapter, let us point out that there is a problem to generalize the
construction of this chapter to the case of pseudo holomorphic curve of higher genus. (See
[Ko3]) Namely let us put

- O J isacomplex structureon > /
{Z-I:‘I,g: E{Zga‘]a(pl,--dpn)) n DZ D lef (Z)

Herethe action of Diff (Z) isdefined by

¢ 0,3, (P, P))= C,0 3, @ (R 0 ().

Thereisalsoamap:

s % DZ 3 Jisacomplex structureon 2] N
: X . N
ev: map(Z, X) lef(Z)%( g (Pu*2 Pn)) ub E ,

which might be used also to construct an invariant of a symplectic manifold X. In this
situation one might be also able to construct cohomology classes of Teichmidller space an’g
fromoneon X.

But so far there are alot of difficulty to compactify the moduli of pseudo holomorphic
map of higher genus.

Cliapten & MWlaslov cnder, Noucbov ning,

81 Moduli space of pseudo holomor phic disks

Inthissection, wediscussthemoduli of pseudo-holomorphic disksin symplectic manifold.
Namely the space of maps h from D”={z0C|l4<1} to (X,w,J) satisfying h,J = Jh..
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To get a moduli space of finite dimension, we need to assume a boundary condition. A
natural way to do so it to take some Lagrangian submanifold A of X and assume that
h(dD*)0 A. Namely we consider

M(X,I;N\) = Eh:Dz - X =) E
0 h(0D?) 0 AL
We discussed similar moduli space in Chapter 2. There we assumed 11;(A) = T,(X)=1
The presence of T,(X) has an effect that the dimension of each component of
MK I;N)
depends on the pull back of the 1st Chern class to D?, as we discussed in the last
chapter. On the other hand the presence of 1t;(A) implies that [h(0 D310 H,(A\;Z) hasa
contribution to the dimension of each component of #(X,J;A\), as we will discuss soon.
Usualy it is difficult to separate the these two effects. In fact, in genera, pull back of the
1st Chern classto D? is not well defined as an integral homology class. Thereis various
way to take into account these two effects. And so far the author do not know what is the
most natural way to do so in general case. S0 in this section, we put a bit restrictive
assumption to both symplectic manifold and Lagrangian, so that we can isolate each of these
two effects. These assumptions are satisfied in the case we need to study the relative (gauge
theory) Floer homology.

Assumption 4.1 :

A symplectic manifold (X,w) with amost complex structure J is said to be pseudo-
Einstein if there exists an integer N such that N[Jw]= [cl] as De-Rham cohomology
class.

Hereafter, for pseudo-Einstein symplectic manifold, we choose and fix a hermitian
connection 0 on TX such that No = ¢'(TX) holds asforms. Hereafter we also assume
that the De-Rham homology class [w] is integral namely contained in the image of
HY(X;Z) in HJ(X,C). Then asiswell known there is a complex line bundle L on X
such that [c'(L)]=[w]. Thisbundle L is caled prequantum bundle. We also choose and
fix aconnection [0 of L suchthat cl(L):oo asforms.

Let A Dbe a Lagrangian submanifold of X. Then by definition of Lagrangian
submanifold cl(LjA =C. Hence (L,0) isaflat bundleon A . If we assume furthermore
that A is simply connected then it follows that (L,00) isatrivia bundle (with trivial
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connection) on A . This was the case of Chapter 2. But we do not assume that A is

simply connected in this chapter. We define :

Definition 4.2: A Lagrangian A issaid to be a Borh-Sommerfert orbit (abbreviated by
BS-orbit hereafter) if therestriction of (L,[J) toitisatrivial bundle with trivial connection.

Remark 4.3 : BS-orbit has the following origin in quantum mechanics. Let us consider
the classical phase space of one particle in two dimensional Euclidean space (that is TR ?)

and consider usual 2 body problem. Namely we consider the Hamiltonian
1

h:Zpiz—m.

guantities invariant by this vector field, that are energy and angular momentum. Hence the

We consider the orbit of Hamiltonian vector field H,. The are two

level set of these two quantities are (in generic case) a 2 dimensional torus. The restriction
of the integration curves of Hamiltonian vector field to each torus is the parallél circle. Thus
the splitting the phase space into tori describes the behavior of our Hamiltonian vector field

Our tori is also a Lagrangian submanifold. We consider tori which are BS-orbit also.
One can find that for each E thereisonly afinite number of tori which is BS-orbit and the
energy issmaller than E. Borh-Sommerfert's quatization condition says that the dimension
of quatum Hilbert space of this system of energy < E is equal to the number of such
BS-orhit.

Remark 4.4 : Wealso remark heretherelation of BS-orbit to the exactness of symplectic
diffeomorphisms. Let (X,w) be a symplectic manifold and ¢,:X - X is a family of
symplectic diffeomorphism such that ¢,=1id. The graph A, of ¢, are Lagrangian of
(X xX,w O-w). One then can prove that A, are BS-orbitsif and only if ¢, are exact
symplectic diffeomorphism.

In place of proving this assertion, we explain that the obstruction for a Lagrangian to be
BS-orbit is the same as one for the symplectic diffeomorphism to be exact.

Let A, be afamily of Lagrangian such that A, is a BS-orbit. We consider the
monodromy h,:1,(A) - U (D). (Since each member of the family A, are diffeomorphic to

each other we identify their fundamental groups and simply write it as 1;(/A).) Now since

: o h
N, isaBS-orbit it follows that hy=1. Hence we may regard % as an element of
t =0

HY(A;R). (Note that R is Lie algebra of U(1).) Thus the obstruction for N\, to be
BS-orhit is given by an element of H(A;R).
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Next we consider the family of symplectic diffeomorphism ¢, suchthat ¢,=1id. We

di)tt . We define the 1-form u by u(Y)=w(X,Y). The
t=0
infinitesimal version of the condition that ¢, isafamily of symplectic diffeomorphism is

consider the vector field X =

equivaent to du= 0. Ontheother hand X isaHamilton vector field if and only if u = df
for some function f. The condition that X isaHamilton vector field is an infinitesimal
version of the condition that ¢, are exact. Then the obstruction for ¢, to be exact liesin
the De-Rham cohomology group H'(X;R).

By smply calculation we can find that the two obstructions (one for graph to be
BS-orbit, the other for maps to be exact) are the same.

Now we defineamap m:T(A) - Z , which we call Maslov index, for a BS-orbit A .

First we put
H EOR" C
Grlag,n =EOC" L
0 zdxi Ody; |E —0[

Thismanifold is called the Lagrangian Grassmannian. We recall the following :
Lemma 4.5 : T Ghgn)=2Z.

The generator of 1;(Gr,y,)=2 iscalled the universal Maslov class.

Now we define m:my(A) -~ Z . Let [E]0m (A, py). Our assumption Now = cl(TX)
implies that there exists a canonical isomorphism detrX L. Hence the bundle detrX
together with itsinduced connectionistrivial on our BS-orbit A . Therefore, the monodromy
h(#) of the tangent bundle TX aong £ iscontained in SU(n). Take apath in SU (n)
which joins h(#) to the unit. Then we have atriviaization in £°(TX). (Here £°(TX) isa
vector bundle over S'.) On this (trivial) bundle £°(TX)OS'xC", there is a family of
Lagrangian vector subspaces TyqyA. Thuswe get aloop in Gr,,,. Then by Lemma 4.5
we get anumber in 1, (G, ,)=2Z . We denote this number by m([£]). Using the fact that
L, (SU () =1, we find that m([£]) is independent of the path in SU(n) which joins h(¥)
to the unit.

Lemma 4.6 : m([E]) isevenif and only if [#]101, (A, py) respects the orientation of
N.
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We omit the proof. Hereafter we always assume that our Lagrangian A is oriented.

Hence our Maslov index m([£]) isalways even.

The purpose of this section is to find a formula to give a dimension of moduli space of
stable holomorphic disks. Two numbers are related to it. One is Maslov index we discussed.
The other is relative Chern number, which we define now.

Let A beaBS-orbitand h OM(X,J;A). We put

c'(h)= [,.h (" (TX)).

Here cl(T X) is the Chern form defined by using the connection 0 on TX. We
remark that by our assumption the form c¢*(TX) istrivial on A. Hence the number c'(h)
Is regarded as relative Chern number and is an integer. Now we put

My (X, JiA) = [h OM(X,J;A) ;((:zm;( m%

Theorem 4.7 (Gromov) : In case everything are transversal we have
dimg M, (X, JA) =n+2k+m.

Here n isthe complex dimension of X.

