
Chapter 9. Orientation.1

In this chapter, we give orientations to various moduli spaces in our construction
of the filtered A∞ algebra, the filtered A∞ bimodules, the filtered A∞ homomor-
phisms, etc. We use the notion of Kuranishi structure, hence we give orientations of
the tangent bundles of the spaces with Kuranishi structures, see Definition A1.17.
In our situation, the fiber products are taken with respect to weakly submersive
strongly smooth maps in the sense of Kuranishi structures, see Definition A1.13. In
this chapter, the symbol ⊂ denotes an open inclusion, which respects orientations
or covered by a canonical identification of orientation bundles.

§44. Orientation on the moduli space of

unmarked pseudo-holomorphic discs.

44.1. The case of holomorphic discs.

Let (M,ω) be a symplectic manifold and L a Lagrangian submanifold. We pick
an almost complex structure J compatible with ω. Then L is a totally real sub-
manifold, namely J(TL) ∩ TL is the zero section of TM |L. In this section, we
consider the orientation problem on the moduli space of pseudo-holomorphic discs,
w : (D2, ∂D2) → (M,L) with totally real boundary condition. First of all, we
should note that the moduli space of pseudo-holomorphic discs is not always ori-
entable. This is also observed by de Silva [Sil97] independently. In the case of the
moduli space of pseudo-holomorphic curves without boundary, it is well known that
it has a canonical orientation. In this chapter, we put an assumption on the second
Stiefel-Whitney class w2(TL) in order to consider the orientation problem. Our
main result in this section is the following:

Theorem 44.1. The moduli space of pseudo-holomorphic discs is orientable, if

L ⊂ (M,ω) is a relatively spin Lagrangian submanifold. Furthermore the choice of

relative spin structure on L determines an orientation on M(L; β) canonically for

all β ∈ π2(M,L).

The definition of the notion of relative spin structure is in order. Let L ⊂M be a
relatively spin Lagrangian submanifold and st ∈ H2(M ; Z2) such that st|L = w2(L).
We first fix a triangulation of M such that L is a subcomplex. We choose an oriented
real vector bundle V on the 3 skeleton M[3] of M such that w2(V ) = st. Then since

w2(TL|L[2]
⊕ V |L[2]

) = 0,
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it follows that TL|L[2]
⊕ V |L[2]

has a spin structure.

Definition 44.2. The choice of an orientation of L, a cohomology class st ∈
H2(M ; Z2) and a spin structure σ on TL ⊕ V |L[2]

is called a relative spin struc-

ture of the Lagrangian submanifold L ⊂M .
A pair of Lagrangian submanifolds (L(0), L(1)) is called relatively spin, if there

exists a class st satisfying st|L(i) = w2(TL
(i)) (i = 0, 1) simultaneously. A relative

spin structure of the pair (L(0), L(1)) is the choice of orientations of L(i), a coho-

mology class st ∈ H2(M ; Z2) and spin structures on (TL(i) ⊕ V )|
L

(i)

[2]

. Here L
(i)
[2] is

the two skeleton of L(i).

Remark 44.3. (1) In case L is spin, we can associate a relative spin structure to
each of the spin structures of L as follows. We take st = 0, V is trivial bundle and
take the spin structure of TL⊕ V = TL induced by one on L.

(2) Definition 44.2 depends on the choice of V and the triangulation of M . Later
in Proposition 44.6 we define stable conjugacy on the set of relative spin structures
so that the set of stable conjugacy classes of relative spin structures is independent
of such a choice.

Let D : V →W be a Fredholm operator. We say that the index of D is oriented,
if the determinant line detD = det(Coker D)∗ ⊗ det Ker D is oriented. We use the
following fact frequently.

Pick a finite dimensional subspace E of W such that W = Im D+E. Then detD
is canonically isomorphic to detE∗ ⊗ detD−1(E). Thus, if E is oriented, e.g., as
a complex vector space, then the orientation of D−1(E) determines the orientation
of detD. Note also that the orientation of E induces an orientation of E∗. Thus
we sometimes consider an orientation of E instead of an orientation of E∗.

Firstly, we study the orientation in the linearized problem.

Proposition 44.4. Let E be a complex vector bundle over the 2-disc D2 and F
a totally real subbundle of E|∂D2 over ∂D2. We denote by ∂(E,F ) the Dolbeault

operator on D2 with coefficient (E,F ),

∂(E,F ) : W 1,p(D2, ∂D2;E,F ) → Lp(D2;E ⊗ Λ0,1(D2)).

