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1. Introduction

Floer theory of Lagrangian submanifolds plays an important role in symplectic
geometry since Floer’s invention [Fl] of the Floer homology and subsequent gen-
eralization to the class of monotone Lagrangian submanifolds [Oh1]. After the
introduction of A1 structure in Floer theory [Fu1] and Kontsevich’s homological
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mirror symmetry proposal [Ko], it has also played an essential role in a formulation
of mirror symmetry in string theory.

In [FOOO1], we have analyzed the anomaly @2 6= 0 and developed an obstruction
theory for the definition of Floer homology and introduced the class of unobstructed
Lagrangian submanifolds for which one can deform Floer’s original definition of
the ‘boundary’ map by a suitable bounding cochain denoted by b. Expanding the
discussion in section 7 [FOOO1] and also motivated by the work of Cho-Oh [CO], we
introduced the notion of weakly unobstructed Lagrangian submanifolds in Chapter
3 [FOOO2] which turns out to be the right class of Lagrangian submanifolds to look
at in relation to the mirror symmetry of Fano toric A-model and Landau-Ginzburg
B-model proposed by physicists (see [Ho], [HV]). In this paper, we study the
relationship between this class of Lagrangian submanifolds with the earlier work
of Givental [Gi1] which advocates that quantum cohomology ring is isomorphic
to the Jacobian ring of a certain function, which is called the Landau-Ginzburg
superpotential. Combining this study with the results from [FOOO2], we also
apply this study to symplectic geometry of Lagrangian fibers of toric manifolds.

Denote by Lagweak(X,ω) the set of weakly unobstructed Lagrangian submani-
folds in (X,ω) and by Mweak(L) the moduli space of (weak) bounding cochains for
a weakly unobstructed Lagrangian submanifold L. While appearance of bounding
cochains is natural in the point of view of deformation theory, explicit computation
thereof has not been carried out. One of the main purposes of the present paper
is to perform this calculation in the case of fibers of toric manifolds and draw its
various applications. Especially we show that each fiber L(u) at u ∈ t∗ is weakly
unobstructed for any toric manifold π : X → t∗ (see Proposition 3.2), and then
show that the set of the pairs (L(u), b) of a fiber L(u) and a bounding cochain b
with nontrivial Floer cohomology can be calculated from the quantum cohomology
of the ambient toric manifold, at least in the Fano case. Namely the set of such
pairs (L(u), b) is identified with the set of ring homomorphisms from quantum co-
homology to the relevant Novikov ring. We also show by a variational analysis that
for any compact toric manifold there exists at least one pair of (u, b)’s for which
the Floer cohomology of (L(u), b) is nontrivial.

Now more precise statement of the main results are in order.
Let X be an n dimensional smooth compact toric manifold. We fix a Tn-

equivariant Kähler form on X and let π : X → t∗ ∼= (Rn)∗ be the moment map.
The image P = π(X) ⊂ (Rn)∗ is called the moment polytope. For u ∈ Int P , we de-
note L(u) = π−1(u). L(u) is a Lagrangian torus which is an orbit of the Tn action.
(See section 2. We refer readers to [Au], [Ful], for example, for the details on toric
manifolds.) We study the Floer cohomology defined in [FOOO2]. According to
[FOOO1, FOOO2], we need an extra data, the bounding cochain, to make the def-
inition of Floer cohomology more flexible to allow more general class of Lagrangian
submanifolds. In the current context of Lagrangian torus fibers in toric manifolds,
we use weak bounding cochains. In this situation we first show (Proposition 3.2)
that each element in H1(L(u); Λ0) gives rise to a weak bounding cochain, i.e.,

H1(L(u); Λ0) ⊂Mweak(L(u)). (1.1)

Here we use the universal Novikov ring

Λ =

( 1X

i=1

aiT
∏i

ØØØ ai ∈ Q, ∏i ∈ R, lim
i→1

∏i = 1
)

(1.2)
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where T is a formal parameter. (We do not use the grading parameter e used in
[FOOO2] since it will not play much role in this paper.) Then Λ0 is a subring of Λ
defined by

Λ0 =

( 1X

i=1

aiT
∏i ∈ Λ

ØØØ ∏i ≥ 0

)

. (1.3)

We also use another subring

Λ+ =

( 1X

i=1

aiT
∏i ∈ Λ

ØØØ ∏i > 0

)

. (1.4)

We note Λ is the field of fractions of Λ0 and Λ0 is a local ring with maximal ideal
Λ+. Here we take the universal Novikov ring over Q but we also use universal
Novikov ring over C or other subfield F of C which we denote ΛC, ΛF , respectively.

Remark 1.1. If we strictly follow the way taken in [FOOO2], we only get the
inclusion H1(L(u); Λ+) ⊂ Mweak(L(u)), not (1.1). However we can modify the
definition of weak unobstructedness so that (1.1) follows, using the idea of Cho
[Cho]. See section 11.

We next consider the quantum cohomology ring QH(X; Λ) with the universal
Novikov ring Λ as a coefficient ring. (See section 5.) It is a commutative ring for
the toric case, since QH(X; Λ) is generated by even degree cohomology classes.

Definition 1.2. (1) We define the set Spec(QH(X; Λ))(ΛC) to be the set of Λ
algebra homomorphisms ϕ : QH(X; Λ) → ΛC. (In other words it is the set
of all ΛC valued points of the scheme Spec(QH(X; Λ)).

(2) We next denote by M(Lag(X)) the set of all pairs (u, b), u ∈ Int P , b ∈
H1(L(u); ΛC

0 )/H1(L(u); 2π
√
−1Z) such that

HF ((L(u), b), (L(u), b); ΛC) 6= {0}.

Theorem 1.3. If X is a Fano toric manifold then

Spec(QH(X; Λ))(ΛC) ∼= M(Lag(X)).

If QH(X; Λ) is semi-simple in addition, then we have
X

d

rankQHd(X; Q) = # (M(Lag(X))) . (1.5)

We remark that a finite dimensional commutative ring over a field (Λ in our case)
is semi-simple if and only if it does not contain nilpotent element. We also remark
that a compact toric manifold is Fano if and only if every nontrivial holomorphic
sphere has positive Chern number.

We believe that (1.5) still holds in non Fano case but are unable to prove it
at the time of writing this paper. We however can prove that there exists a fiber
L(u) whose Floer cohomology is nontrivial, by a method different from the proof
of Theorem 1.3. Due to some technical reason, we can only prove the following
slightly weaker statement.

Theorem 1.4. We assume the Kähler form ω of X is rational. Then, there exists
u ∈ Int P such that for any N there exists b ∈ H1(L(u); ΛR

0 ) with

HF ((L(u), b), (L(u), b); ΛR
0 /(TN )) ∼= H(Tn; R)⊗R ΛR

0 /(TN ).
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The rationality assumption in Theorem 1.4 is likely to be removed. It is also
likely that we can prove M(Lag(X)) is nonempty but its proof is a bit cumbersome
at the moment to write down. We can however derive the following theorem from
Theorem 1.4, without rationality assumption.

Theorem 1.5. Let X be an n dimensional compact toric manifold. There exists
u0 ∈ IntP such that the following holds for any Hamiltonian diffeomorphism √ :
X → X.

√(L(u0)) ∩ L(u0) 6= ∅ (1.6)
If √(L(u0)) is transversal to L(u0) in addition, then

#(√(L(u0)) ∩ L(u0)) ≥ 2n. (1.7)

Theorem 1.5 is proved in section 12.
We would like to point out that (1.6) can be derived from a more general inter-

section result by Entov-Polterovich, Theorem 2.1 [EP1], by a different method using
a very interesting notion of symplectic quasi-state constructed out of the spectral
invariants constructed in [Sc], [Oh3]. (See also [Vi], [Oh2] for similar constructions
in the exact Lagrangian context.)

Remark 1.6. Precisely speaking, Theorem 2.1 of [EP1] is stated under the as-
sumption that X is semi-positive and ω is rational because the theory of spectral
invariant was developed in [Oh3] under these conditions. The rationality assump-
tion has been removed in [Oh4] and the semi-positivity assumption of ω removed
by Usher [Us]. Therefore the proof of Theorem 2.1 [EP1] goes through without
these assumptions and hence it implies (1.6). (See the introduction of [Us].) But
the result (1.7) is new.

Our proof of Theorem 1.5 gives an explicit way of locating u0, as we show in
section 8. (The method of [EP1] is indirect and does not provide the way to find such
u0. See [EP2]. Below, we will make some remarks concerning Entov-Polterovich’s
approach in the perspective of homological mirror symmetry.) In various explicit
examples we can find more than one element u0 that have the properties stated in
this theorem. Following terminology employed in [CO], we call any such torus fiber
L(u0) as in Theorem 1.5 a balanced Lagrangian torus fiber. (Definition 3.10.)

A criterion for L(u0) to be balanced, for the case b = 0, is provided by Cho-Oh
[CO] and Cho [Cho] under the Fano condition. Our proofs of Theorems 1.4, 1.5 is
much based on this criterion, and on the idea of Cho [Cho] of twisting non-unitary
complex line bundles in the construction of Floer boundary operator. This criterion
in turn specializes to the one predicted by physicists [HV], [Ho], which relates the
location of u0 to the critical points of the Landau-Ginzburg superpotential.

In [FOOO2], the authors have introduced a potential function

POL : Mweak(L) → Λ0

for an arbitrary weakly unobstructed Lagrangian submanifold L ⊂ (X,ω). By
varying the function POL over L ∈ Lagweak(X,ω), we obtain the potential function

PO :
[

L∈Lagweak(X,ω)

Mweak(L) → Λ0. (1.8)

This function is constructed purely in terms of A-model data of the general sym-
plectic manifold (X,ω) without using mirror symmetry.



LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS I 5

For a toric (X,ω), the restriction of PO to H1(L(u); Λ0) (see (1.1) can be made
explicit when combined with the analysis of holomorphic discs attached to torus
fibers of toric manifolds carried out in [CO], at least in the Fano case. (In the non
Fano case we can make it explicit modulo ‘higher order terms’.)

Remark 1.7. In [EP3] some relationships between quantum cohomology, quasi-
state, spectral invariant and displacement of Lagrangian submanifolds are discussed
: Consider an idempotent i of quantum cohomology. The (asymptotic) spectral
invariants associated to i gives rise to a quasi-state via the procedure concocted in
[EP3], which in turn detects undisplaceability of certain Lagrangian submanifolds.
(The assumption of [EP1] is weaker than ours.)

In the current context of toric manifolds, we could also relate them to Floer
cohomology and mirror symmetry in the following way : Quantum cohomology
is decomposed to indecomposable factors. (See Proposition 6.6.) Let i be the
idempotent corresponding to one of the indecomposable factors.

Let L = L(u(1, i)) be a Lagrangian torus fiber whose undisplaceability is de-
tected by the quasi-state obtained from i. We conjecture that Floer cohomol-
ogy HF (L(u(1, i), b), (Lu(1, i), b)) is nontrivial for some b. (Conjecture 4.8.) This
bounding cochain b in turn is shown to be a critical point of the potential function
PO defined in [FOOO2].

On the other hand, i also determines a homomorphism ϕi : QH(X; Λ) → Λ. It
corresponds to some Lagrangian fiber L(u(2, i)) by Theorem 1.3. Then this will
imply via Theorem 3.9 that the fiber L(u(2, i)) is undisplaceable.

We conjecture that u(1, i) = u(2, i). We remark that u(2, i) is explicitly calcu-
lable. Hence in view of the way u(1, i) is found in [EP1], u(1, i) = u(2, i) will give
some information on the asymptotic behavior of the spectral invariant associated
with i.

We fix a basis the Lie algebra t of Tn which induces a basis on t∗ and hence a
coordinate of P ⊂ t∗. This in turn induces a basis H1(L(u); Λ0) for each u ∈ Int P
and so identification H1(L(u); Λ0) ∼= (Λ0)n. We then regard the potential function
as a function

PO(x1, · · · , xn;u1, · · · , un) : (Λ0)n × Int P → Λ0

and prove in Theorem 3.9 that Floer homology HF ((L(u), x), (L(u), x); Λ) with
x = (x1, · · · , xn), u = (u1, · · · , un) is nontrivial if and only if (x, u) satisfies

@PO

@xi
(x;u) = 0, i = 1, · · · , n. (1.9)

To study (1.9), it is useful to change the variables xi to

yi = exi .

In these variables we can write potential function as a sum

PO(x1, · · · , xn;u1, · · · , un) =
X

T ci(u)Pi(y1, · · · , yn)

where Pi are Laurent polynomial which do not depend on u, and ci(u) are positive
real valued function.

We assume X is Fano, until the end of the statement of Theorem 1.9. We can
calculate the right hand side and write it as a finite sum. (See Theorem 3.4.)
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We define a function POu of yi’s by

POu(y1, · · · , yn) = PO(x1, · · · , xn;u1, · · · , un)

as a Laurent polynomial of n variables with coefficient in Λ. We denote the set of
Laurent polynomials by

Λ[y1, · · · , yn, y−1
1 , · · · , y−1

n ]

and consider its ideal generated by the partial derivatives of POu. Namely
µ

@POu

@yi
; i = 1, · · · , n

∂
.

Definition 1.8. We call the quotient ring

Jac(POu) =
Λ[y1, · · · , yn, y−1

1 , · · · , y−1
n ]≥

@PO
@yi

; i = 1, · · · , n
¥

the Jacobian ring of POu.

We will prove that the Jacobian ring is independent of the choice of u up to
isomorphism (see the end of section 5).

Theorem 1.9. If X is Fano, then there exists a Λ algebra isomorphism

√u : QH(X; Λ) → Jac(PO)

from quantum cohomology ring to the Jacobian ring such that

√u(c1(X)) = POu.

Theorem 1.9 (or Theorem 1.12 below) enables us to explicitly determine all the
pairs (u, b) with HF ((L(u), b), (L(u), b); Λ) 6= 0 out of the quantum cohomology of
X. More specifically Batyrev’s presentation of quantum cohomology in terms of
the Jacobian ring plays an essential role for this purpose. We will explain how this
is done in sections 6, 7 .

Remark 1.10. (1) The idea that quantum cohomology ring coincides with
the Jacobian ring begins with a celebrated paper by Givental [Gi1] The-
orem 5 (1). There it was claimed also that the D module defined by an
oscillatory integral with the superpotential as its kernel is isomorphic to
S1-equivariant Floer cohomology of periodic Hamiltonian system. When
one takes its WKB limit, the former becomes the ring of functions on its
characteristic variety, which is nothing but the Jacobian ring. The latter
becomes the (small) quantum cohomology ring under the same limit. As-
suming the Ansatz that quantum cohomology can be calculated by fixed
point localization, these claims are proved in a subsequent paper [Gi2] for,
at least, toric Fano manifolds. Then the required fixed point localization is
made rigorous later in [GrPa]. See also Iritani [Iri1].

In physics literature, it has been advocated that Landau-Ginzburg model
of superpotential (that is, the potential function PO in our situation) calcu-
lates quantum cohomology of X. A precise mathematical statement thereof
is our Theorem 1.9. (See for example p. 473 [MIRROR].)

Our main new idea entering in the proof of Theorem 1.3 other than those
already in [FOOO2] is the way how we combine them to extract informa-
tion on Lagrangian submanifolds. In fact Theorem 1.9 itself easily follows
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if we use the claim made by Batyrev that quantum cohomology of toric
Fano manifold is a quotient of polynomial ring by relations, called quan-
tum Stanley-Reisner relation and linear relation. (This claim is now well
established.) We include this simple derivation in section 5 for complete-
ness’ sake, since it is essential to take the Novikov ring Λ as the coefficient
ring in our applications the version of which does not seem to be proven in
the literature in the form that can be easily quoted.

(2) The proof of Theorem 1.9 given in this paper does not contain serious
study of pseudo-holomorphic spheres. The argument which we outline in
Remark 5.13 is based on open-closed Gromov-Witten theory, and different
from various methods that have been used to calculate Gromov-Witten
invariant in the literature. In particular this argument does not use the
method of fixed point localization. We will present this conceptual proof
of Theorem 1.9 in a sequel to this paper.

(3) In this paper, we only involve small quantum cohomology ring but we can
also include big quantum cohomology ring. Then we expect Theorem 1.9
can be enhanced to establish a relationship between Frobenius structures
of the deformation theory of quantum cohomology (see, for example, [Ma])
and that of Landau-Ginzburg model (which is due to K. Saito [Sa]). This
statement (and Theorems 1.3, 1.9) can be regarded as a version of mirror
symmetry between the toric A-model and the Landau-Ginzburg B-model.
In various literature on mirror symmetry, such as [Ab], [AKO], [Ue], the B-
model is dealt for Fano or toric manifolds in which the derived category of
coherent sheaves is studied while the A-model is dealt for Landau-Ginzburg
A-models where the directed A1 category of Seidel [Se2] is studied.

(4) Even when X is not necessarily Fano we can still prove a similar isomor-
phism

√u : QHω(X; Λ) ∼= Jac(PO0) (1.10)

where the left hand side is the Batyrev quantum cohomology ring (see
Definition 5.3) and the right hand side is the Jacobian ring of some function
PO0 : it coincides with the actual potential function PO ‘up to higher order
terms’. (See (3.8).) In the Fano case PO0 = PO. (1.10) is Proposition 5.7.

(5) During the final stage of writing this article, a paper [CL] by Chan and
Leung was posted in the Archive which studies the above isomorphism via
SYZ transformations. They give a proof of this isomorphism for the case
where X is a product of projective spaces and with the coefficient ring C,
not with Novikov ring. Leung presented their result [CL] in a conference
held in Kyoto University in January 2008 where the first named author also
presented the content of this paper.

From our definition, it follows that the potential functions PO and PO0 can
be extended to the whole product (Rn)∗ × (ΛC

0 )n in a way that they are invariant
under the translations by elements in (2π

√
−1Z)n. Hence we may regard them as

functions defined on

(Rn)∗ ×
°
ΛC

0 /(2π
√
−1Z)

¢n ∼= Rn ×
°
ΛC

0 /(2π
√
−1Z)

¢n

Definition 1.11. We denote by

M+,0(Lag(X)), (respectively M+(Lag(X)))
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the subset of pairs (u, x) ∈ Rn × (ΛC
0 /(2π

√
−1Z))n satisfying the equation

@PO0

@xi
(x;u) = 0,

µ
respectively

@PO

@xi
(x;u) = 0

∂

i = 1, · · · , n at x.

Note an element (u, x) ∈ M+(Lag(X)) gives rise to an element of M(Lag(X)) if
u ∈ Int P .

We also remark PO0 = PO in case X is Fano. The following is a more precise
form of Theorem 1.3.

Theorem 1.12. (1) There exists a bijection :

Spec(QHω(X; Λ))(ΛC) ∼= M+,0(Lag(X)).

(2) If X is Fano then we have

M(Lag(X)) = M+(Lag(X)) = M+,0(Lag(X)).

(3) If QHω(X; Λ) is semi-simple, then
X

d

rankΛQHω(X; Λ) = # (M+,0(Lag(X))) .

In section 7, we illustrate by an example that the first equality of (2) does not
hold in the non-Fano case.

We would like to point out that PO0 is explicitly computable. But we do not
know the explicit form of PO. However we can show that elements of M+,0(Lag(X))
and of M+(Lag(X)) can be naturally related to each other under a mild nondegen-
eracy condition. (Theorem 9.4.) So we can use PO0 in place of PO in most of the
cases. For example we can use it to prove that the following :

Theorem 1.13. For any k, there exists a Kähler form on X(k), the k point blow
up of CP 2, that is toric and has exactly k + 1 balanced fibers.

See Definition 3.10 for the definition of balanced fibers. Balanced fiber satisfies
the conclusions (1.6), (1.7) of Theorem 1.5. We prove Theorem 1.13 in section 9.

Remark 1.14. The cardinality of b ∈ H1(L(u); ΛC
0 )/H1(L(u); 2π

√
−1Z) with non-

vanishing Floer cohomology is an invariant of Lagrangian submanifold L(u). This
is a consequence of [FOOO2] Theorem G.

The authors would like to thank H. Iritani and D. McDuff for helpful discussions.

2. Compact toric manifolds

In this section, we summarize basic facts on the toric manifolds and set-up our
notations to be consistent with those in [CO], which in turn closely follow those in
Batyrev [B1] and M. Audin [Au].

2.1. Complex structure. In order to obtain an n-dimensional compact toric man-
ifold X, we need a combinatorial object Σ, a complete fan of regular cones, in an
n-dimensional vector space over R.

Let N be the lattice Zn, and let M = HomZ(N, Z) be the dual lattices of rank
n. Let NR = N ⊗ R and MR = M ⊗ R.
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Definition 2.1. A convex subset σ ⊂ NR is called a regular k-dimensional cone
(k ≥ 1) if there exists k linearly independent elements v1, · · · , vk ∈ N such that

σ = {a1v1 + · · ·+ akvk | ai ∈ R, ai ≥ 0},

and the set {v1, · · · , vk} is a subset of some Z-basis of N . In this case, we call
v1, · · · , vk ∈ N the integral generators of σ.

Definition 2.2. A regular cone σ0 is called a face of a regular cone σ (we write
σ0 ≺ σ) if the set of integral generators of σ0 is a subset of the set of integral
generators of σ.

Definition 2.3. A finite system Σ = σ1, · · · , σs of regular cones in NR is called a
complete n-dimensional fan of regular cones, if the following conditions are satisfied.

(1) if σ ∈ Σ and σ0 ≺ σ, then σ0 ∈ Σ;
(2) if σ, σ0 are in Σ, then σ0 ∩ σ ≺ σ and σ0 ∩ σ ≺ σ0;
(3) NR = σ1 ∪ · · · ∪ σs.

The set of all k-dimensional cones in Σ will be denoted by Σ(k).

Definition 2.4. Let Σ be a complete n-dimensional fan of regular cones. Denote
by G(Σ) = {v1, · · · , vm} the set of all generators of 1-dimensional cones in Σ (m =
Card Σ(1)). We call a subset P = {vi1 , · · · , vip} ⊂ G(Σ) a primitive collection if
{vi1 , · · · , vip} does not generate p-dimensional cone in Σ, while for all k (0 ≤ k < p)
each k-element subset of P generates a k-dimensional cone in Σ.

Definition 2.5. Let Cm be an m-dimensional affine space over C with the set of
coordinates z1, · · · , zm which are in the one-to-one correspondence zi ↔ vi with
elements of G(Σ). Let P = {vi1 , · · · , vip} be a primitive collection in G(Σ). Denote
by A(P) the (m− p)-dimensional affine subspace in Cn defined by the equations

zi1 = · · · = zip = 0.

Since every primitive collection P has at least two elements, the codimension of
A(P) is at least 2.

Definition 2.6. Define the closed algebraic subset Z(Σ) in Cm as follows

Z(Σ) =
[

P
A(P),

where P runs over all primitive collections in G(Σ). Put

U(Σ) = Cm \ Z(Σ).

Definition 2.7. Let K be the subgroup in Zm consisting of all lattice vectors
∏ = (∏1, · · · , ∏m) such that

∏1v1 + · · ·+ ∏mvm = 0.

Obviously K is isomorphic to Zm−n and we have the exact sequence:

0 → K → Zm π→ Zn → 0, (2.1)

where the map π sends the basis vectors ei to vi for i = 1, · · · ,m.
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Definition 2.8. Let Σ be a complete n-dimensional fan of regular cones. Define
D(Σ) to be the connected commutative subgroup in (C∗)m generated by all one-
parameter subgroups

a∏ : C∗ → (C∗)m,

t 7→ (t∏1 , · · · , t∏m)
where ∏ = (∏1, · · · , ∏m) ∈ K.

It is easy to see from the definition that D(Σ) acts freely on U(Σ). Now we
are ready to give a definition of the compact toric manifold XΣ associated with a
complete n-dimensional fan of regular cones Σ.

Definition 2.9. Let Σ be a complete n-dimensional fan of regular cones. Then the
quotient

XΣ = U(Σ)/D(Σ)
is called the compact toric manifold associated with Σ.

There exists a simple open coverings of U(Σ) by affine algebraic varieties.