To sketch the proof of Theorem 4.7, let us recall the reflection principle in the theory of
function of one complex variables. Namely let D be a domain in the complex plain which
is invariant by complex conjugate. Put D’ ={z OD| Imz= 0} and D =D7,
D; =DnR. Let h be a holomorphic function on D" (which is continuous on the
boundary) such that h(Dg)OR. Thenfor zOD™ weput h(z)=h@E) and then get a
holomorphic functionon D.

We use a variant of this in the following way. We consider D°JCP'. Let E bea
complex vector bundle on D® and let E, be area subbundle of El,p. such that
E; Og COHE. Then there is a unique complex bundle E on CP' together with
conjugate holomorphic isomorphism conj : E - E which cover z+—+2z and the fixed
point set of itis E;. Then, for each holomorphic section ¢ of E suchthat ¢ (2) DE;
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for each zAD?, we can extend it to a hol omorphic section in the sameway. Thuswe find

¢ is holomorphic O

e e
$(2 OE, forzoop2o o et (P AR,

O
(4.8) dimg 0 O (D?, E)‘
O

Now we are going to apply Formula (4.8) to prove Theorem 4.7. Let

h, OM (X, J;\).  Then % is a holomorphic section of hg(TX) such that
t=0
dh,

= @Oh(TA) for z0OAD? Weput E=hy(TX) and E; =h5(TA). Then (4.8)
t =0

implies that in generic situation, we have :

(4.9) dimg M, (X, 3 A) = dimg HOCP,0(B).

So we are going to calculate the Chern number of the bundle E. Roughly speaking E
is adouble of ho(TX). Butitisnot truethat c*(E) = 2c(W(TX)). Because there are two
different trivializations we used for hg(TXjaDz. (More precisely the triviaization of
detho(TX)|, .. ) One trivialization comes from the equality c*(TX)=Nw =Nc'(L) and
the triviality of L on A. This triviaization is used to define c'(hg(TX)). The other
trivialization is induced by ho(TX), , = hy(TA), , O C ™. This trivialization is used to
define E. Then our definition of Maslov index exactly evaluate the difference between
these two trivializations. Hence the correct formulais

¢'(E) = 2c'(h5 (X)) + m(y(9D%))
Theorem 4.7 follows from (4.9) and Rieman-Roch formula.
82 Floer homology for Lagrangian intersection
Now we consider pseudo-Einstein symplectic manifold (X,w,J) such that

c'(TX)=Nw with N> 0. We consider two BS orbits A, A, onit. We assume that they
aretransversal to each other. For each p,q OJA; n/A,, we consider

 Since we assumed that A is oriented it follows that ho(TA)_, istrivial.
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hyJ = Jhy

h(-1)= p,h(1) =q

h(z2) DA, for zOAD?,Imz >0
h(z) OA,, for z0OAD?,Imz<0r

O O e O

O

EI 2
Msymp(p’q;/\lil\z) = [h:D" - X

0

O

In the case when Tt (A\;)=1,(X)=1, the dimension of each component of
Mymp(BAGAL,N,) isequal to p(p)-p(g) for somemap piA;n A, - Z. Sincewe do
not assume T (A\;)=T,(X)=1 the dimension of My,,,(p,g;A,/A,) depends on the
component as in the case of pseudo holomorphic map from CP'. Aswediscussedin § 1
(where we considered the case we have one BS-orbit for boundary value) there are two
factors which contribute the dimension of Mg ,.,(p,g;A;,/\,), that is the Maslov index and
Chern number (or symplectic area.)

First we will define Maslov index. We fix base point x OA;, and for each
pOA;n A, wefixpaths £; | joining x to p in A" Thenfor h OMy,,{P.G:ALA,)
we define its Maslov index m(h) as follows. We consider the union of three arcs £, ,
h(alDz) ,€14- Here alD2 = {z 0oD? | Imz>0} . These three paths give aloop its homotopy
class give an element of 1T;(A,,p,), let m; beits Madov index. We define m, ina
similar way from £, h(0,D?), £, . Thenwe put m(h)=m, —m.,.

"The Maslov index depends on the homotopy type of the path but not the Floer
homol ogy definied.
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We next define relative Chern number. There is a small trouble about it. Namely
]Dth(cl(I' X)) may not be an integer. So we modify this number and make it to an integer
in the following way. For p,q0A;nA,, we consider aunion of 4 paths £, ), £,,,4,,,
£,, and getaloop,£€,,.,. Let h, OU(D be its monodromy of the prequantum bundle
L dong £,,1,. By definition we have h, ;h, . =h, . Regard U)=R /Z. Then, by a
simple combinatorial argument, we canlift h, , DU(D to h,, OR such that

]
+
-]
1]
1

(4.10)

p.q ar pr:

(Thisliftisnot unique.) Since A; isBS-orbit, the holonomy of the prequantum bundle L
aong h(aDz) coincideswith hy . if h OM,,,{p,q;A1,/\,). Henceby

using our lift ﬁp’q we can construct a trivialization of  hjy(det(TX)). (Note
det(TX)= L") We define c'(h) to be the relative first Chern number of h”(TX) with
respect to thistrivialization. (We have c'(h)ONZ .)

In other words we have
c'(h) = [ ' (TX)) - Nh,q -

A consequence of (4.10) is as follows. Let [h]DﬂT/[sym‘(p,q;/\l,/\z) be a sequence
converging  to ([Nl [M]) Mgy (P13 AL Ag) X Mg (1,G5 AL A, Then
Iimcl(h )= cl(r11)+ cl(hz). (We note that limm(h) = m(h) +m(h,) &aso holds from def-
inition.)

We put

omp O m(h) = m[C
Mm (P, AL N) = Eh OMymP A AL ) )= kE
Then, by the same argument as in Chapter 2, we have

(4.12) IMI™P (P, A:ALAL) = [ M, ALA)X MR o €A ALAL)

rk,m

We have aso the following :
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Theorem 4.12:  If everything is transversal then there exists p:A; n A, - Z such that

dimm P (p, g ALAL) = P(P) - (@) + 2k +m.

Sketch of the Proof.
Let [h] DﬂT/[SymF(p,q;/\l,/\z) be a sequence converging to
D) DM gy P A LAY X My, 6 AL ). Let  MoymfP.GiAL AL,

MeaymdP.1 N LN s Moyl AL, A),  be connected components of - My (P, 0iA 1, A L)

s MaymfP. AL, Moy r AL, A,) containing [N, [y, [h,] respectively. Using
excision property of Index of elliptic operator, we can prove that

diM Mg (PG AL Ay)g = DiMM g (B ALA)g +dim My, (1, G ALA,), -
Then Theorem follows from limc'(h) = c'(h) +c'(h,), limm(h) = m(h) +m(h,) .

Thus to construct Floer homology we need to take into account the quantities k,m.
The key idea for doing it was introduced by Novikov** [N], and used by Sikorov [Si],
Hofer-Salamon [HS], Ono [On] and Ono-Van [OV] in symplectic Floer theory. Before
explaining it, we need one remark. Note that the integral [ ,h"(C'(TX)) is dways
nonnegative if h is pseudo holomorphic. Hence by definition a7 P(p,a; AL A,) s
nonempty only if k> ky(p,q) for some number Kk,(p,q) depending only on p,q. We
consider two cases N =0, N >0 separately.

First we consider the case N >0. Then Theorem 4.11 implies

dimaZiP (0.0 Ay Ap) = u(p) — H(Q) +2k  mod2N.

m

So we consider chain complex with Z /2NZ -grading. To take into account the effect
of m wetakethe Novikov ring R=Z[T][T 'J. We put

C:(hN)= O RIp)

“Novikov found this construction to study Morse theorey for multivalued function.
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The boundary operator is defined by

(4.13.1) o[ p] = > <opT"gq>T"[d],
H(p)=H (g)+m mod 2N

(4.13.2) <op,T"q> =#MIP(p,q), (countedwithsign.)

Here we choose k such that dimMn"(p,q)=C. The right hand side of (4.13.1) is
containedin [ ROp] since M n"(p,0; A, Ap) isnonempty only for k > ky(p,q).

pPOALNA,

(Namely < dp,T™q> isnonzeroonly for m<u(p)-u(g)— 2Nky(p,q).) Then using the
property (4.11), we have :

Theorem 4.14: 00 =0.
We put HR(A;,A\5) = H{(C,,0). Wehaveaso

Theorem 4.15: HF(\;,/\,) isinvariant under the perturbation of the BS-orbits A, A,

We remark that we made some choices to define Maslov index and relative Chern
number. But changing them corresponds to change the generators [p] to T?[p] for some
a. Since T isinvertiblein our Novikov ring R, this does not change the Floer homology
HF,(A\,/A\,). Thus we constructed the Floer homology of intersection of BS-orbits in the
case when c'(TX)=N[d, NDOZ,. The same remark can be applied to the case N =0
also.