Then a trivialization of F over ∂D2 determines an orientation of the index of

∂(E,F ), i.e., an orientation of det(Coker ∂(E,F ))
∗ ⊗ det Ker ∂(E,F ) in a canonical

way.

Proof. By choosing a Hermitian connection appropriately, we may assume that the
totally real subbundle F is parallel (especially, trivially flat) and the connection is
“product” in a collar neighborhood of ∂D2. Let C be a concentric circle in the
collar neighborhood of ∂D2. If we pinch C to a point, we have the union of a 2-disc
D2 and a 2-sphere CP 1 with the center O ∈ D2 and S ∈ CP 1 identified. By the
parallel translation along radials, the trivial vector bundle F extends up to C and
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its complexification gives a trivialization of E|C . Thus the bundle E descends to
D2 ∪ CP 1. We denote this vector bundle by E ′ and the totally real subbundle of
E′|∂D2 by F ′.

Figure 44.1.

We compare the indices of the following two operators:

∂(E,F ) : W 1,p(D2, ∂D2;E,F ) → Lp(D2;E ⊗ Λ0,1(D2))

and

∂D2∪CP 1 : {(ξ0, ξ1) ∈W 1,p(D2, ∂D2;E′, F ′) ⊕W 1,p(CP 1, E′) | ξ0(O) = ξ1(S)}
→ Lp(D2, E′ ⊗ Λ0,1(D2)) ⊕ Lp(CP 1, E′ ⊗ Λ0,1(CP 1))

using the sum formula for indices. (See for example Appendix A [McSa94].)
Before doing so, we take a finite dimensional subspace E of Lp(CP 1, E′⊗Λ0,1(CP 1))

as follows. Since the real vector bundle F is trivialized, we may identify

(D2, ∂D2;E′, F ′) ∼= (D2, ∂D2; Cn,Rn).

Hence the Dolbeault operator

∂(E′,F ′) : W 1,p(D2, ∂D2;E′, F ′) → Lp(D2, E′ ⊗ Λ0,1(D2))

is surjective. Therefore, (using the unique continuation theorem), we can choose a
finite dimensional complex linear subspace

E ⊂ Lp(CP 1, E′ ⊗ Λ0,1(CP 1))
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consisting of smooth sections whose support do not contain S, such that

Im(∂D2∪CP 1) + (0 ⊕ E) = Lp(D2, E′ ⊗ Λ0,1(D2)) ⊕ Lp(CP 1, E′ ⊗ Λ0,1(CP 1)).

(We note that E will turn out to be the obstruction bundle of the Kuranishi struc-
ture.)

Now let us choose small coordinate neighborhoods D2
δ (O) and D2

δ (S) of O and
S. Here D2

δ is the disc of radius δ. Fix a positive real number r. We glue D2 and
CP 1 around O and S by identifying z ∈ D2

δ (O) and w ∈ D2
δ (S) whenever zw = 1/r.

We denote the resulting bordered Riemann surface by Xr, which is biholomorphic
to the unit disc. We also obtain the vector bundle on Xr from E′ and denote it by
Er. The totally real subbundle F ′ over ∂D2 induces a totally real subbundle Fr on
∂Xr.

We may identify E = 0 ⊕ E and also denote by the same symbol E the subspace
of Lp(Xr;Er ⊗ Λ0,1(Xr))

We claim that

Im(∂(Er ,Fr)) + E = Lp(Xr;Er ⊗ Λ0,1(Xr)),

and that there is a canonical isomorphism

(∂D2∪CP 1)−1(E) ∼= (∂(Er ,Fr))
−1(E)

for large r: In fact, let χr be a sequence of solutions ∂(Er ,Fr)χr ≡ 0 mod E on Xr.
Then we may choose a subsequence of χr which converges to a section (ξ0, ξ1) on
D2 ∪CP 1 such that ∂D2∪CP 1(ξ0, ξ1) ≡ 0 mod E . Note that if the Lp-norm of χr is
1 independent of r, then (ξ0, ξ1) 6= (0, 0). (Because the Lp-norm on the neck region
D2

δ (O)∪D2
δ(S) ⊂ Xr is uniformly dominated by the Lp-norm on D2

δ (O)−D2
δ/2(O)

and D2
δ (S) − D2

δ/2(S), it is impossible that the Lp-norm concentrates in the neck

region around C.)
Conversely, we glue solutions (ξ0, ξ1) of ∂D2∪CP 1(ξ0, ξ1) ≡ 0 mod E to a solution

χr of ∂(Er,Fr)χr ≡ 0 mod E for a sufficiently large r.
Thus we have an isomorphism (canonical up to homotopy) of the indices. If

necessary, we extend E to a larger complex subspace of Lp(CP 1, E′ ⊗ Λ0,1(CP 1))

such that the evaluation map evS : ∂
−1

CP 1,E(E) → ES at the south pole S ∈ CP 1 is
surjective.