Proposition 2.10. Let σ be a k-dimensional cone in Σ generated by {vi1 , · · · , vik}.
Define the open subset U(σ) ⊂ Cm as

U(σ) = {(z1, · · · , zm) ∈ Cm | zj 6= 0 for all j /∈ {i1, · · · , ik}}.

Then the open sets U(σ) have the following properties:
(1)

U(Σ) =
[

σ∈Σ

U(σ);

(2) if σ ≺ σ0, then U(σ) ⊂ U(σ0);
(3) for any two cone σ1, σ2 ∈ Σ, one has U(σ1) ∩ U(σ2) = U(σ1 ∩ σ2); in

particular,
U(Σ) =

X

σ∈Σ(n)

U(σ).

Proposition 2.11. Let σ be an n-dimensional cone in Σ(n) generated by {vi1 , · · · , vin},
which spans the lattice M . We denote the dual Z-basis of the lattice M by {ui1 , · · · , uin}.
i.e.

hvik , uili = δk,l (2.2)
where h·, ·i is the canonical pairing between lattices N and M .

Then the affine open subset U(σ) is isomorphic to Cn × (C∗)m−n, the action
of D(Σ) on U(σ) is free, and the space of D(Σ)-orbits is isomorphic to the affine
space Uσ = Cn whose coordinate functions yσ

1 , · · · , yσ
n are n Laurent monomials in

z1, · · · , zm: 




yσ
1 = z

hv1,ui1 i
1 · · · zhvm,ui1 i

m

...
yσ

n = z
hv1,uin i
1 · · · zhvm,uin i

m

(2.3)

The last statement yields a general formula for the local affine coordinates
yσ
1 , · · · , yσ

n of a point p ∈ Uσ as functions of its “homogeneous coordinates” z1, · · · , zm.
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2.2. Symplectic structure. In the last subsection, we associated a compact man-
ifold XΣ to a fan Σ. In this subsection, we review the construction of symplectic
(Kähler) manifold associated to a convex polytope P .

Let M be a dual lattice, we consider a convex polytope P in MR defined by

{u ∈ MR | hu, vji ≥ ∏j for j = 1, · · · ,m} (2.4)

where h·, ·i is a dot product of MR ∼= Rn. Namely, vj ’s are inward normal vectors
to the codimension 1 faces of the polytope P . We associate to it a fan in the lattice
N as follows: With any face Γ of P , fix a point u0 in the (relative) interior of Γ
and define

σΓ =
[

r≥0

r · (P − u0).

The associated fan is the family Σ(P ) of dual convex cones

σ̌Γ = {x ∈ NR | hy, xi ≥ 0 ∀y ∈ σΓ} (2.5)
= {x ∈ NR | hu, xi ≤ hp, xi ∀p ∈ P, u ∈ Γ} (2.6)

where h·, ·i is dual pairing MR and NR. Hence we obtain a compact toric manifold
XΣ(P ) associated to a fan Σ(P ).

Now we define a symplectic (Kähler) form on XΣ(P ) as follows. Recall the exact
sequence :

0 → K i→ Zm π→ Zn → 0.

It induces another exact sequence :

0 → K → Rm/Zm → Rn/Zn → 0.

Denote by k the Lie algebra of the real torus K. Then we have the exact sequence
of Lie algebras:

0 → k → Rm π→ Rn → 0.

And we have the dual of above exact sequence:

0 → (Rn)∗ → (Rm)∗ i∗→ k∗ → 0.

Now, consider Cm with symplectic form i
2

P
dzk ∧ dzk. The standard action Tn

on Cn is hamiltonian with moment map

µ(z1, · · · , zm) =
1
2
(|z1|2, · · · , |zm|2). (2.7)

For the moment map µK of the K action is then given by

µK = i∗ ◦ µ : Cm → k∗.

If we choose a Z-basis of K ⊂ Zm as

Q1 = (Q11, · · · , Qm1), · · · , Qk = (Q1k, · · · , Qmk)

and {q1, · · · , qk} be its dual basis of K∗. Then the map i∗ is given by the matrix
Qt and so we have

µK(z1, · · · , zm) =
1
2




mX

j=1

Qj1|zj |2, · · · ,
mX

j=1

Qjk|zj |2


 ∈ Rk ∼= k∗ (2.8)

in the coordinates associated to the basis {q1, · · · , qk}. We denote again by µK the
restriction of µK on U(Σ) ⊂ Cm.
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Proposition 2.12 (See Audin [Au]). Then for any r = (r1, · · · , rm−n) ∈ µK(U(Σ)) ⊂
k∗, we have a diffeomorphism

µ−1
K (r)/K ∼= U(Σ)/D(Σ) = XΣ (2.9)

And for each (regular) value of r ∈ k∗, we can associate a symplectic form ωP on
the manifold XΣ by symplectic reduction [MW].

To obtain the original polytope P that we started with, we need to choose r as
follows: Consider ∏j for j = 1, · · · ,m which we used to define our polytope P by
the set of inequalities hu, vji ≥ ∏j . Then, for each a = 1, · · · ,m− n, let

ra = −
mX

j=1

Qja∏j .

Then we have
µ−1

K (r1, · · · , rm−n)/K ∼= XΣ(P )

and for the residual Tn ∼= Tm/K action on XΣ(P ), and for its moment map π, we
have

π(XΣ(P )) = P.

Using Delzant’s theorem [De], one can reconstruct the symplectic form out of the
polytope P (up to Tn-equivariant symplectic diffeomorphisms). In fact, Guillemin
[Gu] proved the following explicit closed formula for the Tn-invariant Kähler form
associated to the canonical complex structure on X = XΣ(P )

Theorem 2.13 (Guillemin). Let P , XΣ(P ), ωP be as above and

π : XΣ(P ) → (Rm/k)∗ ∼= (Rn)∗

be the associated moment map. Define the functions on (Rn)∗

`i(u) = hu, vii − ∏i for i = 1, · · · ,m (2.10)

`1(u) =
mX

i=1

hu, vii =

*

u,
mX

i=1

vi

+

.

Then we have

ωP =
√
−1@@

√

π∗
≥ mX

i=1

∏i(log `i) + `1
¥!

(2.11)

on Int P .

The affine functions `i will play an important role in our description of potential
function as in [CO] since they also measure symplectic areas ω(βi) of the canonical
generators βi of H2(X,L(u); Z). More precisely we have

ω(βi) = 2π`i(u) (2.12)

(see Theorem 8.1 [CO]). We also recall

P = {u ∈ MR | `i(u) ≥ 0, i = 1, · · · ,m} (2.13)

by definition (2.4).
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3. Potential function

In [FOOO2], we introduced the notion of weak bounding cochains of a filtered
A1 algebra in general. The A1 structure canonically induces one on a canonical
model of the given A1 algebra. In the geometric context of A1 algebra associated
to a Lagrangian submanifold L ⊂ M of a general symplectic manifold (M,ω), the
structure is defined on the cohomology group H∗(L; Λ0).

An element b ∈ H1(L; Λ+) is called a weak bounding cochain if it satisfies the
A1 Mauer-Cartan equation (or master equation)

1X

k=0

mk(b, · · · , b) ≡ 0 mod PD([L]) (3.1)

where {mk}1k=0 is the A1 operators associated to L. We denote by cMweak(L)
the set of weak bounding cochains of L. We say L is weakly unobstructed if
cMweak(L) 6= ∅. The moduli spaceMweak(L) is then defined to be the quotient space
of cMweak(L) of suitable homotopy equivalence. (See chapter 3 and 4 [FOOO2] for
more explanations.)

The main point of introducing (weak) bounding cochains is the following

Lemma 3.1 (Lemma 11.12 [FOOO2]). If b ∈ cMweak(L) then δb,b ◦ δb,b = 0, where
δb,b is the deformed Floer operator defined by

δb,b(x) = mb
1(x) =:

X

k,`

mk+`+1(b⊗k, x, b⊗`).

For b ∈ cMweak(L), we define

HF (L; b) =
Ker(δb,b : C → C)
Im(δb,b : C → C)

,

where C is an appropriate subcomplex of the singular chain complex of L. When
L is weakly unobstructed i.e., cMweak(C) 6= ∅, we define a function

PO : cMweak(C) → Λ+

by the equation
m(eb) = PO(b) · PD([L]).

This is the potential function introduced in [FOOO2].
For the later analysis of examples, we recall from [FOOO1, FOOO2] that mk is

further decomposed into

mk =
X

β∈π2(M,L)

mk,β ⊗ Tω(β)eµ(β)/2.

Firstly we incorporate the grading parameter e into the ground ring and do not
write it explicitly. Secondly to eliminate many appearance of 2π in front of the affine
function `i in the exponents of the parameter T later in this paper, we redefine T
as T 2π. Under this arrangement, we get the formal power series expansion

mk =
X

β∈π2(M,L)

mk,β ⊗ Tω(β)/2π (3.2)

which we will use throughout the paper.
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Now we restrict to the case of toric manifold. Let X = XΣ be associated a
complete regular fan Σ, and π : X → t∗ be the moment map of the action of the
torus Tn ∼= Tm/K. We make the identifications

t = Lie(Tn) ∼= Nn
R
∼= Rn, t∗ ∼= MR ∼= (Rn)∗.

We will exclusively use NR and MR to be consistent with the standard notations in
toric geometry instead of t (or Rn) and t∗ (or (Rn)∗) as much as possible.

Denote the image of π : X → MR by P ⊂ MR which is the moment polytope of
the Tn action on X.

We will prove the following in section 10.

Proposition 3.2. For any u ∈ IntP , the fiber L(u) is weakly unobstructed. More-
over we have the canonical inclusion

H1(L(u); Λ+) ⊂Mweak(L(u)).

Choose an integral basis e∗i of N and ei be its dual basis on M . With this choice
made, we identify MR with Rn as long as its meaning is obvious from the context.
Identifying H1(Tn; Z) with N ∼= Zn via Tn = Rn/Zn, we regard ei as a basis of
H1(L(u); Z). The following immediately follows from definition.

Lemma 3.3. We write π = (π1, · · · , πn) : X → MR using the coordinate of MR
associated to the basis ei. Let S1

i ⊂ Tn be the subgroup whose orbit represents
e∗i ∈ H1(Tn; Z). Then πi is proportional to the moment map of S1

i action on X.

Let
b =

X
xiei ∈ H1(L(u); Λ+) ⊂Mweak(L(u)).

We study the potential function

PO : H1(L(u); Λ+) → Λ+.

Once a choice of the family of bases {ei} on H1(L(u); Z) for u ∈ Int P is made as
above starting from a basis on N , then we can regard this function as a function
of (x1, · · · , xn) ∈ (Λ+)n and (u1, · · · , un) ∈ P ⊂ MR. We denote its value by
PO(x;u) = PO(x1, · · · , xn;u1, · · · , un). We put

yi = exi =
1X

k=0

xk
i

k!
∈ Λ0.

Let

@P =
m[

i=1

@iP

be the decomposition of the boundary of the moment polytope into its faces of
codimension one. (@iP is a polygon in an n−1 dimensional affine subspace of MR.)

Let `i be the affine functions

`i(u) = hu, vii − ∏i for i = 1, · · · ,m

appearing in Theorem 2.13. Then the followings hold from construction :
(1) `i ≡ 0 on @iP .
(2) P = {u ∈ MR | `i(u) ≥ 0, i = 1, · · · ,m}.
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(3) The coordinates of the vectors vi = (vi,1, · · · , vi,n) satisfy

vi,j =
@`i

@uj
(3.3)

and are all integers.

Theorem 3.4. Let L(u) ⊂ X be as in Theorem 1.5 and `i be as above. Suppose
X is Fano. Then we can take the canonical model of A1 structure of L(u) over
u ∈ Int P so that the potential function restricted to

[

u∈Int P

H1(L(u); Λ+) ∼= (Λ+)n × Int P

has the form

PO(x;u) =
mX

i=1

y
vi,1
1 · · · yvi,n

n T `i(u) (3.4)

=
mX

i=1

ehv,xiT `i(u) (3.5)

where (x;u) = (x1, · · · , xn;u1, · · · , un) and vi,j is as in (3.3).

Theorem 3.4 is a minor improvement of a result from [CO] (see (15.1) of [CO])
and [Cho] : The case considered in [CO] corresponds to the case where yi ∈ U(1) ⊂
{z ∈ C | |z| = 1} and the case in [Cho] corresponds to the one where yi ∈ C \ {0}.
The difference of Theorem 3.4 from the ones thereof is that yi is allowed to contain
T , the formal parameter of the universal Novikov ring encoding the energy.

For the non-Fano case, we prove the following slightly weaker statement. The
proof will be given in section 10.

Theorem 3.5. Let X be an arbitrary toric manifold and L(u) be as above. Then
there exist cj ∈ Q, ei

j ∈ Z≥0 and ρj > 0, such that
Pm

i=1 ei
j > 0 and

PO(x1, · · · , xn;u1, · · · , un) −
mX

i=1

y
vi,1
1 · · · yvi,n

n T `i(u)

=
X

j=1

cjy
v0j,1
1 · · · yv0j,n

n T `0j(u)+ρj . (3.6)

where

v0j,k =
mX

i=1

ei
jvi,k, `0j =

mX

i=1

ei
j`i.

If there are infinitely many non-zero cj’s, we have

lim
j→1

`0j(u) + ρj = 1.

Moreover ρj = [ω] ∩ αj for some αj ∈ π2(X) with nonpositive Chern number.

We note that although PO is defined originally on ΛC
+×P , Theorems 3.4 and 3.5

imply that PO extends to a function on (ΛC
0 )n×MR. Furthermore these theorems

also imply the periodicity of PO in xi’s,

PO(x1, · · · , xi + 2π
√
−1, · · · , xn;u) = PO(x1, · · · , xn;u). (3.7)
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We write

PO0 =
mX

i=1

y
vi,1
1 · · · yvi,n

n T `i(u) (3.8)

to distinguish it from PO. We call PO0 the leading order potential function.
We will concern the existence of the bounding cochain b for which the Floer

cohomology HF ((L(u), b), (L(u), b)) is not zero, and prove that critical points of
the POu (as a function of y1, · · · , yn) have this property. (Theorem 3.9.)

This leads us to study the equation

@POu

@yk
(y1, · · · , yn) = 0, k = 1, · · · , n, (3.9)

where yi ∈ Λ0 \ Λ+.
We regard POu as either a function of xi or of yi. Since the variable (xi or yi)

is clear from situation, we do not mention it occasionally.

Proposition 3.6. We assume that the coordinates of the vertices of P are rational.
Then there exists u0 ∈ IntP ∩ Qn such that for each N there exists y1, · · · , yn ∈
Λ0 \ Λ+ satisfying :

@POu0

@yk
(y1, · · · , yn) ≡ 0, mod TN k = 1, · · · , n. (3.10)

Moreover there exists y01, · · · , y0n ∈ Λ0 \ Λ+ such that

@POu0
0

@yk
(y01, · · · , y0n) = 0, k = 1, · · · , n. (3.11)

We will prove Proposition 3.6 in section 8 .

Remark 3.7. (1) u0 is independent of N . But yi may depend on N . (We
believe it does not depend on N , but are unable to prove it at the time of
writing this paper.)

(2) If [ω] ∈ H2(X; R) is contained in H2(X; Q) then we may choose P so that
its vertices are rational.

(3) We believe that rationality of the vertices of P is superfluous. We also
believe there exists not only a solution of (3.10) or of (3.11) but also of
(3.9). However then the proof seems to become more cumbersome. Since
we can reduce the general case to the rational case by approximation in
most of the applications, we will be content to prove the above weaker
statement in this paper.

We put
xi = log yi ∈ Λ0.

Since yi ∈ Λ0 \ Λ+, log yi is well-defined (by using non-Archimedean topology on
Λ0) and is contained in Λ0.

Take yi,0 ∈ C \ {0} such that yi − yi,0 ≡ 0 mod ΛC
+ and write

b =
X

i

xiei ∈ H1(L(u0); Λ0).

If we put an additional assumption that yi,0 = 1 for i = 1, · · · , n, then b lies in

H1(L(u0); Λ+) ⊂ H1(L(u0); Λ0).
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Therefore Proposition 3.2 implies the Floer cohomology HF ((L(u0), b), (L(u0), b); Λ0)
is defined. Then (3.10) combined with the argument from [CO] (see section 12) im-
ply

HF ((L(u0), b), (L(u0), b); ΛC
0 /(TN )) ∼= H(Tn; ΛC

0 /(TN )). (3.12)

We now consider the case when yi,0 6= 1 for some i. In this case, we follow the
idea of Cho [Cho] of twisting the Floer cohomology of L(u) by non-unitary flat line
bundle and proceed as follows :

We define ρ : H1(L(u); Z) → C \ {0} by

ρ(ei) = yi,0. (3.13)

Let Lρ be the flat complex line bundle on L(u) whose holonomy representation is ρ.
We use ρ to twist the operator mk in the same way as [Fu2], [Cho] to obtain a filtered
A1 algebra, which we write ((H(L(u); Λ0), ρ),mρ). It is weakly unobstructed and
Mweak((H(L(u); Λ0), ρ),mρ) ⊇ H1(L(u); Λ+). (See section 11.)

We deform the filtered A1 structure mρ to mρ,b using b ∈ H1(L(u); Λ+) for which
mρ,b

1 mρ,b
1 = 0 holds. Denote by HF ((L(u0), ρ, b), (L(u0), ρ, b),ΛC

0 ) the cohomology
of mρ,b

1 . We denote the potential function of ((H(L(u); Λ0), ρ),mρ) by

POu
ρ : H1(L(u); Λ+) → Λ+

which is defined in the same was as POu is using mρ instead of m. From the way
how the definition goes, we can easily prove

Lemma 3.8.

POu
ρ(x) = POu

√

x +
nX

i=1

xi,0ei

!

.

Here x ∈ H1(L(u); Λ+).

We note from the remark right after Theorem 3.5 that POu has been extended
to a function on (ΛC

0 )n ×MR and hence the right hand side of the identity in this
lemma has a well-defined meaning. Lemma 3.8 will be proved in section 12.

Now we have :

Theorem 3.9. Let xi and ρ satisfy (3.9) and (3.13) respectively. We put

b =
nX

i=1

(xi − xi,0)ei ∈ H1(L(u); ΛC
+). (3.14)

Then we have

HF ((L(u0), ρ, b), (L(u0), ρ, b),ΛC
0 ) ∼= H(Tn; ΛC

0 ). (3.15)

If (3.10) and (3.13) are satisfied instead then we have

HF ((L(u0), ρ, b), (L(u0), ρ, b),ΛC
0 /(TN )) ∼= H(Tn; ΛC

0 /(TN )). (3.16)

Theorem 3.9 is proved in section 12. Using this we prove Theorem 1.5 in section
12. More precisely, we will also discuss the following two points in that section :

(1) We need to study the case where ω is not necessarily rational
(2) We only have (3.16) instead of (3.15).

We define :
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Definition 3.10. Let (X,ω) be a smooth compact toric manifold, P be its moment
polytope. We say the fiber L(u0) at u0 ∈ P is balanced if there exists a sequence
ωi, ui such that

(1) ωi is an Tn invariant Kähler structure on X such that limi→1 ωi = ω.
(2) ui is in the interior of the moment polytope Pi of P . We make an appro-

priate choice of moment polytope Pi so that they converge to P . Then
limi→1 ui = u0.

(3) For each N , there exist a sufficiently large i and bi,N ∈ H1(L(ui); ΛC
0 ) such

that

HF ((L(ui), bi,N ), (L(ui), bi,N ; ΛC/(TN )) ∼= H(Tn; C)⊗ ΛC/(TN ).

Theorem 3.9 implies that L(u0) in Proposition 3.6 is balanced. (Proposition
12.3.) We will prove that any balanced Lagrangian fiber satisfies the conclusion of
Theorem 1.5. (Lemma 12.2.)

Denoting b0 = b+
P

xi,0ei, we sometime write HF ((L(u0), b0), (L(u0), b0),Λ0) for
HF ((L(u0), ρ, b), (L(u0), ρ, b),Λ0) from now on.

4. Examples and conjectures

In this section, we discuss various examples of toric manifolds which illustrate
the results of section 3.

Example 4.1. Consider X = S2 with standard symplectic form with area 2π. The
moment polytope of the standard S1-action by rotations along an axis becomes
P = [0, 1] after a suitable translation. We have ∏1(u) = u, ∏2(u) = 1− u and

PO(x;u) = exTu + e−xT 1−u = yTu + y−1T 1−u.

The zero of
@POu

@y
= Tu − y−2T 1−u

is y = ±T (1−2u)/2. If u 6= 1/2 then

log y =
1− 2u

2
log(±T )

is not an element of universal Novikov ring. In other words, there is no critical
point in (ΛC

0 \ ΛC
+)n.

If u = 1/2 then y = ±1. The case y = 1 corresponds to x = 0. Namely b = 0.
We have

HF ((L(1/2), 0), (L(1/2), 0); Λ0) ∼= H(S1; ΛC
0 ).

The other case y = −1, corresponds to a nontrivial flat bundle on S1.

Example 4.2. We consider X = CPn. Then

P = {(u1, · · · , un) | 0 ≤ ui, u1 + · · ·+ un ≤ 1},

is a simplex. We have

PO(x1, · · · , xn;u1, · · · , un) =
nX

i=1

exiTui + e−
P

xiT 1−
P

ui .
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We put u = u0 =
≥

1
n+1 , · · · , 1

n+1

¥
. Then

POu0 = (y1 + · · ·+ yn + y−1
1 y−1

2 · · · y−1
n )T 1/(n+1).

Solutions of the equation (3.9) are given by

y1 = · · · = yn+1 = e2πk
√
−1/(n+1), k = 0, · · · , n.

Hence the conclusion of Theorem 1.5 holds for our torus. The case k = 0 corre-
sponds to b = 0. The other cases correspond to an appropriate flat bundles on
Tn.

Remark 4.3. The critical values of the potential function is (n+1)e2π
√
−1k/(n+1),

k = 0, · · · , n.
We consider the quantum cohomology ring

QH(CPn; Λ(0)
0 ) ∼= Λ(0)

0 [z, T ]/(zn+1 − T ).

The first Chern class c1 is (n + 1)z. The eigenvalues of the operator

c : QH(CPn) → QH(CPn), α 7→ c1 ∪Q α

are (n + 1)e2π
√
−1k/(n+1), k = 0, · · · , n. It coincides with the set of critical values.

Kontsevich announced this statement at the homological mirror symmetry con-
ference at Vienna 2006. (According to some physicists, this statement is known to
them before.) See [Aur]. In our situation we can prove it by using Theorem 1.9.

In the rest of this subsection, we discuss 2 dimensional examples.
Let e1, e2 be the basis of H1(T 2; Z) as in Lemma 3.3. We put e12 = e1 ∪ e2 ∈

H2(T 2; Z). Let e∅ be the standard basis of H0(T 2; Z) ∼= Z. The proof of the
following proposition will be postponed until section 12.

Proposition 4.4. Let b = y ∈ H1(L(u); Λ+). Then the boundary operator mb
1 is

given as follows :





mb
1(ei) =

@POu

@yi
(y)e∅,

mb
1(e12) =

@POu

@y1
(y)e2 −

@POu

@y2
(y)e1,

mb
1(e∅) = 0.

(4.1)

With (4.1) in our disposal, we examine various examples.

Example 4.5. We consider M = CP 2 again. We put u1 = ≤ + 1/3, u2 = 1/3.
(≤ > 0.) Using (4.1) we can easily find

HF odd((L(u), 0), (L(u), 0)) ∼= HF even((L(u), 0), (L(u), 0)) ∼= Λ0/(T 1/3−≤).

Let us apply Theorem J [FOOO2] in this situation. (See also Theorem 4.11 below.)
We consider a Hamiltonian diffeomorphism √ : CP 2 → CP 2. We denote by k√k
the Hofer distance of √ from identity. Then we have

#(√(L(u)) ∩ L(u)) ≥ 4

if k√k < 2π( 1
3 − ≤) and √(L(u)) is transversal to L(u).