We next consider the case when N =0. (This corresponds to Calabi-Yau manifold
when our symplectic manifold (X,w) is Kéahler.) In this case Theorem 4.11 implies that
symplectic volume do not affect the dimension of the moduli space. Therefore for each m
there may be infinitely many components #n" (p,d; A, A,) of the same dimension. So
we need to use again Novikov ring to construct Floer homology. In this case we take
R=Z[T 1ITT. Thenwe put
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C(\A) = U RO
pOANA 5
o[p] =% <op,T'q>T*[a],

<opTq> =M Gy w (P ), (conted with s).

Then again we havedd =0. We put HF(A;,A5) = H(C,,0). Theorem 4.15 holdsin
thiscase also. Thus we constructed Floer homology between two BS-orbit in the case when
ci(TX)=0.

So far we considered only the case when (X,w,J) is pseudo Einstein. Probably one
needs to consider Novikov ring of several variablesto deal with more general case.

Finally we remark that Oh [Oh] discussed Floer homology of Lagrangian intersection
in abit different way.

83 Lagrangian homology

In this section we combine the ideas discussed in Chapters 1 and 4 and define a
"quantum version" or Morse homotopy.

Let (X,w,J) be apseudo-Einstein symplectic manifold with N> 0. Let Aj,---,A
be BS-orbitsof X which are pairwise transversal. We put

S

Th0.s :{(zl,---,23)| yA [0 D?, (7, z;) respects cyclic ordering}.

For (z,,z)0T;4s, Welet C(z,,z) bethecomponent of S*-{z,z.,,} which
contains no other z's.
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Figure 4.16

Let p OA N A, (We put Ag,;=A;.) Then we define the moduli space
Msymp(plf'"ps;(xiwi*]» by

E (z . z)0T 06 E
Moy P (X,00,3)) = T, (2., 2,))| h: D® = X, hpJ = Jhy .
. h@)= R hG @ - zDOAF
P2
Py
Px h(D*)
Figure 4.17
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To study the dimension of this moduli space we again need to consider the Maslov
index and Chern number (or equivalently symplectic volume).

We choose base points % UA; and paths £; , £, from X to p or p; in A
respectively. Weobtainaloop L(p,,"--,ps) by joiningthose 2s loops.

Let hp pp.-p DU (D bethe holonomy of the bundie L along thisloop. We have

Ny - palbpa opepa = Mpyepyr @00 N oy =y

p‘" >i(yl p2

L(Py, P2, @)

L(Prs P2 P3, )

Figure 4.18

Then again by a ssmple combiantorial argument, we can lift them to N,\l,,,,\s;pb,.,% OR

such that My o g * Mg pomeps = M Moipy +ﬁpl.---,ps = F‘pl,...,ps- Now, for
h DMsymp(p_Lf"'a ps;(x,(k),\])), we pUt

c'(h) = [ hc(TX)) - NRy .,
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We have c¢'(h)0Z . We aso remark that c'(h)= Ko(Py -+, P ) because of the positivity of
symplectic volume of pseudo holomorphic disk.

We next define aMaslov index. For each h UM, (P, -+, Ps; (X, 0,J)) and 1<i <k
the union of three arcs &; , £; o , and h(G (z,-,z)) givesan element of T, (A;,X;).
Welet m(h) bethe Masov index of thisloop.

We then put

M (P, P (X, w, 3))

—D . X Cl(h):k[
_E(hi(zlf ’Zs))DMsymp(p_Li ’ps'(x’w"])) %,O,S m(h)=mE

The group PSL(2ZR)=Aut(D®) acts on  MIP(py,,psi(X,w,J)) by
¢ @, z))= (e 0,0 @) 0 @) Let MIP(py -, psi(X,00,3)) be the quotient
space of this action. Then we can generalize Theorem 4.12 asfollows:

Theorem 4.19:  If everything istransversal, then M (p,, -, ps; (X,®,J)) isasmooth
manifold and that we have

dim AP (- B (X,0,9)) = Y H(R; A A L) + 2K+ m+5-3,
i=1

(Wewrite u(p;A\;,A\;,,) inplaceof p(p) to clarify the order of two Lagrangians which
intersect at p;. Infact we have p(p ;A A D) =—HP A N)-)

Also we have:

Theorem 4.20" : We can compactify M, (py, -+, Ps; (X, 0, J)) such that

3This Theorem is stated in a bit unprecise way. In fact the is another
end related to the bubling phenomenon. There are two kinds of bubling one is
interior bubling and the other is boundary bubling. We do not go into detail.
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OMIP(Py, -+, Ps; (X, @, J))
= U U R piA A I (P P PG (G0, 3))

LK pIONA NAG

O U U ﬂlf}:rl?'p,m—m’(pl’”"pi’q’pj""’ps;(x1wv‘]))

I<i<jss,k’,mgOA; nA i

XM, P P13 (Ko, J))

The proof goes roughly the same as one for Theorem 4.12 and Formula 4.11.
For the proof of Theorem 4.20 we recall that the compactification of the moduli space

Toxo0= Tox0/PL@R) is given by
'?a,k,o [ U’fa k0% r~7:a,|<+2—|<',oD U'}a,k',o X iﬁ,k",o X q_:),k+4—k'—k',0D'”'
k' k', ke
P2
Py
P3
P4

The second term of the formula corresponds to U‘-_Ta,k',o X ‘fay,ﬁ}k,yo. Geometrically
kr
these terms corresponds to the splitting of pseudo holomorphic disks shown in the figures

below.
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N3

Thisfigure corresponds tot the first term.

Figure4.21
/\2

NNy,

1

P4
Ps

Na

Thisfigure corresponds second term.

Figure 4.22

We mention a bit about the proof of the dimension formulain Theorem 4.19.
First by considering the excision property of index for the pseudo holomorphic disk in
Figure 4.21, we find that there exists k(A,---,/Ag) such that
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S
dim P (py P (6,0, 3= 5 H(RAL A L) + 2K+ M+ S= 3+ KAy, A).
=1

(Here k(A4,---,A\g) isindependent of p;.)

We remark here that the number p(p;A;,A\;,;) in Theorem 4.14 has ambiguity.
Namely we can replace it by p(p ;A\, A1)+ C\,\;,;). We need to adjust them in order
to prove Theorem 4.16. In fact if we change p(p ;A A1) Op(R AN ) +HCAN LA L),
thenk(A4,---,Ag) will changeto k(A -, Ag)+ ZC(/\i,/\i+l).

We apply the excision property of index to the pseudo holomorphic curve of Figure
4.22 (and asimilar curve where/A; and A5 intersects) we obtain

(4.23) k(AL A2 A * KA AN L) = KL A ALY+ KA A y).

Formula 4.23 implies that we can find CN\;, \ip) such  that
K(ALANS NG+ Zc(/\i N\,1)=0 for arbitrary A, A,,A5. (This follows from vanishing
of appropriate second cohomology group of free Z -module.) Then using excision property
of index we can prove that the formula holds in general.

By the above argument we find that p(p ;A;,A\;,,) iswell defined modulo constant
independent of A;,A;,;. One can determine these constant by considering the case when
N;,1 isthe perturbation of A;. Thus the index is determined uniquely in our situation.
(However they does depend on the choice of the paths £, , and thelifts ﬁAl"'As;QL""ps )

Now, first in the case when N >0, we define the (higher)-composition map
ns—l:c‘ﬁl(/\liAZ)DR"'Cﬂs_l(/\s—lll\s) - Czei+s—3(/\l’/\5)' by

Nea PP~ OPs 4D =) Nea(Pu-- M T "[R]
4.24 — om
(4.24) Ns-2(Pr - PsmM) =AM EP(PL - Psi(X,0,9))
Here k ischosensothat dimJnP(py,:-, ps; (X,0,J))= 0.
Then we have:

Theorem 4.25: For each pseudo Einstein symplectic manifold with N >0 exists an

A" -Category, whose object isBS-or bit, the set of mor phismsareFloer homology of Lagrangian

inter section and whose (higher) composition is given in Formula 4.24.
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The proof that the maps in (4.24) satisfies the axioms of A”-category is based on
Theorem 4.20.

We can perform a similar construction and can prove the same result in the case when
N =0.