Since the real vector bundle F ′ is trivialized, (∂D2∪CP 1)−1(E) is the kernel of the
surjective homomorphism:

Ev : (ξ0, ξ1) ∈ Hol(D2, ∂D2; Cn,Rn) × (∂CP 1)−1(E) 7→ ξ0(O) − ξ1(S) ∈ Cn ' ES.

Since E is a complex linear subspace and ∂CP 1 is complex linear, it follows that
(∂CP 1)−1(E) is a complex linear subspace and hence is oriented. On the other
hand, the linear space

Hol(D2, ∂D2; Cn,Rn) ∼= Rn



CHAPTER 9. ORIENTATION 5

is identified with the tangent space of L at one point and hence is oriented.
Therefore KerEv−E has an orientation. See (4) in Convention 45.1 for our way

to orient it. This proves Proposition 44.4. �

Proof of Theorem 44.1. We will apply Proposition 44.4 to the case that E = w∗TM
and F = `∗TL. Since L is oriented, `∗TL is a trivial bundle. However, its trivial-
ization is not unique and the choice of a relative spin structure provides a (stable)
trivialization unique up to homotopy.

Before going into the proof, we give its outline. Using Proposition 44.4, we
give an orientation of detDw∂ for each holomorphic disc w. Then we show that
this orientation depends only on the relative spin structure. We proceed as fol-
lows. Firstly, we pick a holomorphic disc w0 in each homotopy class of maps from
(D2, ∂D2) → (M,L) and define an orientation of detDw0

∂. The orientation de-
pends on the choice of the relative spin structure. We remark that, if we change
the homotopy class of a stable trivialization of `∗TL, then the orientation on the
index bundles in the proof of Proposition 44.4 changes. If {wt}0≤t≤1 is a homotopy

from w0 to w = w1, the determinant line bundle detDwt
∂ is trivial, since the base

space [0, 1] is contractible. Thus we obtain an orientation of detDw∂, which may
depend on the homotopy {wt}0≤t≤1. The remaining task is to prove that the in-
duced orientation does not depend on the choice of a homotopy. Here we need the
condition that L is relatively spin, i.e., there is a relative spin structure of L ⊂ M .
(The second step, showing the orientability of a certain determinant line bundle
over S1, only requires existence of a relative spin structure but does not depend on
a specific choice.)

Step 1. Assigning an orientation to detDw∂.

Denote by

Dw∂ : W 1,p(D2, ∂D2;w∗TM, `∗TL) →
W 0,p(D2;w∗TM ⊗ Λ0,1(D2)) = Lp(D2;w∗TM ⊗ Λ0,1(D2))

the linearized operator of the pseudo-holomorphic curve equation, which is the first
order elliptic differential operator with the same symbol as the Dolbeault operator.
Here ` is the restriction of w to the boundary ∂D2 and we take p as p > 2. To prove
Theorem 44.1, it suffices to show that the index of the linearized operator Dw∂ is
oriented.

Note that Dw∂+A is always Fredholm for any zero-th order operator A and the
space FDw∂ of such operators is contractible. The index of the family Dw∂ + A ∈
FDw∂ is a virtual vector bundle over the contractible space. In particular, the
determinant line bundle of the family is trivial. Since the zero-th order term does
not affect the index problem, we may consider Dolbeault operator

∂(w∗TM,`∗TL) : W 1,p(D2, ∂D2;w∗TM, `∗TL) → Lp(D2;w∗TM ⊗ Λ0,1(D2)),
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instead of Dw∂.
By the simplicial approximation theorem, any w : (D2, ∂D2) → (M,L) can be

deformed to some w0 : (D2, ∂D2) → (M[2], L[1]). (Pick such w0 for each connected

component of the space of maps (D2, ∂D2) → (M,L).) Then the relative spin
structure determines the (stable) homotopy class of trivializations of `∗0(TL ⊕ V ).
By Proposition 44.4, we can specify an orientation of

det(Coker ∂(w∗
0TM,`∗0TL))

∗ ⊗ det Ker ∂(w∗
0TM,`∗0TL).