We remark that this fact was already proved by Chekanov [Che]. (Actually the
basic geometric idea behind our proof is the same as Chekanov’s.)
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Example 4.6. Let M = S2(a
2 ) × S2( b

2 ), where S2(r) denotes the 2-sphere with
radius r. We assume a < b.

Then B = [0, a]× [0, b] and we have :

PO(x1, x2;u1, u2) = y1T
u1 + y2T

u2 + y−1
1 T a−u1 + y−1

2 T b−u2 .

Let us take u1 = a/2, u2 = b/2. Then
@POu

@y1
= (1− y−2

1 )T a/2,
@POu

@y2
= (1− y−2

2 )T b/2.

Therefore y1 = ±1 y2 = ±1 are solutions of (3.9). Hence we can apply Theorem
3.9 to our torus.

We next put u1 = a/2, a < 2u2 < b. Then
@POu

@y1
= (1− y−2

1 )T a/2,
@POu

@y2
= Tu2 − y−2

2 T b−u2 .

We put y1 = y2 = 1. Then @POu

@y1
= 0, @POu

@y2
6= 0. We find that

HF odd((L(u), 0), (L(u), 0)) ∼= HF even((L(u), 0), (L(u), 0)) ∼= Λ0/(Tu2).

Let √ : CP 2 → CP 2 be a Hamiltonian diffeomorphism. Then, Theorem J [FOOO2]
implies that

#(√(L(u)) ∩ L(u)) ≥ 4
if k√k < 2πu2 and √(L(u)) is transversal to L(u). Note there exists a pseudo-
holomorphic disc with symplectic area πa (< 2πu2). Hence our result improves a
result from [Che].

Example 4.7. Let X be two-point blow up of CP 2. We may take its Kähler form
so that the moment polytope is given by

P = {(u1, u2) | −1 ≤ u1 ≤ 1,−1 ≤ u2 ≤ 1, u1 + u2 ≤ 1 + α},
where −1 < α < 1 depends on the choice of Kähler form. We have

PO(x1, x2;u1, u2) = y1T
1+u1 + y2T

1+u2 + y−1
1 T 1−u1

+ y−1
2 T 1−u2 + y−1

1 y−1
2 T 1+α−u1−u2 .

(4.2)

Note X is Fano in our case.

(Case 1: α = 0).
In this case X is monotone. We put u0 = (0, 0). L(u0) is a monotone Lagrangian

submanifold. We have
@POu0

@y1
= (1− y−2

1 − y−2
1 y−1

2 )T,
@POu0

@y2
= (1− y−2

2 − y−1
1 y−2

2 )T.

The solutions of (3.9) are given by y2 = 1
y2
1−1

, y5
1 + y4

1 − 2y3
1 − 2y2

1 + 1 = 0 in C.
(There are 5 solutions.)

(Case 2: α > 0).
We put u0 = (0, 0). Then
@POu0

@y1
= (1− y−2

1 )T − y−2
1 y−1

2 T 1+α,
@POu0

@y2
= (1− y−2

2 )T − y−1
1 y−2

2 T 1+α.

We consider, for example, the case y1 = y2 = τ . Then (3.9) becomes

τ3 − τ − Tα = 0. (4.3)
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The solution of (4.3) with τ ≡ 1 mod Λ+ is given by

τ = 1 +
1
2
Tα − 3

8
T 2α +

1
2
T 3α +

1X

k=4

ckT kα.

Let us put b = x1e1 + x2e2 with

x1 = x2 = log
µ

1 +
1
2
Tα − 3

8
T 2α +

1
2
T 3α + · · ·

∂
∈ Λ+.

Then by Theorem 3.9 we have

HF ((L(u0), b), (L(u0), b); Λ0) ∼= H(T 2; Λ0).

We like to point out that in this example it is essential to deform Floer coho-
mology using an element b of H1(L(u0); Λ+) containing the formal parameter T to
obtain nonzero Floer cohomology.

At u0, there are actually 4 solutions such that

(y1, y2) ≡ (1, 1), (1,−1), (−1, 1), (−1,−1) mod Λ+,

respectively.
In the current case there is another point u00 = (α, α) ∈ P where L(u00) is

balanced 1. In fact at u00 = (α, α) the equation (4.3) becomes

0 = −(y−2
1 y−1

2 + y−2
1 )T 1−α + T 1+α, 0 = −(y−1

1 y−2
2 + y−2

2 )T 1−α + T 1+α.

we put τ = y1 = y2 to obtain

τ3T 2α − τ − 1 = 0

This equation has a unique solution with τ ≡ −1 mod Λ+. (The other solution is
T 2α/3τ ≡ 1 mod Λ+, for which Theorem 3.9 is not applicable for this case.)

The total number of the solutions (u, b) is 5.

(Case 3: α < 0).
We first consider u0 = (0, 0). Then

@POu0

@y1
= −y−2

1 y−1
2 T 1+α + (1− y−2

1 )T,
@POu0

@y2
= −y−1

1 y−2
2 T 1+α + (1− y−2

2 )T.

We assume yi satisfies (3.9). It is then easy to see that y−1
1 ≡ 0, or y−1

2 ≡ 0
mod Λ+. In other words, there is no y1, y2 to which we can apply Theorem 3.9.
Actually it is easy to find a Hamiltonian diffeomorphism √ : X → X such that
√(L(u0)) ∩ L(u0) = ∅.

We next take u00 = (α/3, α/3). Then

@POu00

@y1
= (1− y−2

1 y−1
2 )T 1+α/3 − y−2

1 T 1−α/3,

@POu00

@y2
= (1− y−1

1 y−2
2 )T 1+α/3 − y−2

2 T 1−α/3.

By putting y1 = y2 = τ for example, (3.9) becomes

τ3 − T−2α/3τ − 1 = 0. (4.4)

1Using the method of spectral invariants and symplectic quasi-states, Entov and Polterovich
discovered some undisplaceabe Lagrangian fiber which was not covered by the criterion given in
[CO] (see section 9 [EP1]). Recently this example, among others, was explained by Cho [Cho] via
Lagrangian Floer homology twisted by non-unitary line bundles.
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Let us put b = x1e1 + x2e2 with

x1 = x2 = log τ = log
µ

1 +
1
3
T−2α/3 +

2
3
T−4α/3 + · · ·

∂
∈ Λ+,

where τ solves (4.4). Theorem 3.9 is applicable. (There are actually 3 solutions of
(3.9) corresponding to the 3 solutions of (4.4).)

There are two more points u = (α + 1, α), (α, α + 1) where (3.9) has a solution
in (Λ0 \ Λ+). Each u has one b.

Thus the total number of the pair (u, b) is again 5. We remark

5 =
X

rankHk(X; Q).

This is not just a coincidence but an example of general phenomenon stated as in
Theorem 1.3.

We remark that as α → 1 our X blows down to S2(1) × S2(1). On the other
hand, as α → −1 our X blows down to CP 2. The situation of the case α > 0 can
be regarded as a perturbation of the situation of S2(1) × S2(1), by the effect of
exceptional curve corresponding to the segment u1 + u2 = 1 + α. The situation
of the case α < 0 can be regarded as a perturbation of the situation of CP 2 by
the effect of the two exceptional curves corresponding to the segments u1 = 1 and
u2 = 1. An interesting phase change occurs at α = 0.

The discussion of this section strongly suggests that Lagrangian Floer theory
(Theorems G, J [FOOO2]) gives the optimal result for the study of displacement
of the Tn-orbits in toric manifolds.

Conjecture 4.8. Let X be a compact toric manifold and L(u) = π−1(u), u ∈ IntP .
Then the following two conditions are equivalent.

(1) There exists no Hamiltonian diffeomorphism √ : X → X such that √(L(u))∩
L(u) = ∅.

(2) There exists (y1, · · · , yn) ∈ (Λ0 \ Λ+)n satisfying (3.9).

Note (2) ⇒ (1) follows from Theorem 3.9. In many cases (including all the
examples we discuss in this paper) we can prove (1) ⇒ (2).

Using the argument employed in Example 4.6 we can discuss the relationship
between the Hofer distance and displacement. First we introduce some notations for
this purpose. We denote by Ham(X,ω) the group of Hamiltonian diffeomorphisms
of (X,ω). For a time-dependent Hamiltonian H : [0, 1] × X → R, we denote
by φt

H the time t-map of Hamilton’s equation ẋ = XH(t, x). The Hofer norm of
√ ∈ Ham(X,ω) is defined to be

k√k = inf
H;φ1

H=√

Z 1

0
(max Ht −minHt) dt

(See [H].)

Definition 4.9. Let Y ⊂ X. We define the displacement energy e(Y ) ∈ [0,1] by

e(Y ) := inf{k√k | √ ∈ Ham(X,ω), √(Y ) ∩ Y = ∅}.

We put e(Y ) = 1 if there exists no √ ∈ Ham(X,ω) with √(Y ) ∩ Y = ∅.

Let us consider PO(y1, · · · , yn;u1, · · · , un) : Λn
0 × P → Λ+ as in Theorem 3.4.
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Definition 4.10. We define the number E(u) ∈ (0,1] as the supremum of all ∏
such that there exists y1, · · · , yn ∈ (Λ0 \ Λ+

0 )n satisfying
@PO

@yi
(y1, · · · , yn;u) ≡ 0 mod T∏ (4.5)

for i = 1, · · · , n. (Here we consider universal Novikov ring with C-coefficients.) We
call E(u) the PO-threshold of the fiber L(u), and a point (y1, · · · , yn;u) satisfying
(4.5) a PO-threshold point of L(u).

Theorem 4.11. For any compact toric manifold X and L(u) = π−1(u), u ∈ IntP ,
we have

e(L(u)) ≥ 2πE(u). (4.6)

Proof. Let us consider (y1, · · · , yn;u) ∈ (ΛC
0 \ ΛC

+)n be a PO-threshold point of
L(u). We associate to it a local system ρ by (3.13) and a bounding cochain b by
(3.14). Then by the same way as the proof of Theorem 3.9, we prove

HF ((L(u),Lu
ρ ; b), (L(u),Lu

ρ ; b); ΛC
0 /(T∏)) ∼= H(Tn; ΛC

0 /(T∏)).

This isomorphism and Universal Coefficient Theorem imply that the Floer cohomol-
ogy HF ((L(u),Lu

ρ ; b), (L(u),Lu
ρ ; b); ΛC

0 ) contains a torsion summand ΛC
0 /(T∏) with

∏0 ≥ ∏ or Λ0. Therefore Theorem J [FOOO2], after twisting Floer cohomology by
the local system ρ, implies e(L(u)) ≥ 2π∏. This finishes the proof. §

Conjecture 4.12. The equality always holds in (4.6).

It is very likely that Conjecture 4.12 holds for all the examples in this paper
although we did not check them all. (In the non-Fano case, we may use PO0 in
place of PO.)

We like to remark E(u) can be easily calculated once the toric manifold X is
given explicitly.

Remark 4.13. Appearance of a new family of pseudo-holomorphic discs with
Maslov index 2 after blow up, which we observed in Examples 4.7 can be related
to the operator q that we introduced in section 13 [FOOO2] in the following way.

We denote by Ml,k+1(β) the moduli space of stable maps f : (Σ, @Σ) → (X,L)
from bordered Riemann surface Σ of genus zero with l interior and k + 1 boundary
marked points and in homology class β. (See section 3 [FOOO1].) Let us consider
the case when Maslov index of β is 4. We assume [f ] ∈M0,0+1(β) and M0,0+1(β)
is Fredholm regular at f . The virtual dimension of M0,0+1(β) is n+2. We blow up
X at a point p = f(0) ∈ X and obtain bX. (We assume p /∈ L.) Let [E] ∈ H2n−2( bX)
be the homology class of the exceptional divisor E = π−1(p). Now f induces a map
bf : (D2; @D2) → ( bX,L). The Maslov index of the homology class [ bf ] ∈ H2( bX,L)
becomes 2. We put bβ = [ bf ].

For the case where X is toric and L is a Tn-orbit, we can take a Tn-invariant
perturbation. (See section 10.) If p is a fixed point of Tn action, a Tn-invariant
perturbation lifts to a perturbation of the moduli space M0+1(bβ).

Then any Tn-orbit of the moduli space M0+1(X;β) of holomorphic discs passing
through p corresponds to the Tn-orbit of M0,0+1( bX; bβ) and vice versa. Namely we
have an isomorphism

M1,0+1(β) ev ×X {p} ∼= M0,0+1(bβ). (4.7)



24 K. FUKAYA, Y.-G. OH, H. OHTA, K. ONO

Here ev in the left hand side is the evaluation map at the interior marked point.
(Actually we need to work out analytic detail of gluing construction etc.. It seems
very likely that we can do it in the same way as the argument of Chapter 10
[FOOO2]. See also [LiRu].)

Using (4.7) we may prove :

q1,k;β(PD([p]); b, · · · , b) = mk,bβ(b, · · · , b),

where

q1,k;β(Q;P1, · · · , Pk) = ev0∗
°
M1,k+1(β)×(X×Lk) (Q× P1 × · · · × Pk)

¢

is defined in section 13 [FOOO2]. (Here Q is a chain in X and Pi are chains
in L(u), and ev0 : M1,k+1(β) → X is the evaluation map at the 0-th boundary
marked point. In the right hand side, we take fiber product over X × Lk.) This is
an example of a blow-up formula in Lagrangian Floer theory.

5. Quantum cohomology and Jacobian ring

In this section, we prove Theorem 1.9. Let PO0 be the leading order potential
function. (Recall if X is Fano, we have PO0 = PO.) We define the monomial

zi(u) = y
vi,1
1 · · · yvi,n

n T `i(u) ∈ Λ0[y1, · · · , yn, y−1
1 , · · · , y−1

n ]. (5.1)

Compare this with (2.3). It is also suggestive to write zi as

zi(u) = ehx,viiT `i(u), x = (x1, · · · , xn), yi = exi . (5.2)

By definition we have

POu
0 =

mX

i=1

zi(u) (5.3)

yj
@zi

@yj
= vi,jzi(u). (5.4)

The following is a restatement of Theorem 1.9. Let zi ∈ H2(X; Z) be the Poincaré
dual of the divisor π−1(@iP ).

Theorem 5.1. If X is Fano, there exists an isomorphism

√u : QH(X; Λ) ∼= Jac(PO)

such that √u(zi) = zi.

Since c1(X) =
Pm

i=1 zi (see [Ful]) and POu
0 =

Pm
i=1 zi(u) by definition, Theorem

1.9 follows from Theorem 5.1.
In the remaining section, we prove Theorem 5.1. We remark that zi (i =

1, · · · ,m) generates the quantum cohomology ring QH(X; Λ) as a Λ-algebra (see
Theorem 5.5 below). Therefore it is enough to prove that the assignment √̃u(zi) =
zi(u) extends to a homomorphism √̃u : Λ[z1, · · · , zm] → Jac(POu

0 ) that induces an
isomorphism in QH(X; Λ). In other words, it suffices to show that the relations
among the generators in Λ[z1, · · · , zm] and in Jac(POu

0 ) are mapped to each other
under the assignment √̃u(zi) = zi(u). To establish this correspondence, we will
review Batyrev’s description of the relations among zi’s.

We first clarify the definition of quantum cohomology ring over the universal
Novikov rings Λ0 and Λ. Let (X,ω) be a symplectic manifold and α ∈ π2(X). Let
M3(α) be the moduli space of stable map of genus 0 with 3 marked points. Let ev :
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M3(α) → X3 be the evaluation map. We can define the virtual fundamental class
ev∗[M3(α)] ∈ Hd(X3; Q) where d = 2(dimC X + c1(X) ∩ α). Let ai ∈ H∗(X; Q).
We define a1 ∪Q a2 ∈ H∗(X; Λ0) by the following formula.

ha1 ∪Q a2, a3i =
X

α

Tω∩α/2πev∗[M3(α)] ∩ (a1 × a2 × a3). (5.5)

Here h·, ·i is the Poincaré duality. Extending this linearly we obtain the quantum
product

∪Q : H(X; Λ0)⊗H(X; Λ0) → H(X; Λ0).

Extending the coefficient ring further to Λ, we obtain the (small) quantum coho-
mology ring QH(X; Λ).

Now we specialize to the case of compact toric manifolds and review Batyrev’s
presentation of quantum cohomology ring. We consider the exact sequence

0 −→ π2(X) −→ π2(X;L(u)) −→ π1(L(u)) −→ 0. (5.6)

We note π2(X;L(u)) ∼= Zm and choose its basis adapted to this exact sequence
as follows : Consider the divisor π−1(@iP ) and take a small disc transversal to it.
Each such disc gives rise to an element

[βi] ∈ H2(X;π−1(IntP )) ∼= H2(X;L(u)) ∼= π2(X,L(u)). (5.7)

The set of [βi] with i = 1, · · · ,m forms a basis of π2(X;L(u)) ∼= Zm. The boundary
map [β] 7→ [@β] : π2(X;L(u)) → π1(L(u)) is identified with the corresponding map
H2(X;L(u)) → H1(L(u)). Using the basis chosen in Lemma 3.3 on H1(L(u)) we
identify H1(L(u)) ∼= Zn. Then this homomorphism maps [βi] to

[@βi] ∼= vi = (vi,1, · · · , vi,n), (5.8)

where vi,j is as in (3.3). By the exactness of (5.6), we have an isomorphism

H2(X) ∼= {β ∈ H2(X;L(u)) | [@β] = 0}. (5.9)

Lemma 5.2. We have

ω ∩
hX

kiβi

i
= 2π

X
ki`i(u). (5.10)

If [
P

ki@βi] = 0 then
X

ki
d`i

duj
= 0. (5.11)

In particular, the right hand side of (5.10) is independent of u.

Proof. (5.10) follows from the area formula (2.12), ω(βi) = 2π`i(u). On the other
hand if [

P
ki@βi] = 0, we have

mX

i=1

kivi = 0.

By the definition of `i, `i(u) = hu, vii − ∏i, from Theorem 2.13, this equation is
precisely (5.11) and hence the proof. §

Let P ⊂ {1, · · · ,m} be a primitive collection (see Definition 2.4). There exists
a unique subset P 0 ⊂ {1, · · · ,m} such that

P
i∈P vi lies in the interior of the cone
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spanned by {vi0 | i0 ∈ P 0}, which is a member of the fan Σ. (Since X is compact,
we can choose such P 0. See section 2.4 [Ful].) We write

X

i∈P
vi =

X

i0∈P0
ki0vi0 . (5.12)

Since X is assumed to be nonsingular ki0 are all positive integers. (See p.29 of
[Ful].) We put

ω(P) =
X

i∈P
`i(u)−

X

i0∈P0
ki0`i0(u). (5.13)

It follows from (5.10) that 2πω(P) is the symplectic area of the homotopy class

β(P) =
X

i∈P
βi −

X

i0∈P0
ki0βi0 ∈ π2(X). (5.14)

We remark that ω(P) > 0 : In fact, since the cone spanned by {vi0 | i0 ∈ P 0} does
not contain the origin it follows that

\

i0∈P0
π−1(@iP ) 6= ∅.

Then for any u ∈
T

i0∈P0 π
−1(@iP ), we have `i0(u) = 0 and so obtain ω(P) =P

i∈P `i(u) > 0. The last inequality follows since `i(u) > 0 for u ∈ Int P by defini-
tion (2.13) of P .

Now we associate z1, · · · , zm formal variables to v1, · · · , vm respectively.

Definition 5.3 (Batyrev [B1]). (1) The quantum Stanley-Reisner ideal SRω(X)
is the ideal generated by

z(P) =
Y

i∈P
zi − Tω(P)

Y

i0∈P0
zki0
i0 (5.15)

in the polynomial ring Λ [z1, · · · , zm]. Here P runs over all primitive col-
lection.

(2) We denote by P (X) the ideal generated by
mX

i=1

vi,jzi (5.16)

for j = 1, · · · , n. In this paper we call P (X) the linear relation ideal.
(3) We call the quotient

QHω(X; Λ) =
Λ [z1, · · · , zm]

(P (X) + SRω(X))
(5.17)

the Batyrev quantum cohomology ring.

Remark 5.4. We do not take closure of our ideal P (X) + SRω(X) here. See
Proposition 7.4.

Theorem 5.5 (Batyrev [B1, Gi2]). If X is Fano there exists a ring isomorphism
from QHω(X; Λ) to the quantum cohomology ring QH(X; Λ) of X such that zi is
sent to the Poincaré dual to π−1(@iP ).

The main geometric part of the proof of Theorem 5.5 is the following.

Proposition 5.6. The Poincaré dual to π−1(@iP ) satisfy the quantum Stanley-
Reisner relation.
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We do not prove Proposition 5.6 in this paper. See Remarks 5.13 and 5.14.
However since our choice of the coefficient ring is different from other literature,
we explain here for reader’s convenience how Theorem 5.5 follows from Proposition
5.6.

Proposition 5.6 implies that we can define a ring homomorphism h : QHω(X; Λ) →
QH(X; Λ) by sending zi to PD(π−1(@iP )). Let F kQH(X; Λ) be the direct sum of
elements of degree ≤ 2k. Let F kQHω(X; Λ) be the submodule generated by the
polynomial of degree k/2 on zi. Clearly h(F kQHω(X; Λ)) ⊂ F kQH(X; Λ).

Since X is Fano, it follows that,

x ∪Q y − x ∪ y ∈ F deg x+deg y−2QH(X; Λ).

We also recall the cohomology ring H(X; Q) is obtained by putting T = 0 in
quantum Stanley-Reisner relation. Moreover we find that the second product of
the right hand side of (5.15) has degree strictly smaller than the first since X is
Fano.

Therefore the graded ring

gr(QH(X; Λ)) =
M

k

F k(QH(X; Λ))/F k−1(QH(X; Λ)),

is isomorphic to the (usual) cohomology ring as a ring. The same holds for QHω(X; Λ).
It follows that h is an isomorphism. §

In the rest of this section, we will prove the following Proposition 5.7. Theorem
5.1 follows immediately from Proposition 5.7 and Theorem 5.5.

Proposition 5.7. There exists an isomorphism :

√u : QHω(X; Λ) ∼= Jac(PO0)

such that √u(zi) = zi.

We remark that we do not assume that X is Fano in Proposition 5.7. We
also remark that for our main purpose to calculate M0(Lag(X)), Proposition 5.7
suffices. Proposition 5.7 is a rather simple algebraic result whose proof does not
require study of pseudo-holomorphic discs or spheres.

Proof of Proposition 5.7. We start with the following proposition.

Proposition 5.8. The assignment
b√u(zi) = zi(u). (5.18)

induces a well-defined ring isomorphism

b√u :
Λ [z1, · · · , zm]

SRω(X)
→ Λ[y1, · · · , yn, y−1

1 , · · · , y−1
n ] (5.19)

Proof. Let P be a primitive collection and P 0, ki0 be as in (5.12). We calculate
Y

i∈P
zi(u) =

Y

i∈P
y

vi,1
1 · · · yvi,n

n T `i(u) (5.20)

by (5.1). On the other hand,
Y

i0∈P0
zki0

i0 (u) =
Y

i0∈P0
y

ki0vi0,1
1 · · · yki0vi0,n

n T ki0`i0 (u)

=
Y

i∈P
y

vi,1
1 · · · yvi,n

n

Y

i0∈P0
T ki0`i0 (u)
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by (5.12). Moreover X

i∈P
`i(u)−

X

i∈P0
ki0`i0(u) = ω(P)

by (5.13). Therefore Y

i∈P
zi(u) = Tω(P)

Y

i0∈P0
zki0

i0 (u)

in Λ[y1, · · · , yn, y−1
1 , · · · , y−1

n ]. In other words, (5.18) defines a well-defined ring
homomorphism (5.19).

We now prove that b√u is an isomorphism. Let

pr : Zm ∼= π2(X;L(u)) −→ Zn ∼= π1(L(u))

be the homomorphism induced by the boundary map pr([β]) = [@β]. (See (2.1).)
We remark pr(a1, · · · , am) = (b1, · · · , bn) with bj =

P
i aivi,j . Let A =

P
aiβi be

an element in the kernel of pr. We write it as
X

i∈I

aiβi −
X

j∈J

bjβj

where ai bj are positive and I ∩ J = ∅. We define

r(A) =
Y

i∈I

zai
i − T

P
i ai`i(u)−

P
j bj`j(u)

Y

j∈J

z
bj

j . (5.21)

We remark that a generator of quantum Stanley-Reisner ideal corresponds to r(A)
for which I is a primitive collection P and J = P 0. We also remark that the case
I = ∅ or J = ∅ is included.