84 Quantum ring

We now go back to the situation of the Chapter 2, where we consider a symplectic
manifold (X,w) and consider an exact symplectic diffeomorphism ¢ :(X,w) - (X,w).
We assume that (X,w) ispseudo Einstein. Let Y =Xx X. Then (Y,w[-w) isagan
pseudo Einstein. We consider the diagonal A Y and graphs,G, , of exact symplectic
diffeomorphisms ¢;. Wefind (as discussed before) that G, are BS-orbit. We assume that
¢; are C'-closeto identity. ThenG, OT X and G, can be identified to the graph of
exact one form df; . Hence G, n Gy, = Cr(f - f1)).

Now the argument of Chapter 2 can be used to show that

(4.26) Morse(P.0) OMg" (p.G; (Y, J)).

Moreover we conjecture :

(4-27) MMorse(pl""’ ps) DM(S))./g]p(plv”"ps;(Y"]))’

for p OCr(f, — f,,1). Inthe case when Maslov index of Y istrivial, we can prove (4.27)
in the cohomology level.

Namely by putting T =0 the construction of the last section reduces to the construction
of Chapter one. We remark here that in Floer homology for time dependent Hamiltonian (as
isdiscussed in [FI3]) the contribution from other component vanishesin (4.26). (But not in
(4.27). Seethediscussionin [FI3], inthe case of Projective spaces.)

Studying the case when k,£# O corresponds to including the quatum effect in the
story. Then matrix element of our higher composition operator coincides to what is called
correlation function in mathematical physics.

Here we leave T as free variable but from physical point of view it is natural to plug
in T=exp(-1/%). This construction is proposed M.Kontsevitch [Ko3]. In order to show
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that this converges we need to solve the following :

Conjecture 4.28 (Kontsevitch): Let N =0. Then
HMI™ (P, -, Ps; (X, 0, 3)) < Ce™,
for some constant C .

One can state a similar conjecturein case N >0. If Conjecture 2.28 is proved then for
sufficiently small % the boundary operator d[p] = Z HMIE (-1 (P D) eXp(=K/ B)[q] is

well defined. And, if we can prove a similar conjecture for other moduli spaces,
MITP(py -, Ps; (X,0,J)), we aso have (higher) compositions which are defined over R.
Thus we get a quatum deformation of the rational homotopy type of Calabi-Yau manifold.
The cohomology ring of this quantized Calabi-Y au manifold isexactly what is called A-model
by Witten [W4]. But we have more structure than ring structure. That is A”-structure. (If
we do not plug in T =exp(-1/ %) then we have also torsion structure, and probably
cohomology operations. So it might be possible to define "quntum homotopy group” using
"quntized Adams spectral sequence”.) Kontsevitch conjectured that one can find a similar
A”-structure on deformation space which are related to the structure discussed above by
Mirror symmetry. See [Ko03].

The discussion so far uses Lagrangian intersection and is an "open string” version of
"quitized Morse homotopy". Thereisalso aclosed string version of it. We will discussitin
[Fu2]. The author conjectures that the closed string version reduces to the case of diagonal
and its perturbation of open string version. But the proof of it requires the solution of a
delicate singular bifurcation problem, which is not yet settled.
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Cliapten 5 “Floer liomalogy for S-manifelds

81 A quick review of Gaugetheory Floer homology

So far we have been discussing Floer homology of Lagrangian intersection. There is
another kind of Floer homology, that is Floer homology of closed 3 manifold. First, in this
section, we give a quick review of it and then in next section we describe its relation to
symplectic Floer homology. The later is due to Dostoglou-Salamon [DS] and Y oshida[Y2].
Finally we combine them with the discussion we have done in last chapter to define Floer
homology for 3-manifold with boundary.

Let M be aclosed 3 manifold. We consider the set of all connections 42(M) of
trivial SU (2) bundleonit. (Infact every SU(2) bundleon M istrivia.) A4(M) canbe
identified to the set of su(2) valued one formson M. On this space there exists an action
of the group G(M) = Map(M,SU(2)) givenby g-a=g'dg+g 'ag. Let B(M) bethe
guotient space of this action. Floer homology for 3 manifold M is defined by studying
Morse theory on this space B(M). We choose Chern-Simonsinvariantcs as Morse function.
cs isdefied by

1

cs(a) = WIM Tr(aOda+ aOala).

In the case when M is a closed 3-manifold, we can prove that cs(glh)—cs(a) 0Z
hence cs induces a function : B(M) -~ S'=R /Z . (We use the same symbol for his
function.) The gradient vector field of it can be calculated as

gradcs =[F,

where F, isthe curvature and [ is the Hodge [-operator. Hence the critical point set
Cr(cs) isidentified to R(M)={[a]0B(M)| F, =0}, the set of flat connections. In other
word, it is equal to the set of all conjugacy classes of the representation of 1;(M) to
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VUR). Let [a][b]TOCr(cs). We consider the set A (a,b) of all gradient lines of the
gradient vector field grad,cs =[F, of Chern-Simons functional. Then we find that

O | connectionson M xR O
B |OF, = -F, =
M(a,b) =CA A ~3a O /Map(M xR ,U(2),
g | M O
E AMX{+OO} - b

Here AI,\,lx{_m}~ a means that tIim NMx{t} converges and its limit is gauge equivalent to
a.
M(a,b) has an R -action induced by the trandation along R of M xR . Let

M (a,b) beitsquotient. We have® :
Theorem 5.1 (Floer [FI2]) :

There exists p:R(M) - Zg such that M (a,b) is a smooth manifold and the
dimension of each component is given by

dmaM(ab) = pu(a)—u(b) mod8.

The ambiguity of H:R(M) - Zg is by essentially the same reason as we discussed in

the symplectic case. Now imitating the construction in Chapter 1, we put

TdhA) = O 7108
O n(a)=k
0
5.2 U
(5-2) olal :Z<6a,b>[b],
t —
[K0a,b> =#M(a,b), (counted with sign.)

Here, in the third formula, we consider only zero dimensional components. In fact,
there is some trouble for these constructions, since our space B(M) issingular. One can

MThis theorem holds only after appropriate perturbation. We omit
discussions about perturbation here. Also we need to consider the trouble
coming from the reducible connections, the singularity of 3(M). We will

describe it soon.
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find that the intersection of the singular locus B(M) and Cr(cs)=R(M) is the set of
reducible flat connections that is the set of all conjugacy classes of flat connections the
image of whose holonomy representation is abelian. In general the set of reducible flat
connections is of positive dimension. So the Morse theory has serious trouble. Therefore,
Floer consider the case when M is a homology 3-sphere. In that case, the intersection
B(M)n R(M) consists of one element that is the trivial connection. So more precisely
Theorem 5.1 holds for a homology 3-sphere M and [a],[b] #[0]. Thus, in Definition 5.2,
we consider only nontrivial flat connections. Then Floer proved that d0 =0. So we obtain
Floer homology HF,(M) of homology 3-sphere M. Floer proved also that it is invariant
by the change of metric and the perturbation, (which we need in the case when Chern-Simons
functional degenerate.)

So far we discussed the case of trivial SU (2)-bundle over homology 3-spheres. There
is another case which we can discuss in essentially the same way. Let E - M be an
O(3)-bundle over 3-manifold M, (which is not necessary a homology 3-sphere). ([Fl4])
We assume that there is no reducible flat connection of E — M. This assumption is
satisfied if there is a surfface < of M such that the restricion of E - M to X is
nontrivial. (In other words[£]n w”(E)# 0.) Let A(M;E) bethe set of al connections of
E and G(M;E) bethe set of all bundle automorphismsof E — M, in other words the set
of all gauge transformations. Let B(M;E) be the quotient of a(M;E) by the action of
GM;E). We define Chern-Smons invariant ¢ on  A(M;E). We have
s(g[@) - cs(a) D%Z . Hence again ¢s:B(M;E) - R/isz is well defined. The argument
we outlined above works in the same way except the index p:R(M) - Z, takes value in
Z, rather than Zg. (Thisreflects the fact that SU (2) isadouble cover of SO(3).) Thus
we again obtain a Floer homology HF(M;E).

82 Symplectic versus Gauge theory in Floer homologies

It was conjectured by Atiyah and Floer that the Gauge theory Floer homology we
outlined in 8 1 and the symplectic Floer homology we discussed in Chapters 2,3 and 4, are
closely related to each other. The rough (and imprecise) ideas behind it is as follows.

We consider aRieman surface £ and abundle E onit. E may be either the trivia
U (2)-bundle or a nontrivial SO(3)-bundle on it. Let IEQ(Z; E) be the set of al flat
connections of E. We divide it by an action of Gauge transformation group and let
R(Z;E) be the quotient space. We remark that in the case when E isanontrivial SO(3)
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-bundle, the space R(Z; E) is smooth manifold while in the case when E is the trivia
U (2)-bundle, the space R(Z;E) hasasingularity.