For any given element w in the path component of the space of maps (D2, ∂D2) →
(M,L) containing w0, we consider a path of maps wt : (D2, ∂D2) → (M,L) pa-
rameterized by t ∈ [0, 1] starting from w0 and ending at w. (Note that the linear
operator Dw∂ does make sense for any smooth map (D2, ∂D2) → (M,L), once we
pick a complex linear connection on TM .) By Proposition 44.4 and since [0,1] is
contractible, we can provide a family of orientations of

det(Coker ∂(w∗
t TM,`∗t TL))

∗ ⊗ det Ker ∂(w∗
t TM,`∗t TL),

which depends continuously on t ∈ [0, 1], by taking a trivialization of `∗tTL over
S1 × [0, 1] where `t = wt|∂D2 . This will define an orientation for w.

Step 2. Independence of the choice of a path {wt}.
We prove that this assignment of the orientation is independent of the choice

of path {wt}t∈[0,1]. Here we need existence of the relative spin structure. Let st
and V are as in Definition 44.2. Then the relative spin structure determines a spin
structure σ of TL⊕ V on M[2] ∩ L.

We show that any two paths w
(1)
t , w

(2)
t from w0 to w induce the same orientation

of the index. The concatenation of the path w
(1)
t and the reversed path of w

(2)
t

gives a family of maps (D2, ∂D2) → (M,L) parameterized by S1. More generally,
let wt : (D2, ∂D2) → (M,L) be a t ∈ S1 parameterized family of maps (D2, ∂D2) →
(M,L). We define the map

Φ : D2 × S1 →M ; Φ(z, t) = wt(z).

(In particular, we can apply the following argument to S1 parameterized families
of pseudo-holomorphic discs.)

By the simplicial approximation theorem, Φ can be homotoped to a map Φ′

such that Φ′(D2 × S1) is in the 3-skeleton M[3] of M and that Φ′(∂D2 × S1) ⊂
M[2] ∩ L = L[2]. Note that the family of Dolbeault type operators parameterized

by S1 corresponding to Φ′ is homotoped to the one corresponding to Φ in the space
of Fredholm operators. Hence it is enough to discuss the one for Φ′ as far as the
index, especially, the orientation issue is concerned. Hereafter we put Φ′ = Φ.

We pull back V by Φ to a vector bundle over D2 × S1, and denote it by Φ∗V .
The spin structure chosen on (TL ⊕ V )|L[2]

gives its stable trivialization on L[2]
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which induces a (stable) trivialization on Φ∗(TL⊕ V )|∂D2×S1 . On the other hand,
Φ∗V is defined on D2 × S1 ' S1 and is also oriented. Since the base space is
D2 ×S1, the orientation of Φ∗V guarantees the existence of a trivialization of Φ∗V
on D2×S1, hence a trivialization of its restriction to ∂D2×S1. We like to mention
that this trivialization restricted to ∂D2 × {t} is independent of the choice of the
spin structure on (TL⊕ V )|M[3]∩L.

Combining these, we have a family of stable trivializations of (Φ|∂D2×{t})
∗TL

which is continuous over t ∈ S1. In particular, we find that the homotopy class of

trivializations of `∗TL⊕ V is independent of the choice of a path w
(i)
t , i = 1, 2. In

sum, for any w, the spin structure on (TL ⊕ V )|L[2]
induces a unique (homotopy

class of) trivialization of `∗(TL ⊕ V ) where ` = w|∂D2 and the existence of the
oriented bundle V on M[3] induces a unique (homotopy class of) trivialization of
`∗V . Namely, `∗TL is stably trivialized for each ` = w|∂D2 . Moreover the stable
trivialization can be taken in a continuous way with respect to `.

We put VC = V ⊗ C. Then we find that

∂(w∗(TM⊕VC),`∗(TL⊕V )) : W 1,p(w∗(TM ⊕ VC), `∗(TL⊕ V )) → Lp(w∗(TM ⊕ VC))

is the direct sum of

∂(w∗TM,`∗TL) : W 1,p(w∗TM, `∗TL) → Lp(w∗TM)

and
∂(w∗VC,`∗V ) : W 1,p(w∗VC, `

∗V ) → Lp(w∗(VC)).