Lemma 5.9.
r(A) ∈ SRω(X).

Proof. This lemma is proved in [B1]. We include its proof here for reader’s conve-
nience. We prove the lemma by an induction over the values

E(A) =
X

i∈I

ai`i(u0) +
X

j∈J

bj`j(u0).

Here we fix a point u0 ∈ IntP during the proof of Lemma 5.9.
Since I ∩J = ∅, at least one of {vi | i ∈ I}, {vi | i ∈ J} can not span a cone that

is a member of the fan Σ. Without loss of generality, we assume that {vi | i ∈ I}
does not span such a cone. Then it contains a subset P ⊂ I that is a primitive
collection. We take P 0, ki0 as in (5.12) and define

Z =
Y

i∈I

zai
i − Tω(P)

Y

i∈I\P

zai
i

Y

i∈P
zai−1
i

Y

i00∈P0
zki00
i00 . (5.22)

Then Z lies in SRω(X) by construction. We recall from Lemma 5.2 that the values
X

i∈P
`i(u)−

X

i∈P0
ki`i(u) = ω(P)

are independent of u and positive. By the definitions (5.21), (5.22) of r(A) and Z,
we can express

r(A)− Z = Tω(P)+c

√
Y

h∈K

znh
h

!

r(B)
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for an appropriate B in the kernel of pr and a constant c. Moreover we have

E(B) + 2
X

h∈K

nh`h(u0) + ω(P) = E(A).

Since u0 ∈ Int P it follows that `h(u0) > 0 which in turn gives rise to E(B) < E(A).
The induction hypothesis then implies r(B) ∈ SRω(X). The proof of the lemma is
now complete. §

Corollary 5.10. zi is invertible in
Λ [z1, · · · , zm]

SRω(X)
.

Proof. Since X is compact, the vector −vi is in some cone spanned by vj (j ∈ I).
Namely

−vi =
X

j∈I

kjvj

where kj are nonnegative integers. Then

T `i(u)+
P

j kj`j(u) = zi

Y

j∈I

z
kj

j mod SRω(X)

by Lemma 5.9. Since T `i(u)+
P

j kj`j(u) is invertible in the field Λ, it follows thatQ
j∈I z

kj

j defines the inverse of zi in the quotient ring. §

We recall from Lemma 5.2 that `i(u)+
P

j kj`j(u) is independent of u. We define

z−1
i = T−`i(u)−

P
j kj`j(u)

Y

j∈I

z
kj

j . (5.23)

(Note we have not yet proved that Λ [z1, · · · , zm]/SRω(X) is an integral domain.
This will follow later when we prove Proposition 5.8.)

Since v1, · · · , vm generates the lattice Zn, we can always assume the following
by changing the order of vi, if necessary.

Condition 5.11. The determinant of the n× n matrix (vi,j)i,j=1,··· ,n is ±1.

Let (vi,j) be the inverse matrix of (vi,j). Namely
P

j vi,jvj,k = δi,k. Condition
5.11 implies that each vi,j is an integer. Inverting the matrix (vi,j), we obtain

yi = T−ci(u)
nY

j=1

zvi,j

i (5.24)

from (5.20) where ci(u) =
P

vi,j`j(u). We define using Corollary 5.10

bφu(y±1
i ) = T−±ci(u)

nY

j=1

z±vi,j

j ∈ Λ [z1, · · · , zm]
SRω(X)

.

More precisely, we plug (5.23) here if ±vi,j is negative.
The identity b√u ◦ bφu = id is a consequence of (5.24). We next calculate (bφu ◦

b√u)(zh) = bφu(zh(u)) and prove

(bφu ◦ b√u)(zh) = T `h(u) bφu(yvh,1
1 · · · yvh,n

n ) = T e(h;u)
nY

j=1

z
mj

j ,
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where mj ≥ 0 and

vh =
X

mjvj , `h(u) = e(h;u) +
X

mj`j(u) : (5.25)

To see (5.25), we consider any monomial Z of yi, zi, zi, Tα. We define its multi-
plicative valuation vu(Z) ∈ R by putting

vu(yi) = 0, vu(zi) = vu(zi) = `i(u), vu(Tα) = α.

We also define a (multiplicative) grading ρ(Z) ∈ Zn by

ρ(yi) = ei, ρ(zi) = ρ(zi) = vi, ρ(Tα) = 0.

and by ρ(ZZ 0) = ρ(Z)+ ρ(Z 0). We remark that vu and ρ are consistent with (5.1).
We next observe that both vu and ρ are preserved by b√u, bφu and by (5.23). This
implies (5.25).

Now we use Lemma 5.9 and (5.25) to conclude

zh − T e(h;u)
nY

j=1

z
mj

j ∈ SRω(X).

The proof of Proposition 5.8 is now complete. §

Next we prove

Lemma 5.12. Let P (X) be the linear relation ideal defined in Definition 5.3. Then

b√u(P (X)) =
µ

@POu
0

@yi
; i = 1, · · · , n

∂
.

Proof. Let
Pm

i=1 vi,jzi be in P (X). Then we have

b√u

√
mX

i=1

vi,jzi

!

=
mX

i=1

vi,jzi =
mX

i=1

yj
@zi

@yj
= yj

@POu
0

@yi

by (5.1) and (5.4). Since yj ’s are invertible in Λ[y1, · · · , yn, y−1
1 , · · · , y−1

n ], this
identity implies the lemma. §

The proof of Theorem 5.1 and of Proposition 5.7 is now complete. §

We define
√u0,u : Jac(POu

0 ) → Jac(POu0

0 )

by
√u0,u(zi(u)) = zi(u0) = T `i(u

0)−`i(u)zi(u). (5.26)

It is an isomorphism. We have

√u0,u ◦ √u = √u0 .

The well-definedness √u0,u is proved from this formula or by checking directly.
In case no confusion can occur, we identify Jac(POu

0 ), Jac(POu0

0 ) by √u0,u and
denote them by Jac(PO0). Since √u0,u(zi(u)) = zi(u0) we write them zi when
we regard it as an element of Jac(PO0). Note √u0,u(yi) 6= yi. In case we regard
yi ∈ Jac(POu

0 ) as an element of Jac(PO0) we write it as yi(u) := √0,u(yi).
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Remark 5.13. The above proof of Theorem 5.1 uses Batyrev’s presentation of
quantum cohomology ring and is not likely generalized beyond the case of compact
toric manifolds. (In fact the proof is purely algebraic and do not contain serious
study of pseudo-holomorphic curve, except Proposition 5.6, which we quote without
proof and Theorem 3.4, which is a minor improvement of an earlier result of [CO].)
There is an alternative way of constructing the ring homomorphism √u which is
less computational. (This will give a new proof of Proposition 5.6.) We will give
this conceptual proof in a sequel to this paper.

We use the operations

q1,k;β : H(X; Q)[2]⊗BkH(L(u); Q)[1] → H(L(u); Q)[1]

which was introduced by the authors in section 13 [FOOO2]. Using the class zi ∈
H2(X; Z) the Poincaré dual to π−1(@iP ) we put

√u(zi) =
X

k

mX

i=1

T βi∩ω/2π

Z

L(u)
q1,k;βi(zi ⊗ b⊗k). (5.27)

Here we put b =
P

xiei and the right hand side is a formal power series of xi with
coefficients in Λ.

Using the description of the moduli space defining the operators q1,k;β (See
section 10.) it is easy to see that the right hand side of (5.27) coincides with the
definition of zi in the current case. Extending the expression (5.27) to an arbitrary
homology class x of arbitrary degree we obtain

√u(z) =
X

k

X

β;µ(β)=deg x

T β∩ω/2π

Z

L(u)
q1,k;β(z ⊗ b⊗k). (5.28)

Since µ(β) = deg z, q1,k;β(z⊗b⊗k) ∈ Hn(L(u); Q). One can prove that (5.28) defines
a ring homomorphism from quantum cohomology to the Jacobian ring Jac(POu).
We may regard Jac(POu) as the moduli space of deformations of Floer theories of
Lagrangian fibers of X. (Note the Jacobian ring parameterizes deformations of a
holomorphic function up to an appropriate equivalence. In our case the equivalence
is the right equivalence, that is, the coordinate change of the domain.)

Thus (5.28) is a particular case of the ring homomorphism

QH(X) → HH(Lag(X))

where HH(Lag(X)) is the Hochschild cohomology of Fukaya category of X. (We
remark that Hochschild cohomology parameterizes deformations of A1 category.)
Existence of such a homomorphism is a folk theorem which is verified by various
people in various favorable situation. (See for example [Aur].) It is conjectured to
be an isomorphism under mild conditions by various people including P. Seidel and
M. Kontsevich.

This point of view is suitable for generalizing our story to more general X (to non-
Fano toric manifolds, for example) and also for including big quantum cohomology
group into our story. (We will then also need to use the operators q`,k mentioned
above for ` ≥ 2.)

These points will be discussed in subsequent papers in this series of papers. In
this paper we follow more elementary approach exploiting the known calculation of
quantum cohomology of toric manifolds, although it is less conceptual.
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Remark 5.14. There are two other approaches towards a proof of Proposition
5.6 besides the fixed point localization. One is written by Cieliebak and Salamon
[CS] which uses vortex equations (gauged sigma model) and the other is written by
McDuff and Tolman [MT] which uses Seidel’s result [Se1].

6. Localization of quantum cohomology ring at moment polytope

In this section, we discuss applications of Theorem 1.9. In particular, we prove
Theorem 1.12. (Note Theorem 1.3 is a consequence of Theorem 1.12.) The next
theorem and Theorem 1.9 immediately imply (1) of Theorem 1.12.

Theorem 6.1. There exists a bijection

M+,0(Lag(X)) ∼= Hom(Jac(PO0); Λ
C).

Here the right hand side is the set of unital ΛC-algebra homomorphisms.
We start with the following definition

Definition 6.2. For an element x ∈ Λ \ {0}, we define its valuation vT (x) as the
unique number ∏ ∈ R such that T−∏x ∈ Λ0 \ Λ+.

We note that vT is multiplicative non-Archimedean valuation, i.e., satisfies

vT (x + y) ≥ min(vT (x), vT (y)),
vT (xy) = vT (x) + vT (y).

Lemma 6.3. For any ϕ ∈ Hom(Jac(PO0); ΛC) there exists a unique u ∈ MR such
that

vT (ϕ(yj(u))) = 0 (6.1)
for all j = 1, · · · , n.

Proof. We still assume Condition 5.11. By definition (5.1) of zi, homomorphism
property of ϕ and multiplicative property of valuation, we obtain

vT (ϕ(zi)) = `i(u) +
nX

j=1

vi,jvT (ϕ(yj(u))), (6.2)

for i = 1, · · · ,m. On the other hand, since `i(u) = hu, vii − ∏i and (vi,j)i,j=1,··· ,n
is invertible, there is a unique u that satisfies

vT (ϕ(zi)) = `i(u) (6.3)

for i = 1, · · · , n. But by the invertibility of (vi,j)i,j=1,··· ,n and (6.2), this is equiva-
lent to (6.1) and hence the proof. §

We remark that obviously by the above proof the formula (6.3) automatically
holds for i = n + 1, · · · ,m and u in Lemma 6.3 as well.

Proof of Theorem 6.1. Consider the maps

™1(ϕ) = u ∈ MR, ™2(ϕ) =
nX

i=1

(log ϕ(yi(u)))ei ∈ H1(L(u); Λ0)

where u is obtained as in Lemma 6.3. Since yi(u) ∈ Λ0 \ Λ+ it follows that we
can define its logarithm on Λ0 as a convergent power series with respect to the
non-Archimedean norm.
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Set (u, b) = (™1(ϕ),™2(ϕ)). Since ϕ is a ring homomorphism from Jac(PO0) ∼=
Jac(POu

0 ) it follows from the definition of the Jacobian ring that

@POu
0

@yi
(b) = 0.

Therefore by Theorem 3.9, HF (L(u, b), (L(u), b); Λ) 6= 0. We have thus defined

™ : Hom(Jac(PO0); Λ
C) → M+,0(Lag(X)).

Let (u, b) ∈ M+,0(Lag(X)). We put b =
P

xiei. We define a homomorphism
ϕ : Jac(PO0) → Λ by assigning

ϕ(yi(u)) = exi .

It is straightforward to check that ϕ is well defined. Then we define Φ(u, b) := ϕ.
It easily follows from definition that Φ is an inverse to ™. The proof of Theorem
6.1 is complete. §

We next work with the (Batyrev) quantum cohomology side.

Definition 6.4. For each zi, we define a Λ-linear map bzi : QHω(X; ΛC) →
QHω(X; ΛC) by bzi(z) = zi ∪Q z, where ∪Q is the product in QHω(X; ΛC).

Since QHω(X; Λ) is generated by even degree elements it follows that it is com-
mutative. Therefore we have

bzi ◦ bzj = bzj ◦ bzi. (6.4)

Definition 6.5. For w = (w1, · · · ,wn) ∈ (ΛC)n we put

QHω(X;w) = {x ∈ QHω(X; ΛC) | (bzi−wi)Nx = 0 for i = 1, · · · , n and large N .}
We say that w is a weight of QHω(X) if QHω(X;w) is nonzero. We denote by
W (X;ω) the set of weights of QHω(X) .

We remark that wi 6= 0 since zi is invertible. (Corollary 5.10.)

Proposition 6.6. (1) There exists a factorization of the ring

QHω(X; ΛC) ∼=
Y

w∈W (X;ω)

QHω(X;w).

(2) There exists a bijection

W (X;ω) ∼= Hom(QHω(X; Λ); ΛC).

(3) QHω(X;w) is a local ring and (1) is the factorization to indecomposables.

Proof. Existence of decomposition (1) as a ΛC-vector space is a standard linear
algebra. (We remark that ΛC is an algebraically closed field.) If z ∈ QHω(X;w)
and z0 ∈ QHω(X;w0) then

(zi −wi)N ∪Q (z ∪Q z0) = ((zi −wi)N ∪Q z) ∪Q z0 = 0,

(zi −w0i)
N ∪Q (z ∪Q z0) = ((zi −w0i)

N ∪Q z0) ∪Q z = 0.

Therefore z∪Qz0 ∈ QHω(X;w)∩QHω(X;w0). This implies that the decomposition
(1) is a ring factorization.

Let ϕ : QHω(X;w) → ΛC be a unital ΛC algebra homomorphism. It induces a
homomorphism QHω(X; Λ) → ΛC by (1). We denote this ring homomorphism by
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the same letter ϕ. Let z ∈ QHω(X;w) be an element such that ϕ(z) 6= 0. Then
we have

(ϕ(z)−wi)Nϕ(z) = ϕ((zi −wi)N ∪Q z) = 0.

Therefore
wi = ϕ(zi). (6.5)

Since zi generates QHω(X;w), it follows from (6.5) that there is a unique ΛC

algebra homomorphism : QHω(X;w) → ΛC. (2) follows.
Since QHω(X;w) is a finite dimensional ΛC algebra and ΛC is algebraically

closed, we have an isomorphism
QHω(X;w)

rad
∼= (ΛC)k (6.6)

for some k. (Here rad = {z ∈ QHω(X;w) | zN = 0 for some N .}) Since there
is a unique unital ΛC-algebra homomorphism : QHω(X;w) → ΛC, it follows that
k = 1. Namely QHω(X;w) is a local ring.

It also implies that QHω(X;w) is indecomposable. §

The result up to here also works for the non-Fano case. But the next theorem will
require the fact that X is Fano since we use the equality QHω(X; Λ) ∼= QH(X; Λ).

Theorem 6.7. If X is Fano then M+(Lag(X)) = M(Lag(X))

Proof. Let w be a weight. We take z ∈ QHω(X;w) ⊂ H(X; ΛC) ∼= H(X; C)⊗ ΛC.
We may take z so that

z ∈ (H(X; C)⊗ ΛC
0 ) \ (H(X; C)⊗ ΛC

+).

Since
zi ∪Q z ≡ zi ∪ z mod ΛC

+,

where ∪ is the classical cup product. (We use QHω(X; Λ) = QH(X; Λ) here.) It
follows that

wn
i z = (bzi)n(z) = (zi)n ∪Q z ≡ (zi)n ∪ z mod ΛC

+

Therefore wi ∈ ΛC
+ as (zi)n ∪ z = 0. (6.3) and (6.5) then imply

`i(u) = vT (wi) > 0.

Namely u ∈ IntP . §

We are now ready to complete the proof of Theorem 1.12. (1) is Theorem 6.1.
(2) is Theorem 6.7. If QHω(X; ΛC) is semi-simple, then (6.6) and k = 1 there
implies

QHω(X; ΛC) ∼= (ΛC)#W (X;ω) (6.7)
as a ΛC algebra. (3) follows from (6.7), Proposition 6.6 (2), and Theorem 6.1. The
proof of Theorem 1.12 is complete. §

We next explain the factorization in Proposition 6.6 (1) from the point of view
of Jacobian ring. Let (u, b) ∈ M+,0(Lag(X)).

Definition 6.8. We consider the ideal generated by
@

@wi
POu

0 (y1 + w1, · · · , yn + wn)

i = 1, · · · , n, in the ring Λ[[w1, · · · , wn]] of formal power series where b =
P

xi(b)ei

and yi = exi(b). We denote its quotient ring by Jac(PO0;u, b).
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Proposition 6.9. (1) There is a direct product decomposition :

Jac(PO0) ∼=
Y

(u,b)∈M+,0(Lag(X))

Jac(PO0;u, b),

as a ring.
(2) If (u, b) ∈ M+,0(Lag(X)) corresponds to w ∈ W (X;ω) via the isomor-

phism given in Proposition 6.6 (2) and Theorem 6.1, then √u induces an
isomorphism

√u : QHω(X;w) ∼= Jac(PO0;u, b).

(3) Jac(PO0;u, b) is one dimensional (over Λ) if and only if the Hessian
µ

@2POu
0

@yi@yj

∂

i,j=1,··· ,n

is invertible over Λ at b.

Proof. Let m(u, b) be the ideal generated by yi−yi(b), in Jac(POu
0 ). Since Jac(PO0)

is finite dimensional over Λ it follows that

Jac(PO0) ∼=
Y

(u,b)∈M+,0(Lag(X))

Jac(PO0)m(u,b).

Here Jac(PO0)m(u,b) is the localization of the ring Jac(PO0) at m(u, b). Using
finite dimensionality of Jac(PO0) again we have Jac(PO0)m(u,b)

∼= Jac(PO0;u, b).
(1) follows.

Now we prove (2). If z ∈ QHω(X;w) then (zi − wi)Nz = 0. Let πu,b :
Jac(PO0) → Jac(PO0;u, b) be the projection. We then have

(T `i(u)y
vi,1
1 · · · yvi,n

n −wi)Nπu,b(√u(z)) = 0. (6.8)

We remark that
wi = T `i(u

0)y
0vi,1
1 · · · y0vi,n

n (6.9)
if wi corresponds (u0, b0) and y0i are exponential of the coordinates of b0. We define
the operator byi : Jac(PO0;u, b) → Jac(PO0;u, b) by

byi(x) = yix.

By definition of Jac(PO0;u, b) the eigenvalue of byi is exi , where b =
P

xiei. There-
fore (6.8) and (6.9) imply that πu,b(√u(z)) = 0 unless (u, b) = (u, b0). (2) follows.

(3) is a standard fact on Jacobian ring. So we omit the proof. §

We recall that a symplectic manifold (X,ω) is said to be (spherically) monotone
if there exists ∏ > 0 such that c1(X)∩ α = ∏ [ω]∩ α for all α ∈ π2(X). Lagrangian
submanifold L of (X,ω) is said to be monotone if there exists ∏ > 0 such that
µ(β) = ∏ω(β) for any β ∈ π2(X,L). (Here µ is the Maslov index.) In the monotone
case we have the following :

Theorem 6.10. If X is a monotone compact toric manifold then there exists a
unique u0 such that

M(Lag(X)) ⊂ {u0} × Λ
i.e., whenever (u, b) ∈ M(Lag(X)), u = u0. Moreover L(u0) is monotone.

Remark 6.11. Related results are discussed in [EP1].
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Proof. Since X is Fano, we have QHω(X; Λ) = QH(X; Λ). We assume c1(X)∩α =
∏ [ω] ∩ α with ∏ > 0. We define ∪α by

x ∪Q y = x ∪ y +
X

α∈π2(X)\{0}

Tα∩[ω]/2πx ∪α y.

Then

deg(x ∪α y) = deg x + deg y − 2c1(X) ∩ α = deg x + deg y − 2∏α ∩ [ω]. (6.10)

We define

vdeg(T ) = 2∏, vdeg(x) = deg x (for x ∈ H(X; Q)).

vdeg is a multiplicative non-Archimedean valuation on QH(X; Λ) such that vdeg(a∪Q

b) = vdeg(a) + vdeg(b), by virtue of (6.10). Moreover for c ∈ Λ and a ∈ QH(X; Λ)
we have vdeg(ca) = 2∏vT (c) + vdeg(a). Now let w be a weight and x ∈ QHω(X;w).
Since vdeg(zi) = 2 it follows that

2∏vT (wi) + vdeg(x) = vdeg(zix) = 2 + vdeg(x).

Therefore if (u, b) corresponds to w then `i(u) = vT (wi) = 1/∏. Namely u is
independent of w. We denote it by u0.

For βi ∈ H2(X,L(u0)) (i = 1, · · · ,m) given by (5.7), we have ω(βi) = `i(u0) =
1/∏. Hence µ(βi) = 2∏ω(βi). Since βi generates H2(X,L(u0)), it follows that L(u0)
is monotone, as required. §

So far we have studied Floer cohomology with ΛC-coefficients. We next consider
the case of ΛF coefficient where F is a finite Galois extension of Q. We choose F
so that each of the weight w lies in (ΛF

0 )n. (Since every finite extension of ΛQ is
contained in such ΛF we can always find such an F .) Then we have a decomposition

QHω(X; ΛF ) ∼=
Y

w∈W (X;ω)

QHω(X;w;F ). (6.11)

It follows that the Galois group Gal(F/Q) acts on W (X;ω). It induces a Gal(F/Q)
action on M+,0(Lag(X)). We write it as (u, b) 7→ (σ(u), σ(b)). We remark the
following:

Proposition 6.12. (1) σ(u) = u.
(2) We write by yi(b) the exponential of the coordinates of b. Then yi(b) ∈ ΛF

and yi(σ(b)) = σ(yi(b)).
(3) If QHω(X; ΛQ) is indecomposable, there exists u0 such that whenever (u, b) ∈

M+,0(Lag(X)), u = u0.

Proof. Let wi(b) corresponds to (u, b). Then

`i(σ(u)) = vT (wi(σ(u, b))) = vT (σwi(u, b)) = vT (wi(u, b)) = `i(u).

(1) follows. (2) follows from the definition and (1). (3) is a consequence of (1). §

Am monotone blow up of CP 2 (at one or two points) gives an example where
the assumption of Proposition 6.12 (3) is satisfied.
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7. Further examples and remarks

In this section we show how we can use the argument of the last 2 sections to
illustrate calculations of M(Lag(X)) in examples.

Example 7.1. We consider one point blow up X of CP 2. We choose its Kähler
form so that the moment polytope is

P = {(u1, u2) | 0 ≤ u1, u2, u1 + u2 ≤ 1, u2 ≤ 1− α} ,

0 < α < 1. The potential function is

PO = y1T
u1 + y2T

u2 + (y1y2)−1T 1−u1−u2 + y−1
2 T 1−α−u2 .

We put z1 = y1Tu1 , z2 = y2Tu2 , z3 = (y1y2)−1T 1−u1−u2 , z4 = y−1
2 T 1−α−u2 .