Now we first recall that R(Z;E) has a symplectic structure. ([Go]) The symplectic
structure is given as follows. Let a Df{(z; E). Then the tangent space T,jR(Z;E) is
identified to the cohomology group H(Z;su(2)?). (Here su(2) =so(3f is the loca
system associated to the flat bundle a by the adjoint representation.) Elements of
HY(Z;su(2)*) are redized by harmonic one forms with  su(2)*-coefficient. Let
u,v OH'E; sz (@) then we put

w(u V)= [(Trubv) .

It is proved that w gives a symplectic structure on R(Z;E). (In case R(Z;E) is singular
w defines a symplectic structure on the regular part of it.) If we fix acomplex structure J
of our Rieman surface ~ thenitinducesoneon R(Z;E) since J preserves harmonic one
form and hence induces a map on Hl(z; su(2)?).

Now, let D beadomanin C. Letustakeamap h:D - R(Z;E). Wellift it to
h:D - I;{(Z;E) then we have afamily of connectionson 2 parametrized by D. We can
regard it as a connection on Dx% and write it as A . (Until here the description is
precise)) The following "Theorem" is not correct but is something similar to (and simpler

than) the correct resullt.

"Theorem"5.3. [F, =—-F

A A ifandonly if h:D — R(Z;E) isholomorphic.

Proof ? Let z=s+./—1t bethecoordinateof D. Then we calculate

oh oh
F.(x,st =F X)+ — Odt+— Ods
. (x,51) () + = Dot —

h(sit)

= @ Ddt+@ Ods
ot 0s

We recall that Hodge [ coincides with complex structure J on Rieman surface, (and

in particular on D.) Hencewe find

oh oh
Fxst) =-I2 0ds+ 32 Ot
A0St ot 3s
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Hence EF,;h = —FA¥ IS equivalent to J% :—@. Namely the holomorphicity of h.
ot 0s

So we are done ?

In fact, the trouble is that we need to study the holomorphicity of h and not one for h
. (Thereisno natural symplectic structureon IEQ(Z; E).) Andunfortunately the holomorphicity
of h isnot equivalent to one of h. So the story is not so smple. But the general ideain
this calculation can work in some case and imply interesting results.

There are two results of this kind one by Dostoglou-Salamon [DS] and the other by
Yoshida[Y]. We state them without proof.

First we consider the following situation. Let E — = be anontrivial SO(3) bundle
over a Rieman surface ¥ and @:X - X be an orientation preserving diffeomorphism
which lifts to an isomorphism of E. Then we get a 3-manifold M which is afibre bundle
over acirclewith fibre £ and monodromy @:2 - 2. Thereisan SO(3) -bundle E - M
over M obtained by the lift of ¢@. This bundle E satisfies our assumption since its
restriction to a fibre is nontrivial. Hence we obtain a Gauge theory Floer homology
HF(M; E).

On the other hand, the diffeomorphism ¢ anditsliftto E determines a symplectic
diffeomorphism @,: R(M;E) - R(M;E). (Thissymplectic diffeomorphism is not necessary
exact.) We consider itsgraph G, 0 RIM; E) x R(M;E). We can prove that it is a BS-orhit.
Also one can prove that R(E) is pseudo Einstein. In fact the Chern class is 2 times the
generator of H,(R(M;E);Z). We multiply our symplectic form so that its De-Rham
cohomology class is the generator. Hence we can take N =2. Thus we can define Floer
homology for Lagrangian intersection HF,(G,,A). Here A isthe diagonal.

Furthermore one can provethat R(M;E) and G, aresimply connected. Thereforein
this case we do not have to consider Maslov index and only consider the Chern number.
(See the argument of the last chapter.) Hence the group HF;(G,,A) is Z coefficient and
index by [11Z,. (Thus the coefficient and the index coincide to one for Gauge theory Floer
homology.)

Then we have:

Theorem 5.4 (Dostoglou-Salamon) : HF;(G,,A) isisomorphicto HF(M;E).
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In fact Dostoglou-Salamon state their result in a bit different way using periodic Hamil-
tonian. (See the discussion in Chapter 2.) But we can easily show that they are equivalent,
to each other.

We remark that the intersection G, nA can be identified to R(M;E). Hence the
chain complexes for the two Floer homology groups are isomorphic as abelian groups. To
show that the boundary operators are the same to each other, one need to compare the
moduli spaces used for their definitions. The one for Gauge theory Floer homology is the
moduli space of connections satisfying UF, = —F,. The one for symplectic geometry Floer
homol ogy isthe moduli space of peudo-holomorphic curves. (Both with appropriate boundary
conditions.) Hence if we can prove aresult similar to "Theorem” 5.3 then we can prove that
the boundary operators coincide to each other. Dostoglou-Salamon proved that the moduli
spaces are homeomorphic to each other.

We next consider the trivial SU (2) connection on Rieman surface ~ of genus g. Let
Hy,,1 =12 be handle bodies which bounds % . We patch them and get a 3-manifold M.
We assume that M is a homology 3-sphere. Then we can define (Gauge theory) Floer
homology HF,(M) on M using trivial SU(2) bundle. On the other hand, the set of
(gauge equivalent class of) flat connections R(Hy;) on Hy;, i =12 is embedded by
restriction map to R(Z). And one can prove that itsimage is BS-orbit. However thereisa
trouble to define a Floer homology of Lagrangian intersection between them since the space
R(Z) issingular. But Y oshida analyzed the moduli space of Lagrangian intersection in this
case and proved necessary results® to defineit. Then we have HF(R(H, ;),R(H, ,)).

Theorem 5.5 (Yoshida) : HF(R(H, 1),R(Hy>)) isisomorphicto HR(M).

83 Floer homology for 3-manifoldswith boundary (1)

Theorem 5.5 suggests that one can consider the Lagrangian R(Hg;) asthe "invariant”
of the handle body and patching those two "invariant” gives Floer homology of closed three
manifold. For general 3-manifold M with boundary =~ and abundle E on it, we can

®For example the smoothness of moduli space, the formula which
gives its dimension, its compactifcation etc.
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prove that after appropriate perturbation the space R(M;E) isthe immersed Lagrangian of
R(Z). (Infact we can also prove that it isaBS-orbit.) So as S.Donaldson pointed out in his
lecture at Warwick in 1992 July, the Lagrangian R(M; E) is the first approximation of the
Floer homology of 3-manifold M with boundary X .

But one can find easily that this Lagrangian itself does not have enough information to
recover the Floer homology of 3-manifold when we patch M  with another 3-manifold
with the same boundary. To give an example of this we recall the following result stated by
A.Floer and proved by P.Braam and S.Donaldson. Let M; be closed 3-manifold and E;
be nontrivial SO(3)-bundle on it. Suppose that there is an embedded tori 'I}Z in M, on
which the bundles E, are nontrivial. Then we consider M, —T*. After compactification

they have two disjoint unions of tori as their boundaries. Then we patch M;-T; and
M, - T22 along their boundaries to get a closed 3-manifold M and an SO(3)-bundle onit.
(See Figure 5.6)

M
Figure 5.6
Braam-Donaldson [BD] proved that
(5.7) HF(M;Q)= HRM;;Q) T HR,(M3,Q).
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Now let M be a 3-manifold with boundary ¥ and E be an SO(3)-bundle on it.
Assume that there is an embedded torus T M onwhich M is nontrivial. Suppose that
therearetwo closed 3-manifolds M, ,M,, and SO(3)-bundlesonit such that there are embedded
tori T, in M; onwhichthebundles E are nontrivial. We assume furthermore that the
set of flat connectionson E; isequal tooneon E, but the Floer homology are different to
each other'’®. (Namely the boundary operator is different.) We then patch M with M, and
M, respectively along the tori and obtain M;'.

Figure 5.8

R(M;) and R(M,) arethe same ad immersed Lagrangians. But (5.7) shows that after
patching another 3-manifold N with boundary %, we have

%|n fact the author do not know an explicite example of such pair, since
it is usually very difficult to culculate the boundary operator of Floer
homology. But it is almost sure that such an pair exists.
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HFR,(M; Oy N)#Z HE (M, Os N).

Thus R(M/) 0 R(ZX) do not have enough information to determine the Floer homology
after patching.

We can explain this in the following way. Let us consider a closed 3-manifold
M= M, O; M,. To study its Floer homology we need to study the equation [F, = —F, on
M xR . We put the metricon M suchthat it contains 2 x[-S§ for large S. We then,
roughly, divide the manifold M xR into three parts, M; xR, ~x [-T,T]xR, M, xR .