By Proposition 44.4, the orientation of `∗(TL ⊕ V ) induces a canonical orienta-
tion of the index of ∂(w∗(TM⊕VC),`∗(TL⊕V )). The trivialization of `∗V , which ex-

tends to w∗V , induces a canonical orientation of ∂(w∗VC,`∗V ). Hence the index of

∂(w∗TM,`∗TL) is also canonically oriented. This implies that M(L; β) is oriented.

From the above argument, the choice of orientation on L, st ∈ H2(M,Z2) and
the vector bundle V on M[3] and the spin structure (TL⊕V )|M[2]∩L canonically de-

termine the orientations on M(L; β) for all β. This completes the proof of Theorem
44.1. �

In our later argument, it is important that the orientation provided in Step 1 of
the proof of Theorem 44.1 is compatible with the gluing procedure of holomorphic
discs.

Let us next clarify how the notion of relative spin structure depends on the choice
of V and triangulation. First of all, we recall the following basic fact. Let E be
an oriented vector bundle on X with w2(E) = 0. A spin structure is equivalent to
a fiberwise double covering space of the associated principal SO-bundle PE , which
are classified by homomorphisms π1(PE) → Z2 such that its restriction to the fiber
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π1(SO) → Z2 is non-trivial. Thus the set of spin structures on E on X is a principal
homogeneous space of H1(X; Z2). A spin structure on E induces a spin structure
on its stabilization E ⊕ Rk by a trivialized vector bundle Rk, namely, the one
induced by the spin structure on E and the trivialization of Rk. If we consider Rk

as a trivial bundle without specific trivialization, then we get a coarse equivalence
relation among (stabilized) spin structures, which are parameterized by the quotient
of H1(X; Z2) by the gauge transformations of Rk. (Cf. the description of spin
structures above.) Now we introduce an analogous coarse equivalence relation on
relative spin structure.

In the next definition we still fix a triangulation of M such that L is its subcom-
plex (a triangulation of M compatible with L).

Definition 44.5. Let (sti, Vi, σi) (i = 1, 2) be relative spin structures of L. We
say that they are stably conjugate to each other if there exist integers ki and an
orientation preserving bundle isomorphism τ : V1 ⊕ Rk1 → V2 ⊕ Rk2 such that by
1 ⊕ τ |L[2]

: (TL ⊕ V1)L[2]
⊕ Rk1 → (TL ⊕ V2)L[2]

⊕ Rk2 , the spin structure σ1 ⊕ 1
induces the spin structure σ2 ⊕ 1.

We remark that if (st1, V1, σ1) is stably conjugate to (st2, V2, σ2), then they
determine the same orientation on M(β). (This fact is obvious from the definition
of the orientation given during the proof of Theorem 44.1.)

For a given triangulation T of M (such that L is a subcomplex), we denote by
Spin(M,L; T) the set of all the stably conjugacy classes of relative spin structures
on L with respect to the triangulation T.

Proposition 44.6. (1) There exists a simply transitive action of H2(M,L; Z2) on

Spin(M,L; T).
(2) For two triangulation T and T′ of M compatible with L, there exists a canon-

ical isomorphism Spin(M,L; T) ∼= Spin(M,L; T′) compatible with the above action.

In particular if a spin structure of L is given there is a canonical isomorphism
Spin(M,L; T) ∼= H2(M,L; Z2).

Proof. Let [(st, V, σ)] ∈ Spin(M,L; T) and x ∈ H2(M,L; Z2). We regard the class
x ∈ H2(M,L; Z2) ∼= H2(M[3], L[2]; Z2). Since M[3]/L[2] is a 3-dimensional cell com-

plex, (w1, w2) : K̃O(M[3]/L[2]) → H1(M[3], L[2]; Z2) ⊕ H2(M[3], L[2]; Z2) is an iso-

morphism. Thus, x ∈ H2(M,L; Z2) determines a unique stable class of orientable
vector bundle Ex with w2(Ex) = x. Pick and fix an orientation on Ex. We remark
that the right hand side is independent of the orientation of Ex we take, since there
exists an orientation reversing involution on Ex ⊕ R, i.e., the multiplication by −1
on the second factor R. We pull back Ex by M[3] →M[3]/L[2] to get a vector bundle
Vx. Note that the restriction Vx|L[2]

to L[2] is endowed with the trivialization as the

pull-back of the frame at the collapsed point, thus the spin structure σx on Vx|L[2]
.