The quantum Stanley-Reisner relation is

z1z3 = z4T
α, z2z4 = T 1−α, (7.1)

and linear relation is
z1 − z3 = 0, z2 − z3 − z4 = 0. (7.2)

We put X = z1 and Y = z2 and solve (7.1), (7.2). We obtain

X3(Tα + X) = T 1+α, (7.3)

with Y = X + T−αX2. We consider valuations of both sides of (7.3). There are
three different cases to consider.

(Case 1: vT (X) > α). (7.3) implies 3vT (X)+α = 1+α. Namely vT (X) = 1/3. So
α < 1/3. Moreover vT (Y ) = 1/3. We have u1 = vT (X) = 1/3, u2 = vT (Y ) = 1/3.
(See Lemma 6.3.) It easily follows from consideration of the leading term equation
of (7.3) that we have three solutions for b : Writing X = a1T 1/3 + a2T∏+ higher
order terms with ∏ > 1

3 and substituting this into (7.3), we get the leading term
equation a3

1 = 1 which has 3 simple roots.
(Case 2: vT (X) < α). By taking the valuation of (7.3) we obtain u1 = vT (X) =
(1 + α)/4. Hence α > 1/3. Moreover u2 = vT (Y ) = (1 − α)/2. There are four
solutions.
(Case 3: vT (X) = α). We put X = a1Tα +a2T∏+ higher order terms where ∏ > α.
(Case 3-1: a1 6= −1). By taking valuation of (7.3), we obtain u1 = vT (X) = 1/3.
Then α = 1/3 and u2 = vT (Y ) = 1/3. (7.3) becomes

a4
1 + a3

1 − 1 = 0. (7.4)

(In this case X = a1Tα has no higher term.) There are four solutions. We remark
that (7.4) is irreducible over Q. Namely the assumption of Proposition 6.12 (3) is
satisfied. Actually X is monotone in the case α = 1/3. Hence the same conclusion
(uniqueness of u) follows from Theorem 6.10 also.
(Case 3-2: a1 = −1). By taking valuation of (7.3), we obtain ∏ = 1 − 2α. ∏ > α
implies α < 1/3. u2 = vT (Y ) = 1− 2α. (u1 = vT (X) = α.) There is one solution.

In summary, if α < 1/3 there are two choices of u = (α, 1− 2α), (1/3, 1/3). On
the other hand the numbers of choices of b are 1 and 3 respectively.

If α ≥ 1/3 there is the unique choice u = ((1 + α)/4, (1− α)/2). The number of
choices of b is 4.

We next study the non-Fano case. We will study Hirzerbruch surface Fn. Note
F1 is one point blow up of CP 2 which we have already studied. We leave the case
F2 to the reader.
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Example 7.2. We consider Hirzerbruch surface Fn, n ≥ 3. We take its Kähler
form so that the moment polytope is

P = {(u1, u2) | 0 ≤ u1, u2, u1 + nu2 ≤ n, u2 ≤ 1− α} ,

0 < α < 1. The leading order potential function is

PO0 = y1T
u1 + y2T

u2 + y−1
1 y−n

2 Tn−u1−nu2 + y−1
2 T 1−α−u2 .

We put z1 = y1Tu1 , z2 = y2Tu2 , z3 = y−1
1 y−n

2 Tn−u1−nu2 , z4 = y−1
2 T 1−α−u2 .

The quantum Stanley-Reisner relation and linear relation gives

z1z3 = zn
4Tnα, z2z4 = T 1−α, (7.5)

z1 − z3 = 0, z2 − nz3 − z4 = 0. (7.6)

Let us assume n is odd. We put

z1 = Zn, z4 = Z2T−α.

(In case n = 2n0 is even we put z1 = Zn0 , z4 = ±ZT−α. The rest of the argument
are similar and is omitted.) Then z2 = T−αZ2 + nZn and

Z4(nZn−2 + T−α) = T. (7.7)

(Case 1 : (n−2)vT (Z) > −α). In the first case, we have vT (Z) = (α+1)/4. (Then
(n−2)vT (Z) > −α is automatically satisfied.) Therefore u1 = vT (z1) = n(α+1)/4,
u2 = vT (z2) = (1−α)/2. We also can check that there are 4 solutions. We remark
that we are using PO0 in place of PO. However we can easily check the strongly
nondegeneracy condition of Corollary 9.5 in our case and hence each critical point
of PO0 corresponds to a unique critical point of PO with the same u. Hence L(u)
is balanced.
(Case 2 : (n− 2)vT (Z) < −α). We have vT (z) = 1/(n + 2). This can never occur
since 1/(n + 2) > 0 > −α/(n− 2).
(Case 3 : (n − 2)vT (Z) = −α). We put Z = a1T−α/(n−2) + a2T∏+ higher order
term.
(Case 3-1 : nan−2

1 6= −1). Then vT (Z) = (α + 1)/4. Since (α + 1)/4 6= −α/(n− 2),
this case never occur.
(Case 3-2 : nan−2

1 = −1). We have 4vT (Z) + (n− 3)vT (Z) + ∏ = 1. Therefore

∏ =
n− 2 + (n + 1)α

n− 2
.

We have

u1 = vT (z1) = − nα

n− 2
, u2 = vT (z2) = 1− α− vT (z4) =

n− 2 + 2α

n− 2
.

Thus (u1, u2) is not in the moment polytope.

In Example 7.2, we have

M(Lag(X)) 6= M+,0(Lag(X)).

On the other hand, the order of M(Lag(X)) is 4 and is equal to the Betti number.

Conjecture 7.3. Let X be a compact toric manifold which is not necessarily Fano.
If QH(X; Λ) is semi-simple then

X

d

rankHd(X; Q) = #(M(Lag(X))).
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We next discuss the version of the above story where we substitute some explicit
number into the formal variable T . We define a Laurent polynomial

POu
0,T=t ∈ C[y1, · · · , yn, y−1

1 , · · · , y−1
n ]

by substituting a complex number t ∈ C\{0}. In the same way we define the algebra
QHω(X;T = t; C) over C by substituting T = t in the quantum Stanley-Reisner
relation. The argument of section 5 goes through to show

QHω(X;T = t; C) ∼= Jac(POu
0,T=t). (7.8)

In particular the right hand side is independent of u up to an isomorphism. Here
the C-algebra in the right hand side of (7.8) is the quotient of the polynomial
ring C[y1, · · · , yn, y−1

1 , · · · , y−1
n ] by the ideal generated by @PO0,T=t/@yi. (i =

1, · · · , n.)
We remark that right hand side of (7.8) is always nonzero, for small t, by Propo-

sition 3.6. It follows that the equation
@POu

0,T=t

@yi
= 0 (7.9)

has a solution yi 6= 0 for any u. Namely, as far as the Floer cohomology after T = t
substituted, there always exists b ∈ H1(X; C) with nonvanishing Floer homology.
Since the version of Floer cohomology after substituting T = t is not invariant
under the Hamiltonian isotopy, this is not useful for the application to symplectic
topology. (Compare this with section 14.2 [CO].)

The relation between the set of solutions of (7.9) and that of (3.9) is as follows
: Let (y(c)

1 (t;u), · · · , y(c)
n (t;u)) be a branch of the solutions of (7.9) for t 6= 0 where

c is an integer with 1 ≤ c ≤ l for some l ∈ N. We can easily show that it is a
holomorphic function of t on C \ {0}. We consider its behavior as t → 0. For
usual u the limit either diverges or converges to 0. However if b =

P
xiei lies in

M0(Lag(X)) then there is some c such that

lim
t→0

y(c)
i (t;u) ∈ C \ {0} and that y(c)

i (t;u) = exi(t).

The rest of this section owes much to the discussion with H. Iritani and also to
his papers [Iri1], [Iri2]. The results we describe below will not be used in the other
part of this paper.

We go back to the discussion on the difference between two moduli spaces
M0(Lag(X)) and M+,0(Lag(X)). We recall that we did not take closure of the
ideal (P (X) + SRω(X)) in section 5. This is actually the reason why we have
M0(Lag(X)) 6= M+,0(Lag(X)). More precisely we have the following Proposition
7.4.

We consider the polynomial ring Λ[z1, · · · , zm]. We define its norm k · k so that
∞∞∞∞∞∞

X

~i

a~iz
i1
1 · · · zim

m

∞∞∞∞∞∞
= exp

µ
− inf

~i
vT (a~i)

∂
.

We take the closure of the ideal (P (X) + SRω(X)) with respect to this norm and
denote it by Clos(P (X) + SRω(X)). We put

QH
ω(X; Λ) =

Λ[z1, · · · , zm]
Clos(P (X) + SRω(X))

. (7.10)
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Let W geo(X;ω) be the set of all weight such that the corresponding (u, b) satisfies
u ∈ Int P . We remark that w ∈ W geo(X;ω) if and only if vT (wi) > 0 for all i.

Proposition 7.4 (Iritani). There exists an isomorphism

QH
ω(X; ΛC) ∼=

Y

w∈W geo(M ;ω)

QHω(X;w).

Proof. Let w ∈ W (X;ω) \ W geo(X;ω). We first assume vT (wi) = −∏ < 0. (The
case vT (wi) = 0 will be discussed at the end of the proof.)

Then, there exists f ∈ Λ0 \ Λ+ such that T∏fwi = 1. Let x ∈ QHω(X;w).
We have T∏fzix = x. Since limN→1 k(fziT∏)Nk = 0, it follows that x = 0 in
QH

ω(X; ΛC).
We next assume vT (wi) > 0 for all i. We consider the homomorphism

ϕ : Λ[z1, · · · , zm] → HomΛ(QHω(X;w), QHω(X;w)),

defined by
ϕ(zi)(x) = zi ∪Q x.

We have ϕ(P (X) + SRω(X)) = 0. We may choose the basis of QHω(X;w)
so that ϕ(zi) is upper triangular matrix whose diagonal entries are all wi and
whose off diagonal entries are all 0 or 1. We use it and vT (wi) > 0 to show
that ϕ(Clos(P (X) + SRω(X))) = 0. Namely ϕ induces a homomorphism from
QH

ω(X; Λ). It follows easily that the restriction of the projection QHω(X; ΛC) →
QH

ω(X; ΛC) to QHω(X;w) is an isomorphism to its image.
We finally show that for u ∈ @P , there is no critical point of PO0 on (Λ0 \Λ+)n.

Let
u ∈

[

i∈I

@iP \
[

i/∈I

@iPi.

Then
POu

0 ≡
X

i∈I

y
vi,1
1 · · · yvi,n

n mod Λ+.

We remark that vi (i ∈ I) is a part of the Z basis of Zn, since X is nonsingular toric.
Hence by changing the variables to appropriate y0i it is easy to see that there is no
nonzero critical point of

P
i∈I y

vi,1
1 · · · yvi,n

n =
P

i∈I0 y
0
i. The proof of Proposition

7.4 is now complete. §

To further discuss the relationship between contents of sections 5 and 6 and
those in [Iri2], we compare the coefficient rings used here and in [Iri2]. In [Iri2] (like
many of the literatures on quantum cohomology such as [Gi1]) the formal power
series ring Q[[q1, · · · , qm−n]] is taken as the coefficient ring. (m − n is the rank of
H2(X; Q) and we choose a basis of it.) The superpotential in [Iri2] (which is the
same as the one used in [Gi1]) is given as 2

Fq =
mX

i=1




m−nY

a=1

qla,i
a

nY

j=1

s
vi,j

j



 . (7.11)

Here la,i is a matrix element of a splitting of H2(X; Z) → H2(X,Tn; Z). We will
show that (7.11) pulls back to our potential function POu

0 after a simple change of

2We change the notation so that it is consistent to ours. m, n, vi,j here corresponds to r + N ,
r, xi,b in [Iri2], respectively.
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variables. Let αa ∈ H2(X; Z) be the basis we have chosen. (We choose it so that
[ω] ∩ αa is positive.)

Lemma 7.5. There exists fj(u) ∈ R (j = 1, · · · , n) such that
1
2π

X

a

la,i[ω] ∩ αa = `i(u)−
X

j

vi,jfj(u).

Proof. We consider the exact sequence

0 −→ H2(X; Z) i∗−→ H2(X,L(u); Z) −→ H1(L(u); Z) → 0.

(c1, · · · , cm) ∈ H2(X,L(u); Z) is in the image of H2(X; Z) if and only if
P

i civi =
0. (Here vi = (vi,1, · · · , vi,n) ∈ Zn.) For given α ∈ H2(X, Z) denote i∗(α) =
(c1, · · · , cm). Then we have

X

a

[ω] ∩ cila,iαa = [ω] ∩ α = 2π
X

ci`i(u),

This implies the lemma. §

We now put
qa = T [ω]∩αa/2π, sj(u) = T fj(u)yj (7.12)

We obtain the identity

Fq(s1(u), · · · , sn(u)) = POu
0 (y1, · · · , yn). (7.13)

We remark that if we change the choice of Kähler form then the identification
(7.12) changes. In other words, the story over Q[[q1, · · · , qm−n]] corresponds to
studying all the symplectic structures simultaneously, while the story over Λ focus
on one particular symplectic structure.

In [Iri2] Corollary 5.12, Iritani proved semi-simplicity of quantum cohomology
ring of toric manifold with coefficient ring Q[[q1, · · · , qm−n]]. It does not imply
the semi-simplicity of our QHω(X; Λ) since the semi-simplicity in general is not
preserved by the pull-back. (On the other way round, semi-simplicity follows from
semi-simplicity of the pull-back.) However it is preserved by pull back at a generic
point. Namely we have:

Proposition 7.6. The set of Tn-invariant symplectic structures on X for which
Jac(POu

0 ) is semi-simple is open and dense.

Proof. We give a proof for completeness, following the argument in the proof of
Proposition 5.11 [Iri2]. Consider the polynomial

Fw1,··· ,wm =
mX

i=1

wiy
vi,1
1 · · · yvi,n

n

where wi ∈ C\{0}. By Kushnirenko’s theorem [Ku] the Jacobian ring of Fw1,··· ,wm

is semi-simple for a generic w1, · · · , wm. We put

wi = exp



 1
2π

X

a

la,i[ω] ∩ α +
X

j

vi,jfj(u)



 .

It is easy to see that when we move [ω]∩ αa and u (there are m− n, n parameters
respectively) then wi moves in an arbitrary way. Therefore for generic choice of ω
and u, the Jacobian ring Jac(POu

0 ) is semi-simple. Since Jac(POu
0 ) is independent

of u up to isomorphism, the proposition follows. §
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Remark 7.7. Combined with Theorem 1.9, this proposition gives a partial answer
to Question in section 3 [EP2].

8. Variational analysis of potential function

In this section, we prove Proposition 3.6. Let PO be defined as in (3.6).
We define

s1(u) = inf{`i(u) | i = 1, · · · ,m}.
s1 is a continuous, piecewise affine and convex function and s1 ≡ 0 on @P . Recall
if u ∈ @iP then `i(u) = 0 by definition.

We put
S1 = sup{s1(u) | u ∈ P},
P1 = {u ∈ P | s1(u) = S1}.

Proposition 8.1. There exist sk, Sk, and Pk with the following properties.
(1) Pk is a convex polyhedron in MR. dimPk ≤ dimPk−1 − 1.
(2) sk+1 : Pk → R is a continuous, convex piecewise affine function.
(3) sk+1(u) = inf{`i(u) | `i(u) > Sk} for u ∈ IntPk.
(4) sk+1(u) = Sk for u ∈ @Pk.
(5) Sk+1 = sup{sk+1(u) | u ∈ Pk}.
(6) Pk+1 = {u ∈ Pk | sk+1(u) = Sk+1}.
(7) Pk+1 ⊂ IntPk.
(8) sk, Sk, Pk are defined for k = 1, 2, · · · ,K for some K ∈ Z+ and PK consists

of a single point.

Example 8.2. Let P = [0, a]×[0, b] (a < b.) Then s1(u1, u2) = inf{u1, u2, a−u1, b−
u2}. S1 = a/2, P1 = {(a/2, u2) | a/2 ≤ u2 ≤ b− a/2}, s2(1/2, u2) = inf{u2, b−u2},
S2 = b/2, P2 = {(a/2, b/2)}.
Proof. We define sk, Sk, Pk inductively over k. We assume that sk, Sk, Pk are
defined for k = 1, · · · , k0 so that (1) - (7) of Proposition 8.1 are satisfied for k =
1, · · · , k0 − 1.

We define sk0+1 by (3) and (4). We will prove that it satisfies (2). We use the
following lemma for this purpose.

Lemma 8.3. Let uj ∈ IntPk0 and limj→1 uj = u1 ∈ @Pk0 . Then

lim
j→1

sk0+1(uj) = Sk0 .

Proof. We put
Ik0 = {`i | `i(u1) = Sk0}. (8.1)

We take the affine space Al ⊂ MR such that IntPk0 is an open subset of Al. We
take ~u ∈ Tu1Al such that u + ≤~u /∈ Pk0 for sufficiently small positive ≤. We use
Proposition 8.1 (7) for k = k0 − 1. Then we have u + ≤~u ∈ Pk0−1.

Therefore we have
sk0(u + ≤~u) < Sk0 .

It follows that there exists `i ∈ Ik0 such that

`i(u + ≤~u) < `i(u1) < `i(u− ≤~u). (8.2)

Since (8.2) holds for any ~u ∈ Tu1Al with u + ≤~u /∈ Pk0 , it follows that, for any
sufficiently large j there exists i ∈ I such that

`i(uj) > Sk0 . (8.3)
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Therefore
sk0+1(uj) = inf{`i(uj) | `i ∈ Ik0 , `i(uj) > Sk0}. (8.4)

This implies the lemma. §

Lemma 8.3 implies that sk0+1 is continuous and piecewise linear in a neighbor-
hood of @Pk0 . We can then check (2) easily.

We define Sk0+1 by (5). Then we can define Pk0+1 by (6). (In other words the
right hand side of (6) is nonempty.) (7) is a consequence of Lemma 8.3. We can
easily check that Pk0+1 satisfies (1). (We remark that `i is not constant.) We can
continue the induction until Pk0 becomes 0-dimensional (namely a point). Hence
we have (8). The proof of Proposition 8.1 is now complete. §

The next lemma easily follows from construction.

Lemma 8.4. If all the vertices of P lie in Qn then u0 ∈ Qn. Here {u0} = PK .

By parallelly translating the polytope, we may assume, without loss of generality,
that u0 = 0, the origin. In the rest of this subsection, we will prove that PO0 has
a critical point on (Λ0 \Λ+)n. More precisely we prove Proposition 3.6 for u0 = 0.
(We remark that if P and `i are given we can easily locate u0.)

Example 8.5. Let us consider Example 7.1 in the case α > 1/3. At u0 = ((1 +
α)/4, (1− α)/2) we have

POu0 = (y2 + y−1
2 )T (1−α)/2 + (y1 + (y1y2)−1)T (1+α)/4.

Therefore the constant term yi;0 of the coordinate yi of the critical point is given
by

1− y−2
2;0 = 0, 1− y−2

1;0y
−1
2;0 = 0. (8.5)

Note the first equation comes from the term of the smallest exponent and contains
only y2;0. The second equation comes from the term which has second smallest
exponent and contains both y1;0 and y2;0. So we need to solve the equation induc-
tively according to the order of the exponent. This is the situation we want to work
out in general.

We remark that the affine space Ai defined above in the proof of Lemma 8.3

MR = A0 ⊃ A1 ⊃ · · · ⊃ AK−1 ⊃ AK = {0}
is a strictly decreasing sequence of linear subspaces such that Int Pk is an open
subset of Ak. Let

A⊥l ⊂ (MR)∗ ∼= NR

be the annihilator of Al ⊂ MR. Then we have

{0} = A⊥0 ⊂ A⊥1 ⊂ · · · ⊂ A⊥K−1 ⊂ A⊥K = NR.

We recall that the formula (8.1) in our case is

Ik = {`i | `i(0) = Sk}, (8.6)

for k = 1, · · · ,K. We renumber
S

k Ik so that

{`k,j | j = 1, · · · , a(k)} = Ik. (8.7)

By construction
sk(u) = inf

j
`k,j(u) (8.8)
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in a neighborhood of 0 in Pk−1. In fact sk−1(0) = Sk−1 < Sk = sk(0) and
{`i(0) | i = 1, · · · ,m} ∩ (Sk−1, Sk) = ∅.

Lemma 8.6. If u ∈ Ak then `k,j(u) = Sk.

Proof. We may assume k < K. Hence 0 ∈ IntPk. We regard u ∈ Ak = T0Ak. By
(8.8), we have

sk(εu) = inf{`k,j(≤u) | j = 1, · · · , a(k)}.
Since sk(εu) = Sk for εu ∈ Pk it follows that `k,j(u) = Sk. §

Lemma 8.6 implies that the linear part d`k,j of `k,j is an element of A⊥k ⊂ t = NR.
In fact if `k,j = `i, we have d`k,j = vi from the definition of `i, `i(u) = hu, vii − ∏i

given in Theorem 2.13.

Lemma 8.7. For any v ∈ A⊥k , there exists nonnegative real numbers cj ≥ 0,
j = 1, · · · , a(k) such that

v −
a(k)X

j=1

cjd`k,j ∈ A⊥k−1.

Proof. Suppose to the contrary that



v −
a(k)X

j=1

cjd`k,j

ØØØ cj ≥ 0, j = 1, · · · , a(k)




 ∩A⊥k−1 = ∅.

Then we can find u ∈ Ak−1 \Ak such that

d`k,j(u) ≥ 0 (8.9)

for all j = 1, · · · , a(k).
Since εu ∈ Ak−1 \Ak it follows that

sk(εu) < Sk

for a sufficiently small ε. On the other hand, (8.9) implies d`k,j(εu) ≥ 0 for all
ε > 0 and so `k,j(εu) ≥ `k,j(0) = Sk. Therefore by definition of sk in Proposition
8.1 we have

sk(εu) ≥ inf{`k,j(εu) | j = 1, · · · , a(k)}
≥ inf{`k,j(0) | j = 1, · · · , a(k)} = Sk.

This is a contradiction. §

Applying Lemma 8.7 inductively downwards starting from ` = k ending at ` = 1,
we immediately obtain the following

Corollary 8.8. For any v ∈ A⊥k , there exist cl,j ≥ 0 for l = 1, · · · , k, j =
1, · · · , a(l) such that

v =
kX

l=1

a(l)X

j=1

cl,jd`l,j .

We denote

I = {`i | i = 1, · · · ,m} \
K[

k=1

Ik. (8.10)
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It is easy to see that
` ∈ I ⇒ `(0) > SK . (8.11)

Now we go back to the situation of (3.6). We use the notation of (3.6). In this
case, for each k = 1, · · · ,K, we also associate a set Ik consisting of pairs (`, ρ) with
an affine map ` : MR → R and ρ ∈ R+.

Definition 8.9. We say that a pair (`, ρ) = (`0j , ρj) is an element of Ik if the
following holds :

(1) If ei
j 6= 0 then `i ∈

Sk
l=1 Il. (Note `0j =

P
i ei

j`i.)
(2) (1) does not hold if we replace k by k − 1.

A pair (`, ρ) = (`0j , ρj) as in (3.6) is, by definition, an element of IK+1 if it is not
contained in any of Ik, k = 1, · · · ,K.

Lemma 8.10. (1) If (`, ρ) ∈ Ik then d` ∈ A⊥k .
(2) If (`, ρ) ∈ Ik then `(0) + ρ > Sk.
(3) If (`, ρ) ∈ IK+1 then `(0) + ρ > SK .

Proof. (1) follows from Definition 8.9 (1) and Lemma 8.6.
If (`, ρ) = (`0j , ρj) ∈ Ik then there exists ei

j 6= 0, `i = `k,j0 . Then

`(0) + ρ ≥ ei
j`i(0) + ρj > `i(0) = Sk.

(2) follows. The proof of (3) is the same. §

Lemma 8.11. The vector space Ak is defined over Q.