& <

Now we consider the solution of the equation of [F, = —F,. If thesupport of F, is
(roughly speaking) contained in the domain (2) above then it corresponds to the pseudo
holomorphic curve on R(%). Butif A isasolution of [F, =—F, for which the support
of F, liesin (1) or (3), one can not find its effect on Floer homology by studying pseudo
holomorphic curveon R(Z).

Thus, roughly speaking, the Floer homology of 3-manifold with boundary is something
which is a mixture of Lagrangian and chain complex. The notions we developed so far can
be used to define such an object.

83 Floer homology for 3-manifolds with boundary (2)
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To describe an object which is a mixture of Lagrangian and chain complex we use the
notion of A”-functor. We need it only in aspecial case here. First let us define

Definition 5.9: The A”-category ¢4 isthe category such that elements of 06(Ch) isa
chain complex, and for A, A UJOb(Ch) theset C(A,A) of morphisms between them is
given by C(A,A)=HomA,A,). Here Hom means module homomorphism (which is
not necessary a chain homomorphism). C(A,A)) isachain complex in an obvious way.
The 2-composition is the composition of the homomorphisms in the usual sense. Higher
compositions are all zero.

Definition 5.10: Let ¢ bean A”-category. An A”-functor from C to CA isgiven
as (F;F,,---) such that

Q) F :06(C) - 0b(Ch) ,

2 F(AB):C(AB) - C(F(A),R(B)) isachainhomomorphism,

(3) Fs(A, Ay, A) 1 C(A, A) O C(Ay, A) — C(F(A),F(A)) isahomomorphism
such that

FE((x0Y)£n,(R(X) U R(Y) = 10R)(x 0y U 2).

and so on.
Let Func(C,Ch) betheset of all A”-functor from ¢ to 4.

An important example of A”-functor from C to C# isone which is representable (by
anobject of C). Namely let A Uob(C). We define F, O Func(C,Ch) asfollows. We put
FA(B) = C(A B for B JOs(C). Let xOC(B,, B). We define
Fa2(By, B,)(X) UHOM(C(A, B),C(A,B,)) by Fan(B,B)(X)(Y) =Nn,(x0Yy). Fa3(B,B;,B;)
etc. isdefined by using n, in C.

Supposethat C' isafixed chain complex. Then F,UC":B— C(AB)UC' isagan
an A”-functor from ¢ to Ch. Thus elements of Func(C,Ch) contains a mixture of the
object of ¢ and achain complex.

We next define a natural transformation.

Definition 5.11: Let FY F@ Osunc(c,Ch). Thenthenatural transformation H between
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them s given by (H(A)acoso - (Ho(Au A). Flo(Au A aycose -+ Such that

@) H(A) OC(F® (A), K2 (A),
@)
H, (A, A)) 1 C(ALA) — C( Fl(l)(Al)lFl(Z)(AQ))

F, (AL A,) : C(ALA,) - C(FO(A),FA(A))
such that

O (H, (AL A) (X)) £ Ha(AL A)OX) £ FL (A, A)(X) = 2n,(H(A), E2(x)) (R (X, H(A)) -

and so on.
F(EI
Ay SR 7%
"‘-..H‘H
H(4y) (B A0 H(4y)
"'---..__h“'L
EP ¢4y » B4
2 F3 ()
Diagram 5.12

I (HA acosc - (Ho(Au A, Fo(A A acosey: ) i anatural transformation then

((aH(A))Amoﬁ(C),(ﬁz(Al,AZ),O)ADAZM(C),---) is again a natural transformation. Hence by
putting

O ((H(A) arosc) (Ha (AL o). Ha( AL Ao) p, yiosie) )
= ((aH(A))ADOE(C) 1(H2(A1’ A2)1 O)Al,Az[IOE(C) " ')'

the set of all natural transformations is a chain complex.
Let A/ BOOAC) and x[C(A B). We define anatural transform H, from Fgto
Fa as follows. We put He : C(B,C) - C(AC),y—n,(x0OYy),
H, (G, G): C(C,,Cy) ~ HOM(C(B,G), A(AC,)) by H,(G.C)(¥)(@) =ny(x0z0y) and
F,(C.C): C(C,Cy) — HOM(C(B,G), AAC,) by L (G.C)(Y)(@) =ny@xDzOy), etc.
If we define a notion of contravariant A®-functor from ¢ to #unc(C,Ch) in asimilar
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way as Definition 5.8, wefindthat A F, givessuchan A™-functor.
All the above construction is an analogy of the corresponding construction in additive

category.

Now we are going to state our result about relative Floer homology.

Let M be a 3-manifold which bounds 2 and E be an SO(3) vector bundle on M.
We assume that E is nontrivial on each connected component of 2. (We remark that 2 is
necessary to be disconnected in case such a bundle exists.)

Aswediscussedin § 2, wehaveasymplectic manifold R(Z, E) whichispseudo-Einstein
with N =2. Henceweget an A”-category C(Z,E).

Theorem 5.13:

Q) Wecan definean A”-functorHF(M): C(X) — CA whichis, upto chain homotopy,
isaninvariant of (M, E).

2 If OM; =0M, = X, then there exists a chain map.

¢ :CG(Mi#(=Mp)) —  CHHF(M;),HF(My)),

Here Cy(M;#(—M,)) is a Floer homology of the closed 3 manifoldM;#(—M,)
with an SO(3) vector bundle E, and C;(HF(M;), HF(M,)) is the set of all natural
transfor mations between two functors, HF(M;), HF(M,) .

3 Suppose that OM; =dM, = 0M; =% , then there exists a commutative diagram:
C[I(Ml#(_MZ)) U CD(Mz#(_Ms)) > CIZI(Ml#(_ M3))
¢ b 09
v v

Co(HF (M), HF (M3)) 0 Co(HF (M3)# HF (M3)) — C(HF (M,), HF (M5))

Diagram 5.14
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Here the first horizontal line of the Diagram 5.14 is the relative Donaldson Polynomial
of the 4-manifold in Figure 5.15. (This map was mentioned by Donaldson in his Warwick
lecture.)

Figure 5.13.

The statement is closely related to the following program due to G.Segal.

For each surface 2 we associate a category C(Z). For each 3-manifold M which
boundsZ associate an object HF(M) of C(Z). Let uscall it the Floer homology of M. Let
M" be another 3-manifold which bounds 2 . Then the Floer homology of the closed 3-manifold
obtained by patching Mand M'is equal to the set of all morphisms from HF(M) to
HF(M").

Roughly speaking Theorem 5.11 says that for each BS orbit A in R(Z;E) we can
associate a chain complex HF(M)(A).

Now we explain the role played by the BS-condition. We assumed for the object of our
A”-category C(Z,E). We are going to construct a chain complex using Gauge theory on
M and symplectic geometry on R(Z;E). If onetry to use an analogy of the construction of
Chapter one we need some Morse function. If we try to use the similar argument as § 1
(wherewe considered the case when the 3-manifold isclose), we take Chern-Simonsfunctional
as Morse function. But the trouble here is that the Chern-Simon functional is not Gauge
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invariant in the case when manifold has a boundary. Here we recall the result by Jefferey
and Weitzmann [JW]. Let A(M;E) be the set of al connectionson E -~ M and
G(M;E) bethe set of all Gauge transformationsthere. Let G(ZE) be the set of all Gauge
transformations on 2~  and IEQ(Z; E) be the set of al flat connections there. (
REE)/ G(ZE)=RZE)) Let ala(M;E) whose restriction is a DR E)  and
g UG(M;E) whose restriction is g UG(Z;E). Then there exists A(a,§) UR depending
onlyon a,3 such that

(5.16) es(g'a) - es(@) =M\ (a,J) .
Moreover we can prove

(5.17) AMa,§%) =A(a,Tp) +A (G50, G)-

We consider the direct product IA?(Z;E) xC and define an action of G(%E) onit by
g7(0,0) = (@, ™@9¢). By (5.17) this action is well defined. Hence dividing
fQ(Z;E)XC by this action we get acomplex linebundle L on R(Z,E).

Now let A(M;E) be the set of all elements of 4(M;E) whose restrictionto £ is
fla. We divide it by G(%E) to obtain fZ}(M;E). There is a natural projection
m: B(M; E) -» RZ,E). Wepull back thebundle L to B(M;E) and denote it by the same
symbol. (5.16) implies that exp(2rJ/=1cs(a)) can be regarded as a section to this line
bundle.