Now we put
x · [(st, V, σ)] = [(st+ x, V ⊕ Vx, σ ⊕ σx)],
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where x is the image of x by H2(M,L; Z2) → H2(M ; Z2).

Conversely, for two relative spin structures [(st, V, σ)] and [(st′, V ′, σ′)], we define
their difference as follows. Pick an oriented vector bundle E on L[2] such that

TL ⊕ E is trivial and fix an isomorphism I : TL ⊕ E ∼= L[2] × RN . For V ′, we
pick an oriented vector bundle W ′ on M[3] such that V ′ ⊕W ′ is trivial and fix an

isomorphism IV ′,W ′ : V ′ ⊕W ′ ∼= M[3] × RN ′

. Note that the spin structure σ′ and
the isomorphisms I, IV ′,W ′ induce a spin structure on E ⊕W ′, which we denote
by σ̌′. Then the vector bundle V ⊕W ′ is a vector bundle equipped with a stable
trivialization on L[2] as follows.

(V ⊕W ′)|L[2]
⊕ RN ∼= (V ⊕W ′)|L[2]

⊕ (TL⊕E) ∼= (TL⊕ V |L[2]
) ⊕ (E ⊕W ′|L[2]

),

which is stably trivialized in a compatible way with the spin structure σ ⊕ σ̌′.
Denote this trivialization by Iσ,σ′ . Then we use this trivialization to get an element

[V ⊕W ′, Iσ,σ′ ] ∈ K̃O(M[3]/L[2]).

Fix a relative spin structure (st, V, σ). Then it is straightforward to see that
the above construction gives a one-to-one correspondence between stable conju-
gate classes of relative spin structures and KO(M[3], L[2]). Hence, the action of

H2(M,L; Z2) on Spin(M,L; T) is simply transitive.

To prove (2) we first remark that, by taking common subdivision, it suffices to
consider the case when T′ is a subdivision of T. In this case, the restriction defines
a map Spin(M,L; T′) → Spin(M,L; T). By construction, this map is compatible
with the action defined in (1). Hence it is an isomorphism. �

Proposition 44.6 states that the difference of relative spin structures is measured
by an element x in H2(M,L; Z/2). When we change the relative spin structure by
r, then the orientation of the index for Dw∂ changes by (−1)x[w]. (For spin case,
the example given in the next subsection illustrates this phenomenon.)

44.2. Examples of non-orientable family index.

In this subsection, we will show that the index bundle appearing in the proof of
Proposition 44.4 can actually be unoriented, if we do not assume F to be trivial.

We can find such a pair (E,F ) as follows. Take the trivial bundle Ẽ = (D2 ×
[0, 1])× Cn and F̃ = Rn × (∂D2 × [0, 1])× Cn. Identifying D2 × {0} and D2 × {1},
we get D2 × S1. We lift this identification to the vector bundle Ẽ such that its
restriction to ∂D2 × {i} (i = 0, 1) preserves the real part F̃ and identify them
by homotopically non-trivial loop γ : ∂D2 → SO(n). Such identification exists,
because the image of the loop by SO(n) → U(n) is null-homotopic and extends to a
continuous map D2 → U(n). Let (E,F ) be the pair obtained by this identification.
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Proposition 44.7 below implies that the index bundle is not orientable for such
(E,F ). This means that the change of a stable trivialization by γ reverses the
orientation on the moduli space of holomorphic discs.

Let us consider the case n = 2. Another description of the resulting vector
bundle pair (E,F ) over D2 × S1 is the following. Take a trivial vector bundle
(D2× [0, 1])×H, where H is the quaternions considered as a left C-module. Identify
the fibers over D2×{0} and D2×{1} by multiplication of i ∈ H∗, that is, (z, 0, ζi) ∼
(z, 1, ζ) for z ∈ D2 and ζ ∈ H to get E. For (z, t) ∈ ∂D2 × [0, 1], the subspace

Fz,t = (R1 ⊕ Rj)

{
t

(
z + z

2
+
z − z

2i
j

)
+ (1 − t)k

}

gives a totally real subspace in H, hence we have a totally real subbundle of (D2 ×
[0, 1])×H over ∂D2 × [0, 1] which descends to a totally real subbundle F of E over
∂D2 × S1.