Proof. Ak is defined by equalities of the type `i = Sk on Ak−1. Since the linear
part of `i has integer coefficients, the lemma follows by induction on k. §

We put d(k) = dimAk−1 − dimAk = dimA⊥k − dimA⊥k−1. We choose e∗i,j ∈
Hom(MQ, Q) ∼= NQ (i = 1, · · · ,K, j = 1, · · · , d(k)) such that the following condi-
tion holds. Here MQ = M ⊗Q and NQ = N ⊗Q

Condition 8.12. (1) e∗1,1, · · · , e∗k,d(k) is a basis of A⊥k ⊂ NR.
(2) d`k,j =

P
k0,j0 v(k,j),(k0,j0)e∗k0,j0 with v(k,j),(k0,j0) ∈ Z.

(3) If (`, ρ) ∈ Ik or ` ∈ I, then d` =
P

k0,j0 v`,(k0,j0)e∗k0,j0 with v`,(k0,j0) ∈ Z.

We identify Rn with H1(L(u); Rn) in the same way as Lemma 3.3 and let xk,j ∈
Hom(H1(L(u); R), R) be the element corresponding to e∗k,j by this identification.
In other words, if

e∗k,j =
X

i

a(k,j);ie∗i ,

where e∗i is as in Lemma 3.3, then we have

xk,j =
X

i

a(k,j);ixi.

We put yk,j = exk,j . We define

Y (k, j) =
KY

k0=1

d(k0)Y

j0=1

y
v(k,j),(k0,j0)
k0,j0 . (8.12)
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And for (`, ρ) ∈ Ik or ` ∈ I, we define

Y (`) =
KY

k=1

d(k)Y

j=1

y
v`,(k,j)
k,j . (8.13)

By Theorem 3.5 there exists c(`,ρ) ∈ Q such that :

PO0 =
KX

k=1




a(k)X

j=1

Y (k, j)



 TSk +
X

`∈I

Y (`)T `(0)

+
K+1X

k=1

X

(`,ρ)∈Ik

c(`,ρ)Y (`)T `(0)+ρ.

(8.14)

Lemma 8.13. (1) If k0 < k then

@Y (k0, j0)
@yk,j

= 0. (8.15)

(2) If (`, ρ) ∈ Ik0 , k0 < k then

@Y (`)
@yk,j

= 0. (8.16)

(3) If (`, ρ) ∈ Ik then `(0) + ρ > Sk.
(4) If (`, ρ) ∈ IK+1 then `(0) + ρ > SK .
(5) If ` ∈ I then `(0) > SK .

Proof. Since d`k0,j0 ∈ A⊥k0 by Lemma 8.6 it follows that v(k0,j0),(k,j) = 0 for k > k0.
(1) follows. (2) follows from Lemma 8.10 (1) in the same way. (3) follows from
Lemma 8.10 (2). (4) follows from Lemma 8.10 (3). (5) follows from (8.11). §

Now equation (3.9) becomes

0 =
@PO0

@yk,j
.

We calculate this equation using Lemma 8.13 to find that it is equivalent to :

0 =
a(k)X

j0=1

@Y (k, j0)
@yk,j

+
X

k0>k

a(k0)X

j0=1

@Y (k0, j0)
@yk,j

TSk0−Sk

+
K+1X

k0=k

X

(`,ρ)∈Ik0

c(`,ρ)
@Y (`)
@yk,j

T `(0)+ρ−Sk +
X

`∈I

@Y (`)
@yk,j

T `(0)−Sk .

(8.17)

Note the exponents of T in the second, third, and fourth terms of (8.17) are all
strictly positive. So after putting T = 0 we have

0 =
a(k)X

j0=1

@Y (k, j0)
@yk,j

. (8.18)

Note that the equation (8.18) does not involve T but becomes a numerical equation.
We call (8.18) the leading term equation.
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Lemma 8.14. There exist positive real numbers yk,j;0, k = 1, · · · ,K, j = 1, · · · , d(k),
solving the leading term equations for k = 1, · · · ,K.

Proof. We remark the leading term equation for k, j contain the monomials in-
volving only yk0,j for k0 ≤ k. We first solve the leading term equation for k = 1.
Denote

f1(x1,1, · · · , x1,d(1)) =
a(1)X

j=1

Y (1, j).

It follows from Corollary 8.8 that for any (x1,1, · · · , x1,d(1)) 6= 0, there exists j such
that

d`1,j(x1,1, · · · , x1,d(1)) > 0.

Therefore, we have

lim
t→1

f1(tx1,1, · · · , tx1,d(1)) ≥ lim
t→1

C exp(td`1,j(x1,1, · · · , x1,d(1))) = +1.

Hence f1(x1,1, · · · , x1,d(1)) attains its minimum at some point of Rd(1). Taking its
exponential, We obtain y1,j;0 ∈ R \ {0}.

Suppose we have already found yk0,j;0 for k0 < k. Then we put

Fk(x1,1, · · · , xk,1, · · · , xk,d(k)) =
a(k)X

j=1

Y (k, j)

and

fk(xk,1, · · · , xk,d(k)) = Fk(x1,1;0, · · · , xk−1,d(k−1);0, xk,1, · · · , xk,d(k))

where xk0,j;0 = log yk0,j;0. Again using Corollary 8.8, we find

lim
t→1

fk(txk,1, · · · , txk,d(k)) = +1.

for any (xk,1, · · · , xk,d(k)) 6= 0. Hence fk(xk,1, · · · , xk,d(k)) attains a minimum and
we obtain yk,j;0. Lemma 8.14 now follows by induction. §

We next find the solution of our equation (3.10) or (3.11). We take a sufficiently
large N and put

PO0
k,N =

a(k)X

j=1

Y (k, j) +
X

k0>k

a(k0)X

j0=1

@Y (k0, j0)
@yk,j

TSk0−Sk

+
X

`∈I, `(0)≤N

Y (`)T `(0)−Sk

+
K+1X

k0=k+1

X

(`,ρ)∈Ik0 ,`(0)+ρ≤N

c(`,ρ)Y (`)T `(0)+ρ−Sk .

(8.19)

We remark that (3.10) is equivalent to

@PO0
k,N

@yk,j
(y1, · · · , yn) ≡ 0 mod TN−Sk k = 1, · · · ,K, j = 1, · · · , a(k). (8.20)

We also put

PO
0
k =

a(k)X

j=1

Y (k, j).
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It satisfies
PO

0
k ≡ PO0

k,N mod Λ+. (8.21)
For given positive numbers R(1), · · · , R(K) we define the discs

D(R(k)) = {(xk,1 · · · , xk,d(k)) | x2
k,1 + · · ·+ x2

k,d(k) ≤ R(k)} ⊂ Rd(k)

and the poly-discs

D(R(·)) =
KY

k=1

D(R(k))

= {(x1,1 · · · , xK,d(K)) | x2
k,1 + · · ·+ x2

k,d(k) ≤ R(k), k = 1, · · · ,K}.
We factorize

Rn =
KY

k=1

Rd(k).

Then we consider the Jacobian of PO
0
k

∇PO
0
k : Rn → Rd(k)

i.e., the map

(x1,1, · · · , xK,d(K)) 7→
√

@PO
0
k

@xk,j
(x1,1, · · · , xK,d(K))

!

j=1,··· ,d(k)

. (8.22)

We remark that ∇PO
0
k depends only on Rd(1) × · · · × Rd(k) components.

Combining all ∇PO
0
k, k = 1, · · · ,K (8.22) induces a map

∇PO
0

: Rn → Rn

defined by
∇PO

0
= (∇PO

0
1 , · · · ,∇PO

0
K).

The next lemma is closely related to Lemma 8.14.

Lemma 8.15. We may choose the positive numbers R(k) for k = 1, · · · ,K such
that the following holds :

(1) ∇PO
0

is nonzero on @(D(R(·))).
(2) The map : @(D(R(·))) → Sn−1

x 7→ ∇PO
0

k∇PO
0k

has degree 1.

Proof. We first prove the following sublemma by an upward induction on k0.

Sublemma 8.16. There exist R(k)’s for 1 ≤ k ≤ K such that for any given
1 ≤ k0 ≤ K we have

d(k0)X

j=1

xk0,j
@PO

0
k0

@xk0,j
(x1,1, · · · , xk0,d(k0)) > 0 (8.23)

if (xk,1, · · · , xk,d(k)) ∈ D(R(k)) for all 1 ≤ k ≤ k0 − 1 and (xk0,1, · · · , xk0,d(k0)) ∈
@D(R(k0)).
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Proof. In case k0 = 1 the existence of R(1) satisfying (8.23) is a consequence of
Corollary 8.8. We assume that the sublemma is proved for 1, · · · , k0 − 1.

For each fixed x = (x1,1, · · · , xk0−1,d(k0−1)) we can find R(k0)x such that (8.23)
holds for (xk0,1, · · · , xk0,d(k0)) ∈ Rd(k0) \ D(R(k0)x/2). This is also a consequence
of Corollary 8.8.

We take supremum of R(k0)x over the compact set x ∈
Qk0−1

k=1 D(R(k)) and
obtain R(k0). The proof of Sublemma 8.16 is complete. §

It is easy to see that Lemma 8.15 follows from Sublemma 8.16. §

We now use our assumption that the vertices of P lies in MQ = Qn and that
ρj ∈ Q. Replacing T by T 1/M ! if necessary, we may assume that all the exponents
of yk,j and T appearing in (8.19) are integers. Then

PO0
k,N = PO0

k,N (y1,1, · · · , yK,d(K);T )

are polynomials of yk,j , y−1
k,j and T . Define the set X by the set consisting of

(y1,1, · · · , yK,d(K); q) ∈ (R+)n × R
that satisfy

@PO0
k,N

@yk,j
(y1,1, · · · , yK,d(K); q) = 0, (8.24)

for k = 1, · · · ,K, j = 1, · · · , d(k). Clearly X is a real affine algebraic variety. (Note
the equation for yi are polynomials. So we need to regard yi (not xi) as variables
to regard X as a real affine algebraic variety. )

Consider the projection

π : X → R, π(y1,1, · · · , yK,d(K); q) = q

which is a morphism of algebraic varieties.

Lemma 8.17. There exists a sufficiently small ≤ > 0 such that if |q| < ≤ then

π−1(q) ∩ {(ex1 , · · · , exn) | (x1, · · · , xn) ∈ D(R(·))} 6= ∅.

Proof. We consider the real analytic q-family of polynomials

PO0
k,N,q(y1,1, · · · , yK,d(K)) = PO0

k,N (y1,1, · · · , yK,d(K); q).

Then
PO0

k,N,0 = PO
0
k,N (8.25)

Replacing PO
0
k,N by PO0

k,N,q, we can repeat construction of the map

∇PO0
N,q : Rn → Rn

for each fixed q ∈ R in the same way as we defined ∇PO
0
. Then the conclusion of

Lemma 8.15 holds for ∇PO0
N,q if |q| is sufficiently small. (This is a consequence of

Lemma 8.15 and (8.25).) Lemma 8.17 follows from elementary algebraic topology.
§

Lemma 8.17 implies that we can find

y0 = (y1,1;0, · · · , yK,d(K);0) ∈ (R \ {0})n

and a sequence

(yh, qh) = (yh
1,1;0, · · · , yh

K,d(K);0; qh) ∈ X ⊂ Rn+1
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h = 1, 2, · · · such that qh > 0 and limh→1(yh, qh) = (y0, 0). Therefore by the curve
selection lemma (Lemma 3.1 [Mi]) there exists a real analytic map

∞ : [0, ≤) → X

such that ∞(0) = (y0, 0) and π(∞(t)) > 0 for t > 0. We reparameterize ∞(t), so
that its q-component is ta/b, where a and b are relatively prime integers. We put
T = ta/b i.e., t = T b/a and denote the yk,j-components of ∞(t) by

yk,j = yk,j;0 +
1X

`=1

yk,j;`T
b`/a.

Since ∞(t) ∈ X, the element (yk,j)k,j ∈ (ΛR
0 \ΛR

+)n is the required solution of (3.10).
Since PO0 contains only a finite number of summands, we can take PO0,N =

PO0. Therefore we can find a solution of (3.11) for PO0.
The proof of Proposition 3.6 is now complete. §

9. Elimination of higher order term in nondegenerate cases

In this section, we prove a rather technical (but useful) result, which shows that
solutions of the leading term equation (8.18) correspond to actual critical points
under certain non-degeneracy condition. For this purpose, we slightly modify the
argument of the last part of section 8. This result will be useful to determine
M(Lag(X)) in the non-Fano case. In fact it shows that we can use PO0 in place
of PO in most practical cases. We remark that we explicitly calculate PO0 but do
not know the precise form of PO in the non-Fano case.

In order to state the result in a general form, we prepare some notations. Let
u0 ∈ Int P . (In section 8, u0 is determined as the unique element of PK defined in
Proposition 8.1. The present situation is more general.)

We define positive real numbers S1 < S2 < · · · by

{`i(u0) | i = 1, · · · ,m} = {S1, S2, · · · , Sm0} (9.1)

and the sets
Ik = {`i | `i(u0) = Sk}, (9.2)

for k = 1, · · · . We renumber
S

k Ik so that

{`k,j | j = 1, · · · , a(k)} = Ik. (9.3)

Definition 9.1. Let A⊥l be the linear subspace of NR spanned by d`k,j k ≤ l,
j ≤ a(k). We define K to be the smallest number such that A⊥K = NR

Note our notations here are consistent with one in section 8 in case {u0} = PK .
We define I and Ik by (8.10) and Definition 8.9. Then Lemma 8.10 and (8.11)
hold. We choose e∗i,j ∈ Hom(MQ, Q) such that Condition 8.12 is satisfied. (Note
A⊥l is defined over Q.) xi,j and yi,j then are defined in the same way as section 8.
We define Y (k, j) by (8.12) and Y (`) by (8.13). Then (8.14) and Lemma 8.13 hold.

We remark that Corollary 8.8 does not hold in general in the current situation.
In fact we can write

v =
kX

l=1

a(l)X

j=1

cl,jd`l,j .

under the assumption of Corollary 8.8 but we may not be able to ensure cl,j ≥ 0.
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Definition 9.2. (1) We call

0 =
a(k)X

j0=1

@Y (k, j0)
@yk,j

, k = 1, · · · ,K, j = 1, · · · , d(k)

the leading term equation at u0. We regard it as a polynomial equation for
yk,j ∈ C \ {0}, k = 1, · · · ,K, j = 1, · · · , d(k).

(2) A solution y0 = (yk,j;0)k=1,··· ,K, j=1,··· ,d(k) of leading term equation is said
to be weakly nondegenerate if it is isolated in the set of solutions.

(3) A solution y0 = (yk,j;0)k=1,··· ,K, j=1,··· ,d(k) of leading term equation is said
to be strongly nondegenerate if the matrices




a(k)X

j0=1

@2Y (k, j0)
@yk,j1@yk,j2





j1,j2=1,··· ,a(k)

are invertible for k = 1, · · · ,K, at y0.
(4) We define the multiplicity of leading term equation in the standard way of

algebraic geometry, in the weakly nondegenerate case.

Example 9.3. In Example 8.5, the equation (8.5) is the leading term equation.

Let POu0
∗ be either POu0

0 or POu0 .

Theorem 9.4. For any strongly nondegenerate solution y0 = (yk,j;0) of leading
term equation, there exists a solution y = (yk,j) ∈ (ΛC

0 \ ΛC
+)n of

@POu0
∗

@yk,j
(y) = 0 (9.4)

such that yk,j ≡ yk,j;0 mod ΛC
+.

If all the vertices of P and u0 are rational, the same conclusion holds for weakly
nondegenerate y0.

The following corollary is an immediate consequence.

Corollary 9.5. Let (u, b) ∈ M+,0(Lag(X)) and u ∈ Int P . Assume one of the
following conditions :

(1) The corresponding solution of the leading term equation is strongly nonde-
generate.

(2) P, u are rational and the corresponding solution of leading term equation is
weakly nondegenerate.

Then there exists b0 such that (u, b0) ∈ M(Lag(X)) and b0 ≡ b mod ΛC
+.

Remark 9.6. (1) Using Proposition 9.7 below, we can apply Theorem 9.4 and
Corollary 9.5, for weakly nondegenerate case, without assuming rationality,
to study displacement of Lagrangian fibers. See the last step of the proof
of Theorem 1.5 given at the end of section 12.

(2) The authors do not know an example where the weak nondegeneracy as-
sumption of Corollary 9.5 is not satisfied.

(3) In this section we work with ΛC coefficients, while in the last section we
work with ΛR coefficients.
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(4) If we define the multiplicity of the element of M0(Lag(X)) as the dimen-
sion of the Jacobian ring Jac(PO0;u0, b) in Definition 6.8 (namely as the
Milnor number) then the sum of the multiplicities of the solutions of (9.4)
converging to y0 as T → 0, is equal to the multiplicity of y0.

(5) In the strongly nondegenerate case, the solution of (9.4) with the given
leading term is unique.

Proposition 9.7. Let (X,ω) be a compact toric manifold with moment polytope P
and u0 ∈ Int P . Then there exist (X,ωh) with moment polytope Ph and uh

0 ∈ Int Ph

such that the following holds:
(1) limh→1 ωh = ω. limh→1 uh

0 = u0.
(2) The vertices of Ph and uh

0 are rational.
(3) The leading term equation at uh

0 is the same as the leading term equation
at u0.

We prove Proposition 9.7 at the end of section 12.
We first derive Theorem 1.13 from Theorem 9.4 before proving Theorem 9.4.

Proof of Theorem 1.13. We start with CP 2 and blow up a Tn fixed point to obtain
CP 2#(−CP 2). We take a Kähler form so that the volume of the exceptional CP 1

is ≤1 which is small. We next blow up again at one of the fixed points so that the
volume of the exceptional CP 1 is ≤2 and is small compared with ≤1. We continue k
times to obtain X(k), whose Kähler structure depends on ≤1, · · · , ≤k. Note X(k) is
non-Fano for k > 3.

Let P (k) be the moment polytope of X(k) and PO0,k be the leading order
potential function of X(k). We remark that P (k) is obtained by cutting out a
vertex of P (k − 1). (See [Ful].)

Lemma 9.8. We may choose ≤i (i = 1, · · · , k) so that the following holds for l ≤ k.
(1) The number of balanced fibers of P (l) is l + 1. We write them as L(u(l,i))

i = 0, · · · , l.
(2) u(l−1,i) = u(l,i) for i ≤ l − 1. u(l,0) = (1/3, 1/3).
(3) u(l,l) is in an o(≤l) neighborhood of the vertices corresponding to the point

we blow up.
(4) The leading term equation of PO0,l−1 at u(l−1,i) is the same as the leading

term equation of PO0,l at u(l,i) for i ≤ l − 1.
(5) The leading term equations are all strongly nondegenerate.

Proof. The proof is by induction on k. There is nothing to show for k = 0. Suppose
that we have proved Lemma 9.8 up to k − 1. Let w be the vertex of the polytope
we cut out which corresponds to the blow up of X(k − 1). Let `i, `i0 be the affine
functions associated to the two edges containing w. It is easy to see that

P (k) = {u ∈ P (k − 1) | `i(u) + `i0(u) ≥ ≤k}.
We also have :

PO0,k = PO0,k−1 + T `i(u)+`i0 (u)−≤ky
vi,1+vi0,1
1 y

vi,2+vi0,2
2 .

Therefore if we choose ≤k sufficiently small, the leading term equation at u(k−1,i)

does not change.
We take u(k,k) such that

`i(u(k,k)) = `i0(u(k,k)) = ≤k.
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It is easy to see that there exists such u(k,k) uniquely if ≤k is sufficiently small. We
put

y01 = y
vi,1
1 y

vi,2
2 , y02 = y

vi0,1
1 y

vi0,2
2 .

(We remark that vi and vi0 are Z basis of Z2, since X(k−1) is smooth toric.) Then
we have

POu(k,k)

0,k ≡ (y01 + y02 + y01y
0
2)T

≤k mod T ≤kΛ+.

Therefore the leading term equation is

1 + y01 = 1 + y02 = 0

and hence has a unique solution (−1,−1). In particular it is strongly nondegenerate.
We can also easily check that there is no other solution of leading term equation.
The proof of Lemma 9.8 now follows by Theorem 9.4. §

Theorem 1.13 immediately follows from Lemma 9.8. §

Note that Theorem 1.13 can be generalized to CPn by the same proof.
We are now ready to give the proof of Theorem 9.4.

Proof of Theorem 9.4. We first consider the weakly nondegenerate case. Let m be
the multiplicity of y0. We choose δ such that the ball Bδ(y0) centered at y0 and
of radius δ does not contain a solution of the leading term equation other than y0.
For y ∈ @Bδ(y0) we define

∇PO(y) =




a(k)X

j0=1

@Y (k, j0)
@yk,j

(y)





k=1,··· ,K, j=1,··· ,d(k)

∈ Cn.

The map

y 7→ ∇PO(y)
k∇PO(y)k

∈ S2n−1

is well defined and of degree m 6= 0 by the definition of multiplicity.
We define POu0

∗,k,N in the same way as (8.19). For q ∈ C, we define POu0
∗,k,N (· · · ; q)

by substituting q to T . Then in the same way as the proof of Lemma 8.17 we can
prove the following.

Lemma 9.9. There exists ≤ > 0 such that if |q| < ≤, the equation

0 =
@

@yk,j
POu0

∗,k,N (· · · ; q) (9.5)

has a solution in Bδ(y0). The sum of multiplicities of the solutions of (9.5) con-
verging to yk,j;0 is m.

(9.5) is a polynomial equation. Hence multiplicity of its solution is well-defined
in the standard sense of algebraic geometry.

Now we assume that all the vertices of P and u0 are contained in Qn. (9.5) also
depends polynomially on q0 = T 0, where T 0 = T 1/C! for a sufficiently large C. (We
remark that C is determined by the denominators of the coordinates of the vertices
of P and of u0. In particular it can be taken to be independent of N .)

We denote y = (y1, · · · , yn) and put

X = {(y, q0) | y ∈ Bδ(y0), q0 with |q0| < ≤ and q = (q0)C! satisfying (9.5)}.
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We consider the projection

πq0 : X → {q0 ∈ C | |q0| < ≤}. (9.6)

By choosing a sufficiently small ≤ > 0, we may assume that (9.6) is a local isomor-
phism on the punctured disc {q0 | 0 < |q0| < ≤}. Namely, πq0 is an etalé covering
over the punctured disc.

We remark that for each q0 the fiber consists of at most m points, since the
multiplicity of the leading term equation is m. We put q00 = (q0)1/m!. Then the
pull-back

πq00 : X0 → {q00 ∈ C | 0 < |q00| < ≤} (9.7)

of (9.6) becomes a trivial covering space. Namely there exists a single valued section
of πq00 on {q00 | 0 < |q00| < ≤}. It extends to a holomorphic section of {q00 | |q00| < ≤}.

In other words there exists a holomorphic family of solutions of (9.5) which is
parameterized by q00 ∈ {q00 | |q00| < ≤}. We put T 00 = (T 0)1/m!. Then by taking
the Taylor series of the q00-parameterized family of solutions at 0, we obtain the
following :

Lemma 9.10. If all the vertices of P and u0 are rational, then for each N there
exists y(N) = (y(N)

k,j )

y
(N)
k,j =

NX

l=0

y
(N)
k,j;l(T

00)l

(y(N)
k,j;l ∈ C) such that

@POu0
∗

@yk,j
(y(N)

k,j ) ≡ 0 mod (T 00)N (9.8)

and that y
(N)
k,j;0 ≡ yk,j;0.

We remark that Lemma 9.10 is sufficient for most of the applications. In fact it
implies that L(u0) is balanced if there exists a solution of leading term equation at
u0. Hence we can apply Lemma 12.2.

For completeness we prove the slightly stronger statement made for the weakly
nondegenerate case in Theorem 9.4. The argument is similar to one in subsection
30.11 [FOOO2].

For each N , we denote by fM((yk,j;0);N) the set of all (y(N)
k,j;l)k,j;l ∈ CnN , where

k = 1, · · · ,K, j = 1, · · · , a(k), l = 1, · · · , N , such that

y
(N)
k,j = yk,j;0 +

NX

l=1

y
(N)
k,j;l(T

00)l

satisfies (9.8).
By definition, fM((yk,j;0);N) is the set of C-valued points of certain complex

affine algebraic variety (of finite dimension). Lemma 9.10 implies that fM((yk,j;0);N)
is nonempty. For N1 > N2 there exists an obvious morphism

IN1,N2 : fM((yk,j;0);N1) → fM((yk,j;0);N2)

of complex algebraic variety.
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To complete the proof of Theorem 9.4 in the weakly nondegenerate case, it
suffices to show that the projective limit

lim
←−

(fM(yk,j;0;N)) (9.9)

is nonempty.