On other hand we can prove that the first Chern class ¢'(L) OH*(RE,E))=Z isa
generator and is equal to the symplectic form. Hence we can choose L as the prequatum
bundle we used to define BS orbit. (The trivial connection on f{(Z;E) xC induces a
connectionon L.) Asinproved [JW], exp(cs(a)) isaflat section of thisbundle. Suppose
that A isaBSorbit in R(Z;E) . Then by definition L isatrivia bundle there. Hence
wefindthat exp(2rJ/=1cs(a)) can beregarded asafunctionon 1 Y(A)OB(M;E). Thus
one may develop a Morse theory on T[_l(/\) to get a Chain complex. If so we may take it
as HF(M)(A).

In fact since the space n_l(/\) is of infinite dimension the construction is a bit more

complicated and is described as follows.

We consider the equation
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0A
5.18 — =R, .
(5.18) 5 A
Naively, (5.18) with the condition F, D@(M;E) should give the equation for the
gradient lineof ¢s on B(M; E). But if we put the boundary condition F, OB(M;E) to
(5.18), we do not obtain a moduli space of finite dimension. Hence we have to change the
construction abit.
The linearized equation of (5.18) is:
0B

_t:D ,
ot 2

M, d
Dy :E(d,sﬂ 8§CT (A O A%) O su2)(M).

(5.19)

We consider the this equation with one (moving) boundary condition :
(5.20) Bl, OT,AOP(g).

(Here a, isapathin A.) (Thisisa"nonlinear version" of an ideadueto Yoshida[Y1].)
Let us explain the notations in Formula (5.20). In a neighborhood of %, our manifold
M isdiffeomorphicto  x[0,). Let s be the coordinate of the second parameter. Then

we can split our operator Dy as

o C

Here

(0 0 0g
P 0 15
0 -1 o0
0o d, @0
P = Udl o oO

Q
1

g
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Let P*(a,) bethe positive eigenspace of P. One can identify the zero eigen space of
P with T,RZE). The operator o defines an amost complex structure on
(A O /\O) 0 su2)(M). And thereisanatura compatible symplectic structure there. For this
symplectic structure T, A[J P*(a) isalagrangian subspace. Hence it gives an appropriate
boundary condition.

(5.18) isthe linearization of the following boundary condition for (5.16). We consider
B(Z,E) (thegaugeequivalenceclassof al connectionson % ). Weconsider the neighborhood
of R(Z,E) in B(Z,E) andreplaceit by

O |[a DRZ,E)

- _ O 1 0 0
B, E) = E{a'b)bDP"(a)D P‘(a)ED (N TN OA%) () Osu(2).

This space has a natural symplectic structure induced by one on R(Z,E) and the operator
o, (whichinterchanges P*(a) and P7(a).) The subspace

5 (CEA O 5 [alOA C
+(l )—%{a, )bDPJr(a)E,

is a Lagrangian submanifold of Q}(Z, E). We remark that
N ONDOA)E)OsuR) =T (A (M3 xR)). Now we consider the moduli space

g AisanASD-connectiononMXR,%
M'(M,A) = A| Az .y DB(Z,E;A) foreach t RO /{ Gauge transform }.

3 IFal e <0 5

This should be the moduli space of gradient lines. But in fact we have to modify a bit since
in the case the second factor b is large for (a,b) D@(Z,E) one can not control the

nonlinear effect. So we put

H [a] OA B

3, .(Z,E;A) = Oa,b) b OP*(a)O

5 [H<e H

We use this space in place of QE, (Z,EAN) and get M. (M,A\). (Then there is another
trouble since QAS;,S (Z,E;A) has another boundary (ol =€.)) More precisely we put the
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metricon M suchthat ¥ x[0,§ 0O M and put M(M,A)=M,s(M,A\) for sufficiently
large S. Then in the case when everything is transversal we can prove the following
result.

Theorem 5.21:

Q) MMA)= | MMAQ,B), where M(M,A;a,B) isthe set of elements A
a,blR(M,E) n A

of M(M,A\) suchthat A(xw)=a,(.

(2) Weput
M(a,B;M,A) =] M, (a,B;M,A),
0

where AOM(a,B;M,A) is contained in M ,(a,B;M,A) if the Maslov index of
[Alsz]DTll(/\) is /. Then there exists a map H:A(M)n A - Z/4Z such that
M ,(a,B; M,A\) isamanifold of dimension p() —u(a) + 7 .

(©)] Let p(B) —p(a) + ¢ =2 then the space , ﬂK(G,B;M,A) =M,(a,B;M,A\)/R is
compactified such that its boundary is:

oM, (a,B;MA) = O M, @,y; MA)XxM,.(y,B;M,N).
M(y)= p )+ '
U+ 0=
(49 Let u(B) —u(a)+¢=1.Then 9\_/[4(0(,[3;M,/\) is a finite set. Furthermore there exists
€(S >0 such that €(S -0 as S - and that the following holds. Let

ADM (a,B;M,A), Als.r =& +Dy, then:

b <e(Srs

The property (4) exclude the extra end we mentioned before. Using Theorem 5.21 one
can imitate the construction of Chapter one and obtained a chain complex HF(M)(A) (over
Novikov ring.) Namely we put
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HREMW@W = O zmirnds
ola] =Y <9, T'B>TH[BI,

<00, TR > =#M,(a,B;M,A), (countedwithsign.)

To prove Theorem 513 (1), we aso need to construct a chan map
HF (AL, A,), :C(A, A\,) - HOm(HF(M)(A,), HF(M)(A,) for each BS-orbits A;,A,. For
this purpose we consider the following moduli space

O Aisan ASD-connectiononM xR, U
g Asuy 0B, (S EA) foreachtsto,g
M(MALA,) = TAL) | Alsay 0B, (5 EA,) foreach t=1,0 AGaugetransform}.
E Asurg DA 0 A, g
H [FAll 2 <0
(Here € =C/S))

This space is decomposed as

MMALA) = JMMA LA, xa,B)
XEV\lﬂ/\z
a R(M)n A,
BORM) N A,

Here Alsyig =X0 Ao =05 Ayiwpeg = B fOr [AL]OM (M, A, AL x,0,B) . We can
prove a similar dimension formula as Theorem 5.19 (2). (Again M(M,A,/\,; x,a,B)

decomposes to UM,((M,/\l,/\z; x,a,B).) Also we can prove the following analogy of
k

Theorem 5.19 (3).
OM(M, A, A%, 00, B) = (M AL A X 0Ly ) X M(M,A A%y, B)
Y

(5.20) _
UMM ALAL YL B) X M(AL A Y, X).

y

We put
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HF(M),(Ay, AR)(R(@) = 5 # M (M, Ay, Agi x,01, B) TTB
Bk

Formula (3) of Definition 5.8 follows from (5.20). The construction of HF(A;,A5),
(k =3) issimilar. Thisisan outline of the proof of Theorem 5.11 (1).

To prove Theorem 5.11 (2) we consider the following 4-manifold, X :

. 3 |

.|"|I |

’ - A, :
Txh

"\‘ Mi :

\ |

| |

t ” |

Figure 5.23
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and consider the following moduli space :

O | Aisan ASD - connection on X,
O O
O ’A{—Ml#MZ:X’ 0
M(X;x,a, B;A)=0A B _ O /{Gaugetransform}
o [Aw=a Ay =B
H | Asxg = B4 (L EA).

(Here x OR(-M#M,;E), a ORMj;E) n A ,BOR(M,;E) n A.) Again the space decom-
poseas M(X;x,a,B;A) =) M, (X;x,a,B;,A) . Thenwe put

O0n N[l = #M,(Xxa,B;A) T[B].
B.7

Hence ¢ (x);(A) OHom(HR(M,;E)(A\),HF{M,;E)(A)). To define an A”-functor ¢ (x)
we need to define

¢(X)2(/\1’/\2)’qTX)2(/\1’/\2) HHOm(CH(A, A,) U HR(MgE)(A,), HR(M,;E)(A,)).

For this purpose we consider the moduli space

Aisan ASD - connection on X,
AI—Ml#MZZ X,

AlMl =, A||Vb =B,
Aoy =B, (EA) fortst,”

Alzx{t} =7§+,s(Z,E;/\2) fort>t, 0
- 0
Ale{to} =Y O

{ Gauge transform }

L
L
L
C
L

OooO0@oOoOoo
>
S

MOXKx,0,BY; AL A,) =

for x OR(-M;#M,; E),a ORMyE) n A, BOR(M,;E)n A,,y OA, n A, anddecompose
itto U M, (X, x,0,B,Y;,A\, \,). Then we put
k
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0 (0 (ALA)WYIO[]) = 5 #M (X%, By: A A,) TR
B.k
O(X)2(ApA,) = $(09,(ALA).

d(X); etc. can be defined in asimilar way. We thus constructed an A”- functor ¢ (X).
We omit the discussion of the proof of Theorem 5.13 (3).