Proposition 44.7. The family index of Dolbeault operators twisted by (E,F ) is a

non-orientable virtual vector bundle over S1.

Proof. By using the Fourier expansion, we calculate the kernels and cokernels of
Dolbeault operators explicitly. We take a basis 〈1+k, 1−k〉 of the left C-module H.

By regarding H as C ⊕ Cj, we write the basis as column vectors

〈(
1
i

)
,

(
1
−i

)〉
.

Let f be a holomorphic map from D2 to C2 = H. Then we have the Fourier
expansion of f such that

f(z) =

∞∑

n=0

zn
{
αn

(
1
i

)
+ βn

(
1
−i

)}

for z ∈ D2 and αn, βn ∈ C. Now suppose that the image of f |∂D2 is in the totally
real subspace

(R1 ⊕ Rj)

{
t

(
z + z

2
+
z − z

2i
j

)
+ (1 − t)k

}

of H. This condition is equivalent to

(44.8) f(z)

{
t

(
z + z

2
− z − z

2i
j

)
− (1 − t)k

}
∈ R1 ⊕ Rj for |z| = 1.

When we describe the multiplication from the right by t( z+z
2 − z−z

2i j)− (1− t)k as
a 2 × 2 complex matrix acting on column vectors of H = C ⊕ Cj from the left, we
find that the multiplication can be described by

t
z + z

2

(
1 0
0 1

)
− t

z − z

2i

(
0 −1
1 0

)
− (1 − t)

(
0 i
i 0

)

=z
t

2

(
1 −i
i 1

)
+ z

t

2

(
1 i
−i 1

)
− (1 − t)

(
0 i
i 0

)
.
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It follows that we have

f(z)

{
t

(
z + z

2
− z − z

2i
j

)
− (1 − t)k

}

=
∞∑

n=0

zn

{
z
t

2
αn

(
1 −i
i 1

)(
1
i

)
+ z

t

2
αn

(
1 i
−i 1

)(
1
i

)
− (1 − t)αn

(
0 i
i 0

)(
1
i

)

+ z
t

2
βn

(
1 −i
i 1

)(
1
−i

)
+ z

t

2
βn

(
1 i
−i 1

)(
1
−i

)
− (1 − t)βn

(
0 i
i 0

)(
1
−i

)}
.

Note that z = z−1 for |z| = 1. So we can put it as
∞∑

n=−1

zn~an with ~an ∈ C ⊕ Cj. In

this expression, we have

~a−1 = tβ0

(
1
−i

)
,

~a0 = −(1 − t)β0

(
1
i

)
+ {(1 − t)α0 + tβ1}

(
1
−i

)
,

~an = {tαn−1 − (1 − t)βn}
(

1
i

)
+ {(1 − t)αn + tβn+1}

(
1
−i

)
for n ≥ 1.

Since R1 ⊕ Rj is a totally real subspace in H, the condition (44.8) implies that

~an = ~a−n for any n. These conditions yield that

(44.9.1) ~a−1 = ~a1

(44.9.2) ~a0 ∈ R2

(44.9.3) ~an = 0 for n ≥ 2.

Now let us consider the case t 6= 0, 1. From (44.9.3) we have αn = 0 (n ≥ 1) and
βn = 0 (n ≥ 2). The condition (44.9.2) is equivalent to the equality −(1 − t)β0 =
(1 − t)α0 + tβ1. Combining it with (44.9.1), we easily find that α0 and β1 are
determined by β0. Explicitly we have

α0 =
2t− 1

2t2 − 2t+ 1
β0, β1 = −1 − t

t
(β0 + α0).

Hence our f is determined by only β0 ∈ C. Therefore we find that the real dimension
of the kernel of the Dolbeault operator for t 6= 0, 1 is equal to 2. On the other hand,
we can see that the Fredholm index of the operator is 2. So we can find that the
operator is surjective.