Lemma 9.11. \

N>1

ImIN,1 6= ∅.

Proof. By a theorem of Chevalley (see Chapter 6 [Mat]), each ImIN,1 is a con-
structible set. It is nonempty and its dimension dim ImIN,1 is nonincreasing as
N →1. Therefore we may assume dim ImIN,1 = d for N ≥ N1.

We consider the number of d dimensional irreducible components of ImIN,1. This
number is nonincreasing for N ≥ N1. Therefore, there exists N2 such that for N ≥
N2 the number of d dimensional irreducible components of ImIN,1 is independent
of N . It follows that there exists XN a sequence of d dimensional irreducible
components of ImIN,1 such that XN+1 ⊂ XN . Since dim(XN \ XN+1) < d, it
follows from Baire’s category theorem that ∩NXN 6= ∅. Hence the lemma. §

Lemma 9.12. There exists a sequence (y(n)
k,j;l)k,j;l n = 1, 2, 3, · · · m such that

In,n−1((y
(n)
k,j;l)k,j;l = (y(n−1)

k,j;l )k,j;l)

for n = 2, · · · ,m and that

(y(m)
k,j;l)k,j;l ∈

\

N>m

ImIN,m.

Proof. The proof is by induction on m. The case m = 1 is Lemma 9.11. Each of
the inductive step is similar to the proof of Lemma 9.11 and so it omitted. §

Lemma 9.12 implies that the projective limit (9.9) is nonempty. The proof of
weakly nondegenerate case of Theorem 9.4 is complete.

We next consider the strongly nondegenerate case. We prove the following lemma
by induction on M . Let G be a submonoid of (R≥0,+) generated by the numbers
appearing in the exponent of (8.17). Namely it is generated by

Sk0 − Sk (k0 > k), `(u0) + ρ− Sk ((`, ρ) ∈ Ik0 , k0 ≥ k),
`(u0)− Sk (` ∈ I).

(9.10)

We define 0 < ∏1 < ∏2 < · · · by

{∏i | i = 1, 2, . . . } = G.

Lemma 9.13. We assume that y0 = (yk,j;0)k=1,··· ,K, j=1,··· ,d(k) is a strongly non-
degenerate solution of the leading term equation. Then, there exists

y
(M)
k,j = yk,j;0 +

MX

l=1

yk,j;lT
∏l .

such that
a(k)X

j0=1

@Y (k, j0)
@yk,j

(y(M)
k,1 , · · · , y(M)

K,d(K)) ≡ 0 mod T∏M+1 . (9.11)
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Moreover we may choose y
(M)
k,j so that

y
(M)
k,j ≡ y

(M+1)
k,j mod T∏M+1 .

Proof. The proof is by induction on M . There is nothing to show in the case M = 0.
Assume we have proved the lemma up to M − 1. Then we have

a(k)X

j0=1

@Y (k, j0)
@yk,j

(y(M−1)
k,1 , · · · , y(M−1)

K,d(K)) ≡ ck,j,MTM mod T∏M+1 .

Consider y
(M)
k,j of the form

y
(M)
k,j = y

(M−1)
k,j + ∆k,j,MT∏M

for some ∆k,j,M . Then we can write
a(k)X

j0=1

@Y (k, j0)
@yk,j

(y(M−1)
k,1 + ∆k,1,MT∏M , · · · , y(M−1)

K,d(K) + ∆K,d(K),MT∏M )

≡



ck,j,M +
a(k)X

j0,j00=1

@2Y (k, j0)
@yk,j@yk,j00

∆k,j00,M



 T∏M mod T∏M+1 .

Since y0 = (yk,j;0)k=1,··· ,K, j=1,··· ,d(k) is strongly nondegenerate, we can find ∆k,j00,N ∈
C so that the right hand side become zero module T∏M+1 . The proof of Lemma
9.13 is complete. §

By Lemma 9.13, the limit limM→1 y
(M)
k,j exists. We set

yk,j := lim
M→1

y
(M)
k,j .

This is the required solution of (9.4). The proof of Theorem 9.4 is complete §

10. Calculation of potential function

In this section, we prove Theorems 3.4 and 3.5. We begin with a review of [CO].
Let π : X → P be the moment map and @P =

Sm
i=1 @iP be the decomposition of

the boundary of P into n − 1 dimensional faces. Let βi ∈ H2(X,L(u); Z) be the
elements such that

βi ∩ [π−1(@Pj)] =

(
1 if i = j,
0 if i 6= j.

The Maslov index µ(βi) is 2. (Theorem 5.1 [CO].)
Let β ∈ π2(X,L(u)) and Mmain

k+1 (L(u), β) be the moduli space of stable maps
from bordered Riemann surfaces of genus zero with k + 1 boundary marked points
in homology class β. (See [FOOO1] section 3. We require the boundary marked
points to respect the cyclic order of S1 = @D2. (In other words we consider the
main component in the sense of [FOOO1] section 3.)) Let Mmain,reg

k+1 (L(u), β) be
its subset consisting of all maps from a disc. (Namely the stable map without disc
or sphere bubble.) The next theorem easily follows from the results of [CO].

Theorem 10.1. (1) If µ(β) < 0, or µ(β) = 0, β 6= 0, then Mmain,reg
k+1 (L(u), β)

is empty.
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(2) If µ(β) = 2, β 6= β1, · · · , βm, then Mmain,reg
k+1 (L(u), β) is empty.

(3) For i = 1, · · · ,m, we have

Mmain,reg
1 (L(u), βi) = Mmain

1 (L(u), βi). (10.1)

Moreover M1(L(u), βi) is Fredholm regular. Furthermore the evaluation
map

ev : Mmain
1 (L(u), βi) → L(u)

is an orientation preserving diffeomorphism.
(4) For any β, the moduli space Mmain,reg

1 (L(u), β) is Fredholm regular. More-
over

ev : Mmain,reg
1 (L(u), β) → L(u)

is a submersion.
(5) If Mmain

1 (L(u), β) is not empty then there exists ki ∈ Z≥0 and αj ∈
H2(X; Z) such that

β =
X

i

kiβi +
X

j

αj

and αj is realized by holomorphic sphere. There is at least one nonzero ki.

Proof. For reader’s convenience and completeness, we explain how to deduce The-
orem 10.1 from the results in [CO].

By Theorems 5.5 and 6.1 [CO], Mmain,reg
k+1 (L(u), β) is Fredholm regular for any β.

Since the complex structure is invariant of the Tn action and L(u) is Tn invariant,
it follows that Tn acts on Mmain,reg

k+1 (L(u), β) and

ev : Mmain,reg
k+1 (L(u), β) → L(u)

is Tn equivariant. Since the Tn action on L(u) is free and transitive, it follows that
ev is a submersion if Mmain,reg

k+1 (L(u), β) is nonempty. (4) follows.
We assume Mmain,reg

k+1 (L(u), β) is nonempty. Since ev is a submersion it follows
that

n = dimL(u) ≤ dimMmain,reg
k+1 (L(u), β) = n + µ(β)− 2

if β 6= 0. Therefore µ(β) ≥ 2. (1) follows.
We next assume µ(β) = 2, and Mmain,reg

k+1 (L(u), β) is nonempty. Then by Theo-
rem 5.3 [CO], we find β = βi for some i. (2) follows.

We next prove (5). It suffices to consider

[f ] ∈Mmain
1 (L(u), β) \Mmain,reg

1 (L(u), β).

We decompose the domain of u into irreducible components and restrict f there.
Let fj : D2 → M and gk : S2 → M be the restriction of f to disc or sphere
components respectively. We have

β =
X

[fj ] +
X

[gk].

Theorem 5.3 [CO] implies that each of fj is homologous to the sum of the element
of βi. It implies (5).
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To prove (10.1) and complete the proof of Theorem 10.1, it remains to prove
Mmain,reg

1 (L(u), βi0) = Mmain
1 (L(u), βi0). (Here i0 ∈ {1, · · · ,m}.) Let [f ] ∈

Mmain
1 (L(u), βi0). We take ki and αj as in (5). (Here β = βi0). We have

@βi0 =
X

i

ki@βi.

Using the convexity of P , (5) and ki ≥ 0, we show the inequality

βi0 ∩ ω ≤
X

i

kiβi ∩ ω. (10.2)

holds and that the equality holds only if ki = 0 (i 6= i0), ki0 = 1, as follows : By
(5) we have

`i0 =
mX

i=1

ki`i + c.

where c is a constant. Since ki ≥ 0 and `i0(u0) = 0 for u0 ∈ @i0P , it follows that
c ≤ 0. (Note `i ≥ 0 on P .) Since βi ∩ ω = `i(u), we have inequality (10.2). Let us
assume that the equality holds. If there exists i 6= j with ki, kj > 0 then

@i0 P = {u0 ∈ P | `i0(u
0) = 0} ⊆ {u0 ∈ P | `i(u0) = `j(u0) = 0} ⊆ @iP ∩ @jP.

This is a contradiction since @i0P is codimension 1. Therefore there is only one
nonzero ki. It is easy to see that i = i0 and ki0 = 1.

On the other hand since αj ∩ ω > 0 it follows that

βi0 ∩ ω ≥
X

i

kiβi ∩ ω.

Therefore there is no sphere bubble (that is αj). Moreover the equality holds in
(10.2). Hence the domain of our stable map is irreducible. Namely

Mmain,reg
1 (L(u), βi0) = Mmain

1 (L(u), βi0).

The proof of Theorem 10.1 is now complete. §

Next we discuss one delicate point to apply Theorem 10.1 to the proofs of The-
orems 3.4 and 3.5. (This point was already mentioned in section 16 [CO].) Let us
consider the case where there exists a holomorphic sphere g : S2 → X with

c1(X) ∩ g∗[S2] < 0.

We assume moreover that there exists a holomorphic disc f : (D2, @D2) → (X,L(u))
such that

f(0) = g(1).
We glue D2 and S2 at 0 ∈ D2 and 1 ∈ S2 to obtain Σ. f and g induce a stable
map h : (Σ, @Σ) → (X,L(u)).

In general h will not be Fredholm regular since g may not be Fredholm regular
or the evaluation is not transversal at the interior nodes. In other words, elements
of Mmain

1 (L(u), β) \ Mmain,reg
1 (L(u), β) may not be Fredholm regular in general.

Moreover replacing g by its multiple cover, we obtain an element ofMmain
1 (L(u), β)\

Mmain,reg
1 (L(u), β) such that µ(β) is negative. Theorem 10.1 says that all the

holomorphic disc without any bubble are Fredholm regular. However we can not
expect that all stable maps in Mmain

1 (L(u), β) are Fredholm regular.
In order to prove Theorem 3.5, we need to find appropriate perturbations of

those stable maps. For this purpose we use the Tn action and proceed as follows.
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(We remark that in the Fano case, where there exists no holomorphic sphere g with
c1(M) ∩ g∗[S2] ≤ 0, for which many of the arguments below are much simplified.)

We equip each of M1(L(u), β) with Kuranishi structure. (See [FO] for the gen-
eral theory of Kuranishi structure and section 17-18 [FOOO1] for its construction
in the context we currently deal with.) We may construct Kuranishi neighborhoods
and obstruction bundles that carry Tn actions induced by the Tn action on X, and
choose Tn-equivariant Kuranishi maps. We note that the evaluation map

ev : M1(L(u), β) → L(u)

is Tn-equivariant. Since the complex structure of X is Tn-invariant and L(u) is a
free Tn-orbit it is easy to find such a Kuranishi structure.

We remark that the Tn action on the Kuranishi neighborhood is free since the
Tn action on L(u) is free and ev is Tn equivariant. We take a perturbation (that
is, a multisection) of the Kuranishi map that is Tn equivariant. We can find such
a multisection which is also transversal to 0 as follows : Since the Tn action is free,
we can take the quotient of Kuranishi neighborhood, obstruction bundle etc. to
obtain a space with Kuranishi structure. Then we take a transversal multisection
of the quotient Kuranishi structure and lift it to a multisection of the Kuranishi
neighborhood of M1(L(u), β). Let sβ be such a multisection and let M1(L(u), β)sβ

be its zero set. We remark that the evaluation map

ev : M1(L(u), β)sβ → L(u) (10.3)

is a submersion. This follows from the Tn equivariance. This makes our construc-
tion of system of multisections much simpler than the general one in section 30
[FOOO2] since the fiber product appearing in the inductive construction is auto-
matically transversal. (See section 30.2 [FOOO2] for the reason why this is crucial.)
More precisely we prove the following Lemma 10.2. Let

forget0 : Mmain
k+1 (L(u), β) →Mmain

1 (L(u), β) (10.4)

be the forgetful map which forgets the first, . . . , k-th marked points. (In other
words, only the 0-th marked point remains.) We can construct our Kuranishi
structure so that it is compatible with forget0 in the same sense as Lemma 31.8
[FOOO2].

Lemma 10.2. There exists a system of multisections sβ,k+1 on Mmain
k+1 (L(u), β)

with the following properties :
(1) They are transversal to 0.
(2) They are invariant under the Tn action.
(3) The multisection sβ,k+1 is the pull-back of the multisection sβ,1 by the for-

getful map (10.4).
(4) The restriction of sβ,1 to the boundary of Mmain

1 (L(u), β) is the fiber product
of the multisections sβ0,k0 with respect to the identification of the boundary
given in Proposition 29.2 [FOOO2].

(5) We do not perturb Mmain
1 (L(u), βi) for i = 1, · · · ,m.

Proof. We construct multisections inductively over ω ∩ β. Since (2) implies that
fiber products of the perturbed moduli spaces which we have already constructed
in the earlier stage of induction are automatically transversal, we can extend them
so that (1), (2), (3), (4) are satisfied by the method we already explained above.
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We recall from Theorem 10.1 (3) that

Mmain
1 (L(u), βi) = Mmain,reg

1 (L(u), βi)

and it is Fredholm regular and its evaluation map is surjective to L(u). Therefore
when we perturb the multisection we do not need to worry about compatibility
of it with other multisections we have already constructed in the earlier stage of
induction. This enable us to leave the moduli space Mmain

1 (L(u), βi) unperturbed
for all βi. The proof of Lemma 10.2 is complete. §

Remark 10.3. Actually we need to stop the inductive construction of the multi-
sections at some finite stage, by the reason we explained in section 30.3 [FOOO2].
However we can go around this trouble in the same way as explained in section
30 [FOOO2]. So we will not mention this point any more. (Alternatively we can
stop the construction at some finite stage and calculate the potential function only
modulo TN . This will suffice for most of the applications.) In the Fano case, we
do not need to study this point seriously since there are only finitely many moduli
spaces involved in that case.

Remark 10.4. We explain one delicate point of the proof of Lemma 10.2. Let
α ∈ π2(X) be represented by a holomorphic sphere with c1(X) ∩ α < 0. We
consider the moduli space M1(α) of holomorphic sphere with one marked point
and in homology class α. Let us consider β ∈ π2(X;L(u)) and the moduli space
M1,k+1(β) of holomorphic discs with one interior and k +1 exterior marked points
and of homotopy class β. The fiber product

M1(α)×X M1,k+1(β)

taken by the evaluation maps at interior marked points are contained in M1,k+1(β+
α). If we want to define a multisection compatible with the embedding

M1(α)×X M1,k+1(β) ⊂M1,k+1(β + α) (10.5)

then it is impossible to make it both transversal and Tn equivariant in general :
This is because the nodal point of such a singular curve could be contained in the
part of X with non-trivial isotropy group.

Our perturbation constructed above satisfies (1) and (2) of Lemma 10.2 and
so may not be compatible with the embedding (10.5). Our construction of the
perturbation given in Lemma 10.2 exploits the fact that the Tn action acts freely
on the Lagrangian fiber L(u) and carried out by induction on the number of disc
components (and of energy) only, regardless of the number of sphere components.

The following corollary is an immediate consequence of Lemma 10.2.

Corollary 10.5. If µ(β) < 0 or µ(β) = 0, β 6= 0, then Mmain
1 (L(u), β)sβ is empty.

We now use our perturbed moduli space to define de Rham version (≠(L(u)),mdR
k,β)

of the filtered A1 algebra in the same way as section 37.4 [FOOO2] as follows.
We consider the evaluation map

ev = (ev1, · · · , evk, ev0) : Mmain
k+1 (L(u), β)sβ → L(u)k+1.

Let ρ1, · · · , ρk be differential forms on L(u). We define

mdR
k,β(ρ1, · · · , ρk) = (ev0)!(ev1, · · · , evk)∗(ρ1 ∧ · · · ∧ ρk). (10.6)
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We remark that integration along fiber (ev0)! is well defined and gives a smooth
form, since ev0 is a submersion. (It is a consequence of Tn equivariance.) Using
the compatibility Lemma 10.2 (4) we can prove that (10.6) defines a filtered A1
structure.

We next go to the canonical model (H(L(u); Λ0),mdR,can
k ) of (≠(L(u)),mdR

k,β).
(See section 23 [FOOO2].)

Lemma 10.6. For b ∈ H1(L(u),Λ0), we have

mdR,can
k,βi

(b, · · · , b) =
1
k!

(@βi ∩ b)k · PD([L(u)]).

where PD([L(u)]) is the Poincaré dual to the fundamental class [L(u)] ∈ Hn(L(u); Z).

Proof. Let [ρ] be a harmonic representative of b. Then using Lemma 10.2 and
(10.6), we can prove

Z

L(u)
mdR

k,βi
(ρ, · · · , ρ) =

1
k!

(@βi ∩ b)k (10.7)

in the same way as the proof of Lemma 37.47 [FOOO2]. We recall this calculation
briefly now. Let

Ck = {(t1, · · · , tk) | 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}. (10.8)

We identify S1 ∼= R/Z ∼= @D2. Lemma 10.2 (2) implies that

Mmain
k+1 (L(u), β) ∼= Mmain

1 (L(u), β)× Ck. (10.9)

Moreover the evaluation map ev is

evi(u; t1, · · · , tk) = [ti@β] · ev(u). (10.10)

Here @β ∈ H1(L(u); Z) is identified to an element of the universal cover eL(u) ∼= Rn

of L(u) and [ti@β] ∈ L(u) acts as a multiplication on the torus. ev(u) is defined by
the evaluation map ev : Mmain

1 (L(u), β) → L(u). We also have :

ev0(u; t1, · · · , tk) = ev(u). (10.11)

We remark that ev : Mmain
1 (L(u), βi) → L(u) is a diffeomorphism (See Theorem

10.1 (3)). Now we have
Z

L(u)
mdR

k,βi
(ρ, · · · , ρ) = Vol(Ck)

µZ

@βi

ρ

∂k

=
1
k!

(@βi ∩ b)k,

as required.
We next use (10.7) to calculate operations in the canonical model. According to

the construction of section 23.4 [FOOO2], we have

mcan
k,βi

(b, · · · , b) =
X

Γ

mΓ(ρ, · · · , ρ)

where Γ runs on a set of trees with k + 1 exterior vertices and each of its interior
vertex v is assigned with β(v) ∈ π2(X) such that Mmain

1 (L(u), β(v)) is nonempty
and the sum

P
β(v) is βi. It is then easy to see that only the following tree Γk,0(βi)

gives a nontrivial contribution : Here Γk,0(βi) is a tree with k + 1 exterior vertices
and only one interior vertex to which βi is assigned. Then we obtain

mΓk,0(βi)(ρ, · · · , ρ) = mdR
k,βi

(ρ, · · · , ρ) =
1
k!

(@βi ∩ b)k · PD[L(u)]

from (10.7). The proof of Lemma 10.6 is now complete. §
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The proof of the following lemma is the same as that of Lemma 37.54 [FOOO2]
and is omitted here. We refer readers thereto for the details.

Lemma 10.7. (≠(L(u)),mdR
k,β) is homotopy equivalent to the filtered A1 algebra

in [FOOO2] Theorem A.

In fact we do not need to use Lemma 10.7 to prove Theorem 1.5 if we use de
Rham version in all the steps of the proof of Theorem 1.5 without involving the
singular homology version.

Proof of Proposition 3.2. Proposition 3.2 immediately follows from Corollary 10.5,
Lemma 10.6 and Lemma 10.7 : We just take the sum

1X

k=0

mcan
k (b, · · · , b) =

1X

k=0

X

β∈π2(X,L(u))

Tω∩β/2πmcan
k,β (b, · · · , b)

=
1X

k=0

mX

i=1

Tω∩βi/2πmcan
k,βi

(b, · · · , b)

=
mX

i=1

1X

k=0

1
k!

(@βi ∩ b)kT `i(u) · PD([L(u)]) (10.12)

Since b is assumed to lie in H1(L(u),Λ+) not just in H1(L(u),Λ0), the series ap-
pearing as the scalar factor in (10.12) converges in non-Archimedean topology
of Λ0 and so the sum

P1
k=0 mcan

k (b, · · · , b) is a multiple of PD([L(u)]). Hence
b ∈ fMweak(L(u)) by definition (3.1). We remark that the gauge equivalence re-
lation in Chapter 4 [FOOO2] is trivial on H1(L(u); Λ0) and so H1(L(u); Λ+) ↪→
Mweak(L(u)). §

Proof of Theorem 3.4. Suppose that there is no nontrivial holomorphic sphere whose
Maslov index is nonpositive. Then Theorem 10.1 (5) implies that if µ(β) ≤ 2,
β 6= βi, β 6= 0 then Mmain

1 (L(u), β) is empty. Therefore again by dimension count-
ing as in Corollary 10.5, we obtain

1X

k=0

mdR,can
k (x, · · · , x) =

mX

i=1

1X

k=0

Tω∩βi/2πmdR,can
k,βi

(x, · · · , x)

for x ∈ H1(L(u),Λ+). On the other hand, we obtain

PO(x;u) =
mX

i=1

1X

k=0

1
k!

(@βi ∩ x)kT `i(u)

=
mX

i=1

1X

k=0

1
k!
hvi, xikT `i(u) =

mX

i=1

ehvi,xiT `i(u)

from (5.8), (10.12) and the definition of PO. Writing x =
Pn

i=1 xiei and recalling
yi = exi , we obtain ehvi,xi = y

vi,1
1 · · · yvi,n

n and hence the proof of Theorem 3.4. §

Proof of Theorem 3.5. We consider the contribution of β 6= βi with µ(β) = 2. By
Corollary 10.5, the virtual fundamental chain of Mmain

1 (L(u), β) is a cycle. We put

cβ = ev∗([Mmain
1 (L(u), β)]) ∈ Hn(L(u); Q) ∼= Qn.
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In the same way as Lemma 10.6 we can prove

mdR,can
k,β (b, · · · , b) =

cβ

k!
(@β ∩ b)kPD([L(u)]). (10.13)

Theorem 10.1 (5) implies that

@β =
X

ki@βi, β =
X

i

kiβi +
X

j

αj .

Hence X

k

T β∩ω/2πmdR,can
k,β (b, · · · , b)

becomes one of the terms of the right hand side of (3.6). We remark that class β
with µ(β) ≥ 4 does not contribute to mdR,can

k (b, · · · , b) by the degree reason.
When all the vertices of P lie in Qn, then the symplectic volume of all αj are

rational. Moreover ω ∩ βi are rational. Therefore the exponents β ∩ω are rational.
The proof of Theorem 3.5 is complete. §

Remark 10.8. We remark that the number cβ in (10.13) is independent of the
choice of the system of Tn invariant multisections in Lemma 10.2 : If there are
two such systems, we can find a Tn invariant homotopy between them which is
also transversal to 0. By a dimension counting argument applied to the parame-
terized version of Mmain

1 (β) and its perturbation, we will have the parameterized
version of Corollary 10.5. This in turn implies that the perturbed (parameterized)
moduli space defines a compact cobordism between the perturbed moduli spaces of
Mmain

1 (β) associated to the two such systems. This implies the invariance of cβ . It
follows that the potential function in Theorem 3.5 is independent of the choice of
Tn invariant transversal multisection. However we do not know how to calculate
it.