Conjecture 5.24: The chain map in Theorem 5.13 (2) is a chain homotopy equivalence.

See [Fu2] for adiscussion about this conjecture. There we also discussed Donaldson

polynomial for 4 manifolds with corners.
8 4 Formal analogy to Jones-Witten invariant and confor mal field theory.

In this last section we try to explain that the Floer homology for 3-manifold with
boundary is parallel to the Theory of Jones-Witten invariant (Chern-Simons Gauge theory).
((waj)

To see this (formal) analogy we need to study the invariant of the relative Floer
homology under various choices.

Besides the perturbation, there are two choice we need in order to define HF(M;E). (
OM =%). Oneistheamost complex structureon R(Z;E) and the other isaRieman metric
on M. Infact they arerelated to each other. Infact if we fix a Riemannian metricon M,
then we get one on X hence a conformal structure there. Namely we get a complex
structure on our Rieman surface. It induces a complex (Kahler structure) on R(Z;E).

First we fix a conformal structure (complex structure) on <. Then we obtain an A"
-category C(R(Z;E),J). Thetwo metricson g, and g, on M (compatible with our
conformal structure on the boundary) defines two functors HF((M,g,);E) and
HF((M,g,); E). Choose a path g, joining the two metrics. Then using a moduli spaces

such as
O A isan ASD - connection on M xR O
H with respect to the metric g, H
M para(M,\) = E(A,t) Ao D@Jr,c/s(ZE;/\) for each t DRS { Gauge transform },
H  Fdle <
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we can prove that the two functors HF((M,g,);E) and HF((M,g,);E) are chain
homotopic to each other.” Hence relative Floer homology is invariant of the choice of the
metric at the interior of M in that sense.

We now discuss what happens when we change the conformal structure of the boundary.
In this case the complex structure of R(Z;E) changes hence the A”-category
C(R(Z;E),J) changes as well. (They are chain homotopy equivalent to each other if one
defines this notion appropriately.)

To see this more systematically, we consider the Teichmuller space % . (The space
consisting of complex structures on Z,, the Rieman surface of genus g.) Roughly
speaking we assert that the family of A®-category C(R(Z;E),J) J[O% consists of the
"flat bundle" over 4. To stateit, let usrecall the following Proposition. Let Vect bethe
category whose object is the vector space (of finite dimension) and the morphism is a linear
homomorphism. Since the set of morphisms are abelian groups in this case, we regard it as
chain complexes with trivial boundary. Then Vect isan A™-category with trivial higher
compositions. Let X be amanifold. We consider the A”-category QX introduced in
Chapter one § 4.

Proposition 5.25: There exists a one to one correspondence between a flat vector bundle
on X andan A"-functor from QX to Vect.

This proposition is quite obvious. Infactlet F bean A”-functor from QX to Vect.
We defineabundle Ex on X suchthat thefibreof itat xOX is F(x). (Remark that
the object of QX isapointof X.) Wenext defineaholonomy P,: F(x) - F(y) for each
path ¢ joining x to y such that it depends only on the homotopy classof ¢. We recall
that C(x,y) = S(Q(X x,Y)), the singular chain complex of the space of path joining x to y
. We can regard [/] OGy(x,y). Hence F([4]) OHom(F(x),F(y)). Suppose that ¢; is
homotopicto ¢,. Thenthereis [o]UOC(XYy) suchthat d[o] =[¢]—-[¢,]. Then, since F
is a chain map it follows that F([¢,]) — F([/,]) = 0F([o]) = 0. (Note that the boundary
operatorsare zeroin Vect.) Hence F([/]) depends only on the homotopy classof ¢. We
put P, = F([¢]). Thusweobtained aflat bundleon X.

The construction of the opposite direction is similar.

"Here we do not define that two A”-functors to be chain homotopic.
But one can define it in a straight forward way.
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By this proposition, the following statement is equivalent to the statement that the
family of A”-category C(R(Z;E),J) J 7% consistsof the"flat bundle' over .

Let # bean A™-category whose objectisan A™-category and morphismsisan A”
-functor.®

Theorem 5.26: Thereisan A”-functor from Q7% to 4 suchthat J 0% =06(Q%) is
sendto C(R(Z;E),J).

Sketch of the proof  Let o OC(J,,J,). In other words o :A*x[0,1] - 2. Then for
a,b OA,;n A,, we consider the moduli space

U  Mym(abi(2,0(xt).

(x,t)k x[0,1]

Using this moduli space and its compactification we can construct a map

C(J L) O CALAL (B, 3)) - CALNA(T,35)).
This map defines an A”-functor from Q7% to A4.

"Theorem' 5.27 : Relative Floer homology is a "flat section" of the "flat bundle"
obtained in Theorem 5.26.

We do not try to make this statement precise in this article.

We recall that in the Theory of Jones-Witten invariant, Witten considered the conformal
block, that is the flat bundle (projectively flat vector bundle) over Teichmuller space 7. In
case when oM° = 24, therelative Jones-Witten invariant is regarded as aflat section of this
bundle. (JW3]) Theorems5.26 and 5.27 are formally analogous to this.

We next consider the fundamental group of %, (the mapping class group.) For each
element y 0m %, we obtain a closed 3-manifold M, , withisa %, bundle over circle

with monodromy y . In the case of Jones-Witten invariant, the invariant for M, isequa

8There is a set theoretical trouble in this definition. But since there is
an obvious way to remove this trouble in the case we need, we do not mind
that trouble here.
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to the trace of the holonomy of conformal block with respect to this loop.

In our situation we have F(y):C(R(ZyE)) - ARZ4E)). (The "holonomy" of the
"flat bundl€" given by Theorem 5.26.) In fact this functor is described asfollows. y O %
Is regarded as an isotopy class of self diffeomorphism of our surface. Hence it induces a
symplectic self-diffeomorphism ¢, of R(Zy;E). Thissymplectic diffeomorphism induces
anisomorphism ¢,.: C(R(Z4;E)) - C(R(Z4;E)), whichisexactly equal to our functor.

What is the trace of it ? Werecall that for amatrix A wehave Tr(A) ={I,A}, where
| istheidentity matrix and {,} istheinvariant inner product.

Now ¢, =F(y):C(R(Z4; B) -~ C(R(Z4; E)) may be identified to the graph G(I,y of
our symplectic diffeomorphism ¢, : R(Z4;E) - R(Z4;E). Onthe other hand the identity is
identified to the diagonal A of R(Z,;E) xR(Z;E). Thus Trace(F) <G¢y ,A}, in our
stuation. Therefore by the theorem of Dostglou-Salamon Trace(F,) = HF(M,). Again our
analogy works.

Finally we discuss the "Fusion rule" or "Verlinde formula®. In the case of conformal
field theory, roughly speaking, they controls how the conformal block behave under the
change of genus of Rieman surface or the degeneration of it. The analogy of it in Floer
homology should be obtained to consider the relative Floer homology of the following
"3-dimensional pants.”
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Here the dotted line is regarded as a Wilson line. ({W3]) Hence to consider the Floer
homology of the 3-dimensional pants as above, we need to generalize our story to the case
when 3-manifold has arcs | such that dl=1n oM .* Then our Rieman surface has
marked points on it. In this case it is natural to take the moduli space of parabolic bundles
(inplaceof R(Z,E)) asour symplectic manifold.

Let uswriteitas R((Z,(X, -, %), E). Thefirst trouble we meet is that this symplectic
manifold is not necessary pseudo-Einstein. So provably, we need to use more complicated
Novikov ring to justify the discussion of Chapters 3,4, (which the author did not know how
to do yet) Then let us suppose that one can somehow find an A”-category,

¥t may also be possible to involve (closed) circle.
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C(R((Z, (%, -, %), E)). Soincase o(M,(l;, -+, 1 ,2)) = (Z,(%, -+, %)), we need to find a
functor  HF((M,(I1,---,1,5)) : C(R((Z,(X, -, % ),E)) - CA. If we try to imitate the
construction of this chapter one needs to study the moduli space of ASD-connection on
(M, (I,-++,1,2)) xR with appropriate boundary condition. Here the submanifold
(l,-+-,1,2) xR playsarole as the support of the singularity of our ASD connection.

In fact such amoduli spaceis studied extensively by Sibner-Sibner [SS] and Kronheimer-
Mrowka [KM]. What seems related to our problem is that Kronheimer found a construction
which is quite similar to the Novikov ring there. ( [Kr].) Provably we can join these two
kinds of Novikov ring somehow.

But al these has still alot of trouble to be settled. Hence to find what should be the
Fusion rulein relative Floer homology is the problem left for future research.
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