Remark 10.9. We used de Rham cohomology to go around the problem of transver-
sality among chains in the classical cup product. One drawback of this approach is
that we lose control of the rational homotopy type. Namely we do not prove here
that the filtered A1 algebra (partially) calculated above is homotopy equivalent
to the one in Theorem A [FOOO2] over Q. (Note all the operations we obtain
is defined over Q, however.) We however confirm that they are indeed homotopy
equivalent over Q. There may be several possible ways to prove this statement, one
of which is to use the rational de Rham forms used by Sullivan.

The Q-structure is actually interesting in our situation. See for example Propo-
sition 6.12. However the homotopy equivalence of Q version of Lemma 10.7 is not
used in the statement of Proposition 6.12 or in its proof.

11. Non-unitary flat connection on L(u)

In this section we explain how we can include (not necessarily unitary) flat
bundles on Lagrangian submanifolds in Lagrangian Floer theory following [Fu2],
[Cho].

Remark 11.1. We need to use flat complex line bundle for our purpose by the
following reason. In [FOOO2] we assumed that our bounding cochain b is an element
of H(L; Λ+) since we want the series

mb
1(x) =

X

k,`

mk+`+1(b⊗k, x, b⊗`)
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to converge. There we used convergence with respect to the non-Archimedean
norm. For the case of Tn orbits in toric manifold, the above series converges for
b ∈ H1(L; Λ0). The convergence is the usual (classical Archimedean) topology on
C on each coefficient of T∏.

This is not an accident and was expected to happen in general. (See Conjecture
11.46 [FOOO2].) However for this convergence to occur, we need to choose the
perturbations on Mmain

k+1 (L, β) so that it is consistent with Mmain
k0+1(L, β) (k0 6= k)

via the forgetful map. We can make this choice for the current toric situation by
Lemma 10.2 (3). In a more general situation, we need to regard Mmain

1 (L, β) as a
chain in the free loop space. (See [Fu3].)

On the other hand, if we use the complex structure other than the standard
one, we do not know whether Lemma 10.2 (3) holds or not. So in the proof of
independence of Floer cohomology under the various choices made, there is a trouble
to use a bounding cochain b lying in H1(L; Λ0). The idea, which is originally due
to Cho [Cho] as far as we know, is to change the leading order term of b by twisting
the construction using non-unitary flat bundles on L.

Let X be a symplectic manifold and L be its relatively spin Lagrangian subman-
ifold. Let ρ : H1(L; Z) → C \ {0} be a representation and Lρ be the flat C bundle
induced by ρ.

We replace the formula (10.7) [FOOO2] by

mρ
k =

X

β∈H2(M,L)

ρ(@β) mk,β ⊗ Tω(β)/2π.

(Compare this with (3.2) in section 3.)

Proposition 11.2. (C(L),mρ
k) is a filtered A1 algebra.

Proof. Suppose that [f ] ∈ Mmain
k+1 (L, β) is a fiber product of [f1] ∈ Mmain

`+1 (L, β1)
and [f2] ∈ Mmain

k−` (L, β2). Namely β1 + β2 = β and ev0(f1) = evi(f2). Then it is
easy to see that

ρ(@β) = ρ(@β1)ρ(@β2). (11.1)
Combined with this fact, the proof of Theorem 10.11 [FOOO2] goes through and
proves Proposition 11.2. In fact it is proved there that

0 =
≥
m1 ◦mk,β + mk,β ◦ bm1

¥
(x1, · · · , xk)

+
X

β1+β2=β

X

k1+k2=k+1

k1X

l=1

(−1)∗mk1,β1(x1, · · · ,mk2,β2(xl, · · · ), · · · , xk)
(11.2)

(∗ = deg x1+· · ·+deg xl−1+l.) (11.1) and (11.2) imply the filtered A1 relation. §

The unitality can also be proved in the same way. The well definedness (that is,
independence of various choices up to homotopy equivalence) can also be proved in
the same way. In particular we have a canonical model (H∗(L; Λ0);mρ,can

k ).

Remark 11.3. We have obtained our twisted filtered A1 structure on the (un-
twisted) cohomology group H∗(L; Λ0). This is because the flat bundle Hom(Lρ,Lρ)
is trivial. In more general situation where we consider a flat bundle L of higher
rank, we obtain a filtered A1 structure on cohomology group with local coefficients
with values in Hom(L,L).
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The filtered A1 structure mρ,can
k is different from mcan

k in general as we can see
from the expression of the potential function given in Lemma 3.8.

Next we explain the case of a relatively spin pair (L(0), L(1)) of Lagrangian
submanifolds of X. We assume that they are of clean intersection. Let ρi :
H1(L(i); Z) → C \ {0} be homomorphisms which induce flat (non-unitary) com-
plex line bundles Lρi on L(i). Let Rh be a connected component of L(1) ∩L(0). We
define the group dCFBM ((L(1),L1), (L(0),L0); ΛC) as the completion of

M

h

≥
C(Rh;Hom(Lρ1 |Rh ,Lρ0 |Rh)⊗Θ−Rh

)⊗Q Λh

¥
⊗C ΛC,

(See [FOOO2] right before Definition 12.71.) We define an equivalence relation ∼
similar to Definition 12.52 [FOOO2] to obtain a chain complex

CFBM ((L(1),Lρ1), (L
(0),Lρ0); Λ

C).

We take its energy ≥ 0 part and obtain CFBM ((L(1),Lρ1), (L(0),Lρ0); ΛC
0 ).

We next modify Definition 12.71 [FOOO2]. Let (S, α) be a singular chain of
Rh with Hom(Lρ1 |Rh ,Lρ0 |Rh) ⊗ Θ−Rh

coefficient. Here S = (|S|, f) be a smooth
singular chain and α ∈ (Hom(Lρ1 |Rh ,Lρ0 |Rh) ⊗ Θ−Rh

)f(x0), where x0 ∈ |S| is the
base point. By the flat structure, the element α determines an element α(x) ∈
(Hom(Lρ1 |Rh ,Lρ0 |Rh) ⊗ Θ−Rh

)f(x) for any x in a canonical way. Since we can use
Θ−Rh

to handle the orientation in the same way as section 12 [FOOO2], we consider
the case when Θ−Rh

are all trivial to simplify the notation. Let

u : R× [0, 1] → X

be a map satisfying (12.54) [FOOO2]. We put

lim
τ→−1

u(t, τ) = f(x) ∈ Rh, lim
τ→+1

u(t, τ) = y ∈ Rh0

We define
u∗(α) ∈ Hom(Lρ1 |Rh0 ,Lρ0 |Rh0 )y

by
u∗(α) = Hol|u|τ=0 ◦ α(x) ◦ (Hol|u|τ=1)

−1. (11.3)

Here
Hol|u|τ=0 : (Lρ0)f(x) → (Lρ0)y

and
Hol|u|τ=1 : (Lρ1)f(x) → (Lρ1)y

are the parallel transport, with respect to the given flat connection, along the path
τ 7→ u(τ, 0), τ 7→ u(τ, 1), respectively. We use (11.3) to twist Definition 12.71
[FOOO2] and we obtain

nρ1,ρ0
k1,k0

:Bk1C(L(1),ΛC
0 )[1]⊗ CFBM ((L(1),Lρ1), (L

(0),Lρ0); Λ
C
0 )

⊗Bk0C(L(0),ΛC
0 )[1] → CFBM ((L(1),Lρ1), (L

(0),Lρ0); Λ
C
0 ).

Lemma 11.4. (CFBM ((L(1),Lρ1), (L(0),Lρ0); ΛC
0 ), nρ1,ρ0

k1,k0
) is a filtered A1 bimod-

ule over (C(L(1)),mρ1
k ) - (C(L(0)),mρ0

k ).
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The proof is the same as the proof of Theorem 27.72 [FOOO2] and is omitted.
Various results such as unitality, well definedness etc. for Floer cohomology of pairs
of Lagrangian submanifolds are generalized to the twisted version in an obvious way.
In particular we have

rankΛCHF ((L(1), ρ1, b1), (L(0), ρ0, b0); ΛC)) ≤ #(L(1) ∩ L(0))

in the same way. Here bi ∈M(C(L(i)),mρi

k ). In other words we can use the twisted
version to study Lagrangian intersection in the same way as the untwisted one.

12. Floer cohomology at a critical point of potential function

In this section we prove Theorem 3.9 etc. and complete the proof of Theorem
1.5.

We first prove Lemma 3.8. Let β ∈ H2(X,L(u0)) with µ(β) = 2 andMmain
1 (L(u0), β)

be nonempty. We have β =
Pm

i=1 ciβi +
P

j αj by Theorem 10.1 (5). Let ρ be as
in (3.13). We have ρ(@β) =

Q
ρ(@βi)ci . Note @βi =

P
j wijej . Thus we have






ρ(@βi) = y
wi,1
1,0 · · · ywi,n

n,0 ,

ρ(@β) =
Y

i

Y

j

y
ciwi,j

j,0 . (12.1)

Therefore for b ∈ H1(L(u0); ΛC
+) we have

1X

k=0

mρ,can
k,βi

(b, · · · , b) =
1X

k=0

y
wi,1
1,0 · · · ywi,n

n,0 mcan
k,βi

(b, · · · , b)

=
1X

k=0

ex1,0wi,1 · · · exn,0wi,n
1
k!

(b ∩ @βi)k · [PD(L)]

=
1X

k=0

mcan
k,βi



b +
nX

j=1

xj,0ej , · · · , b +
nX

j=1

xj,0ej



 .

In a similar way we have

1X

k=0

mρ,can
k,β (b, · · · , b) =

1X

k=0

mcan
k,β



b +
X

j

xj,0ej , · · · , b +
X

j

xj,0ej



 .

However it follows from Theorems 3.4 and 3.5 that the left and the right sides of
this identity corresponds to those in Lemma 3.8 respectively. This finishes the proof
of Lemma 3.8. §

We next prove Theorem 3.9. Let x = (x1, · · · , xn), x1, · · · , xn ∈ Λ+. We put

f+(x) =
X

i

(xi,0 + xi)ei, f(x) =
X

i

xiei.

From Lemma 3.8 we derive

POu0
ρ (f(x)) =

X
mρ,can

k (f(x), · · · , f(x)) ∩ [L(u0)]

=
X

mcan
k (f+(x), · · · , f+(x)) ∩ [L(u0)] = POu0(f+(x)).
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Let b be as in (3.14) and so

f+(b) =
X

i

xiei =: x.

Then we have
@

@xi
POu0

ρ (f(x))
ØØØ
x=b

=
@

@xi
POu0(f+(x))

ØØØ
x=b

=
@POu0

@xi
(x) = 0

where the last equality follows from the definition of b in (3.14). On the other hand,
we have

@

@xi
POu0

ρ (f(x))
ØØØ
x=b

=
X

k

X

`

mρ,can
k ((f(b))⊗`, ei, (f(b))⊗(k−`−1)) ∩ [L(u0)]

= mρ,can,b
1 (ei) ∩ [L(u0)].

(12.2)

Note here and hereafter we write mρ,can,b
1 in place of m

ρ,can,f(b)
1 .

Hence we obtain

mρ,can,b
1 (ei)

(
= 0 if (3.11) is satisfied
≡ 0 mod TN if (3.10) is satisfied.

(12.3)

We remark that by the degree reason mρ,can,b
1 (ei) is proportional to [L(u0)].

We next prove the vanishing of mρ,can,b
1 (f) for the classes f of higher degree.

Namely we prove

Lemma 12.1. For f ∈ H∗(L(u0); ΛC
0 ) we have :

mρ,can,b
1,β (f)

(
= 0 if (3.11) is satisfied
≡ 0 mod TN if (3.10) is satisfied.

Proof. The proof is similar to the proof of Theorem 27.35 [FOOO2] which uses the
spectral sequence argument. Let d = deg f and 2` = µ(β). We say (d, `) < (d0, `0)
if ` < `0 or ` = `0, d < d0. We prove the lemma by upward induction on (d, `). The
case d = 1 is (12.3). We remark that mk,β = 0 if µ(β) ≤ 0.

We assume that the lemma is proved for (d0, `0) smaller than (d, `) and will prove
the case of (d, `). Since the case d = 1 is already proved, we may assume that d ≥ 2.
Let f = f1 ∪ f2 where deg fi ≥ 1. By the A1-relation we have

mmain,ρ,b
1,β (f1 ∪ f2) =

X

β1+β2=β

±mmain,ρ,b
2,β1

(mmain,ρ,b
1,β2

(f1), f2)

+
X

β1+β2=β

±mmain,ρ,b
2,β1

(f1,m1,β2(f2))

+
X

β1+β2=β,β2 6=0

±mmain,ρ,b
1,β1

(m2,β2(f1, f2)).

We remark that mmain,ρ,b
1,β0

= 0 since we are working on a canonical model.
The first two terms of the right hand side vanishes by the induction hypothesis

since deg fi < deg f and µ(βi) ≤ µ(β). The third term also vanishes since µ(β1) <
µ(β). The proof of Lemma 12.1 is complete. §

Lemma 12.1 immediately implies Theorem 3.9. §



68 K. FUKAYA, Y.-G. OH, H. OHTA, K. ONO

Proof of Proposition 4.4. Let us specialize to the case of 2 dimension. In case
dimL(u0) = 2, we can prove mρ,can,b

1,β = 0 for µ(β) ≥ 4 also by dimension counting.
We can use that to prove Proposition 4.4 in the same way as above. §

Now we are ready to complete the proof of Theorem 1.5.

Proof of Theorem 1.5. We first consider the case where the vertices of P are con-
tained in Qn. Proposition 3.6 and Theorem 3.9 imply that L(u0) is balanced in
the sense of Definition 3.10. Therefore the next lemma implies Theorem 1.5 in our
case.

Lemma 12.2. If L(u0) is a balanced Lagrangian fiber then the following holds for
any Hamiltonian diffeomorphism √ : X → X.

√(L(u0)) ∩ L(u0) 6= ∅. (12.4)

If √(L(u0)) is transversal to L(u0) in addition, then

#(√(L(u0)) ∩ L(u0)) ≥ 2n. (12.5)

Proof. Let ωi, ui, bi,N be as in Definition 3.10. We assume √ : X → X does not
satisfy (12.4) or (12.5) and will deduce a contradiction. We use the same (time
dependent) Hamiltonian as √ to obtain √i : (X,ωi) → (X,ωi). Take an integer N
such that k√ik < 2πN for large i. Then for sufficiently large i, L(ui

0) and √i does
not satisfy (12.4) or (12.5). In fact if √(L(u0)) ∩ L(u0) = ∅ then for sufficiently
large i, we have √i(L(ui

0)) ∩ L(ui
0) = ∅. If √(L(u0)) is transversal to L(u0) and if

(12.5) is not satisfied, then

#(√(L(u0)) ∩ L(u0)) ≥ #(√εi(L(ui
0)) ∩ L(ui

0)).

On the other hand, by Theorem 3.9 we have

HF ((L(ui), bi,k), (L(ui), bi,k); ΛC
0 /(TN )) ∼= H(Tn; ΛC

0 /(TN )).

It follows from Universal Coefficient Theorem that

HF ((L(ui), bi,k), (L(ui), bi,k); ΛC
0 ) ∼= Λ⊕a

0 ⊕
bM

i=1

Λ0/(T c(i)) (12.6)

such that c(i) ≥ N and a + 2b ≥ 2n. This contradicts to Theorem J [FOOO2]. (In
fact Theorem J [FOOO2] and (12.6) imply that (12.4) and (12.5) hold for L(ui)
and √i with k√ik < 2πN .) Lemma 12.2 is proved. §

If the leading term equation is strongly nondegenerate, Theorem 1.5 also follows
from Theorem 3.9, Theorem 9.4 and Lemma 12.2.

We finally present an argument to remove rationality assumption. In view of
Lemma 12.2, it suffices to prove the following Proposition 12.3.

Proposition 12.3. In the situation of Theorem 1.5, there exists u0 such that L(u0)
is a balanced Lagrangian fiber.

Proof. Let π : X → P be as in Theorem 1.5. Let us consider sk, Sk, Pk as in
section 8. We obtain u0 ∈ P such that {u0} = PK . We will prove that L(u0) is
balanced.

We perturb the Kähler form ω of X a bit so that we obtain ω0. Let P 0 be the
corresponding moment polytope and sω0

k , Sω0

k , Pω0

k , be the corresponding piecewise
affine function, number, subset of Pω0 obtained for ω0, Pω0 as in section 8.
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Proposition 12.4. We can choose ωh so that ωh is rational and limh→1 sωh
k = sk,

limh→1 Sωh
k = Sk, limh→1 Pωh

k = Pk, dimPωh
k = dimPk.

Proof. We write Iω0

k the set Ik defined in (8.6) section 8 for ω0, P 0. We will prove
the following lemma. We remark that the set K of Tn invariant Kähler structure
ω0 is regarded as an open set of an affine space defined on Q (that is the Kähler
cone). We may regard K as a moduli space of moment polytope as follows : We
consider a polyhedron P 0 each of whose edges is parallel to a corresponding edge of
P . Translation defines an Rn action on the set of such P 0. The quotient space can
be identified with K.

Lemma 12.5. There exists a subset Pk of K which is a nonempty open subset of
an affine subspace defined over Q such that any element ω0 ∈ Pk has the following
properties :

(1) dimPω0

l = dimPω
l for l ≤ k.

(2) Iω0

l = Iω
l for l ≤ k.

Remark 12.6. In the case of Example 7.1, the set Pω0

k etc. jumps at the point
α = 1/3 in the Kähler cone. Hence the set Pk may have strictly smaller dimension
than K.

Proof. Let Aω0

l be the affine space defined in section 8. (We put ω0 to specify the
symplectic form.) We write `ω

i , `ω0
i in place of `i to specify symplectic form and

moment polytope. We remark that the linear part of `ω
i is equal to the linear part

of `ω0
i .

The proof of Lemma 12.5 is by induction on k. Let us first consider the case
k = 1. We put

bAω0

1 = {u ∈ MR | `ω0

1,1(u) = · · · = `ω0

1,a1
(u)}.

We remark that {`ω
1,1, · · · , `ω

1,a1
} = Iω

1 and so bAω
1 = Aω

1 .
We put

P0
1 = {ω0 | dim bAω0

1 = dimAω
1 }.

It is easy to see that P0
1 is a nonempty affine subset of K and is defined over Q.

Sublemma 12.7. If ω0 ∈ P0
1 and is sufficiently close to ω, then Pω0

1 is an equi-
dimensional polyhedron in bAω0

1 . In particular bAω0
1 = Aω0

1 .

Proof. The tangent space of bAω0
1 is parallel to the tangent space of Aω

1 . Therefore
`ω0
1,j is constant on bAω0

1 . We put

bSω0

1 = `ω0

1,1(u)

for some u ∈ bAω0
1 .

On the other hand, if `ω
i /∈ Iω

1 then `ω
i (u) > Sω

1 on Inf Pω
1 . Therefore if ω0 is

sufficiently close to ω we have `ω0
i (u) > bSω0

1 on a neighborhood of a compact subset
of Int Pω

1 , which we identify with a subset of P 0. This implies the sublemma. §

The Condition (1), (2) of Lemma 12.4 in the case k = 1 follows from Sublemma
12.7 easily.

Let us assume that Lemma 12.5 is proved up to k−1. We remark {`ω
k,1, · · · , `ω

k,ak
} =

Iω
k . We put

bAω0

k = {u ∈ Aω0

k−1 | `ω0

k,1(u) = · · · = `ω0

k,ak
(u)}.
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and
P0

k = {ω0 ∈ P0
k−1 | dim bAω0

k = dimAω
k }.

P0
k is a nonempty affine subset of K and is defined over Q. We can show that a

sufficiently small open neighborhood Pk of ω in P0
k has the required properties

in the same way as the first step of the induction. The proof of Lemma 12.5 is
complete. §

Proposition 12.4 follows immediately from Lemma 12.5. In fact the set of rational
points are dense in PK . §

Proposition 12.3 follows from Proposition 12.4, Proposition 3.6 and Theorem
3.9. §

The proof of Theorem 1.5 is now complete. §

Proof of Proposition 9.7. The proof is similar to the proof of Proposition 12.4. Let
Ik be as in (9.2). We write it as Ik(P, u0), where P is the moment polytope of
(X,ω). We define Ik(P 0, u00) as follows.

Let P 0 be a polytope which is a small perturbation of P and such that each
of the faces are parallel to the corresponding face of P . Let u00 ∈ Int P 0. Let us
consider the set K+ of all such pairs (P 0, u00). It is an open set of an affine space
defined over Q. Each of such P 0 is a moment polytope of certain Kähler form on
X. (We remark that Kähler form on X determine P 0 only up to translation.)

For each P 0, we take corresponding Kähler form on X and it determines a po-
tential function. Therefore Ik(P 0, u00) is determined by (9.2). We define A⊥l (P 0, u00)
in the same way as Definition 9.1.

Lemma 12.8. There exists a subset Qk of K+ which is a nonempty open set of an
affine subspace defined over Q. All the elements (P 0, u00) of Qk have the following
properties.

(1) dimA⊥l (P 0, u00) = dimA⊥l (P, u0) for l ≤ k.
(2) Il(P 0, u00) = Il(P, u0) for l ≤ k.

The proof is the same as the proof of Lemma 12.5 and is omitted.
Now we take a sequence of rational points (Ph, uh

0 ) ∈ Qk converging to (P, u0).
Lemma 12.8 (2) implies that the leading term equation at uh

0 is the same as the
leading term equation at u0. The proof of Proposition 9.7 is complete. §

Remark 12.9. We say that L(u0) is strongly balanced if there exists b ∈ H1(L; ΛC
0 )

such that HF (L(u0), b), (L(u0), b); ΛC
0 ) ∼= H(Tn; Q)⊗ ΛC

0 .
Clearly strongly balanced implies balanced. We conjecture that the converse is

true.

Remark 12.10. We can replace Definition 3.10 (3) by

HF ((L(ui), bi,N ), (L(ui), bi,N ); ΛC/(TN )) ⊇ ΛC/(TN ).

In fact the following three conditions are equivalent to one another :
(1) HF ((L(u), b), (L(u), b); ΛC/(TN )) ∼= H(Tn; C)⊗ ΛC/(TN ).
(2) HF ((L(u), b), (L(u), b); ΛC/(TN )) ⊇ ΛC/(TN ).
(3) @POu

@yk
≡ 0, mod TN k = 1, · · · , n, at b.
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(1) ⇒ (2) is obvious. (3) ⇒ (1) is Theorem 3.9. Let us prove (2) ⇒ (3). Suppose
(3) does not hold. We put @POu

@yk
≡ cT∏ mod T∏Λ+, where c ∈ C\{0} and 0 ≤ ∏ <

N . Then (12.2) implies TN−∏PD[L(u)] = 0 in HF ((L(u), b), (L(u), b); ΛC/(TN )).
Since PD[L(u)] is a unit, (2) does not hold.

Remark 12.11. The proof of Theorem 3.9 (or of Lemma 12.1) does not seem to
imply

mk,β(ρ1, · · · , ρk) = 0 (12.7)
for µ(β) ≥ 4. We however believe that (12.7) holds in our situation. In fact the
homology group H(L(Tn); Q) of the free loop space L(Tn) is trivial of degree > n.
On the other hand, dimMmain

1 (L(u0);β) = n + µ(β)− 2. Hence if µ(β) ≥ 4 there
is no nonzero homology class on the corresponding degree in the free loop space.
Using the argument of [Fu3] it may imply that those classes do not contribute to the
filtered A1 structure. If (12.7) holds, then we can find the filtered A1 structure
of our Lagrangian torus (the fiber of toric manifolds) by a direct calculation.

On the other hand, pseudo-holomorphic disc with Maslov index ≥ 4 certainly
contributes to the operator q`,k,β introduced in section 13 [FOOO2] : Namely
q`,k,β is the operator that involves a cohomology class of the ambient symplectic
manifold X. (See Remark 5.13) It seems that tropical geometry will play a role in
this calculation.
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