Next, we describe the kernels for the cases t = 0, 1. In both cases, we can see
that αn = 0 (n ≥ 1) and βn = 0 (n ≥ 2) by using (44.9.3). Moreover, by using
(44.9.2), we find that β1 = 0 in both cases and

α0 =

{ −β0 for t = 0,

β0 for t = 1.
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Thus β0 determines the kernels of the operators in both cases.
With these explicit descriptions of the kernels understood, we can show the

non-orientability of our index bundle. For t ∈ [0, 1], the kernel is isomorphic to
{β0 ∈ C}. So we have the (complex) orientation. What we want to show is that
the identification map between the kernels on t = 0 and t = 1 is an orientation
reversing map. When t = 0, the kernel V0 is given by

V0 =

{
−β0

(
1
i

)
+ β0

(
1
−i

)∣∣∣∣ β0 ∈ C

}

When t = 1, the kernel V1 is given by

V1 =

{
β0

(
1
i

)
+ β0

(
1
−i

)∣∣∣∣ β0 ∈ C

}

Recall that we identify V0 with V1 by the right multiplication of i. As before, this
multiplication can be written by a 2× 2 complex matrix acting on C⊕Cj from the
left as (

i 0
0 −i

)
.

Thus V0 is identified with

V1 · i =

{
β0

(
i 0
0 −i

)(
1
i

)
+ β0

(
i 0
0 −i

)(
1
−i

)}

=

{
β0

(
i
1

)
+ β0

(
i
−1

)∣∣∣∣ β0 ∈ C

}
.

We find that this identification map is an orientation reversing map. Because when
we put β0 = 1 and i, we have bases

〈(
0

−2i

)
,

(
2i
0

)〉
,

〈(
2i
0

)
,

(
0

−2i

)〉

of the real vector spaces V0 and V1 · i respectively. Clearly, the orientations on these
spaces are opposite. Therefore we have finished the proof of Proposition 44.7. �

Note that the totally real subbundle F above is orientable, but not spin.

44.3. The case of connecting orbits in the Floer theory.

Let (L(0), L(1)) be a relative spin pair of Lagrangian submanifolds, (see Definition
44.2), intersecting transversely. A connecting orbit in the Floer complex for L(0),
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L(1) is a pseudo-holomorphic map u : R × [0, 1] →M , which maps R × {i} to L(i),
u(−∞, ∗) = p− and u(+∞, ∗) = p+.

In this chapter, we adopt a different notation from §4 in Chapter 2. Namely, we
denote by Mreg(p+, p−) instead of Mreg(p−, p+). In other words, u(−∞, ∗) = p−,
u(+∞, ∗) = p+, for an element u ∈ Mreg(p+, p−). This is because the former
is more suitable in the orientation business under our convention and makes it
consistent with the orientation of the moduli spaces for defining the filtered A∞
algebra in §47.

Consider the pull back of the tangent bundle TM by the projection M × [0, 1] →
M . For p ∈ L(0) ∩ L(1), we take a path of oriented Lagrangian subspaces λp :
[0, 1] → Λori(TpM) so that

λp(0) = TpL
(0), λp(1) = TpL

(1)

and a trivialization (relative to the fixed trivialization at end points) of the bundle

λ̃p =
⋃

t∈[0,1]

{t} × λp(t) → [0, 1].

(See §3.2.) Then we have a Lagrangian subbundle

L → K(L(0), L(1)) = (L(0) × {0}) ∪ ((L(0) ∩ L(1)) × [0, 1]) ∪ (L(1) × {1})

of the pull back of TM .

Let st ∈ H2(M ; Z2) such that w2(TL
(i)) = st|L(i) , for i = 0, 1. As in Definition

44.2 we choose an oriented vector bundle V on the 3-skeleton of M with w2(V ) = st.
Denote by Pspin(L(i), V ) the principal spin bundle of (TL(i) ⊕ V )|

L
(i)

[2]

, which is a

fiberwise double cover of its oriented frame bundle PSO(L(i), V ). We may assume
that L(0) ∩ L(1) is contained in the 3-skeleton of M . In order to specify the spin
structure on (L ⊕ pr∗V ) |K(L(0),L(1))[2]

, where K(L(0), L(1))[2] is the 2-skeleton of

K(L(0), L(1)) and pr is the projection to M × [0, 1] → M , we need additional

information. Let σ : [0, 1]× Rn ∼= λ̃p be a trivialization. Since λp(i) = TpL
(i), σ|t=i

induces a framing of TpL
(i), hence, we obtain embeddings σt=i∗ : SO(n)×SO(Vp) →

PSO(L(i), V )|p for i = 0, 1. Let ιi : (Spin(n) × Spin(Vp)) /{±1} → Pspin(L(i), V )|p,
which covers σt=i∗. (Here ±1 acts on Spin(n) × Spin(Vp) diagonally.) Now we
consider the triple (σ, ι0, ι1). For the trivialization σ, we pick a bundle isomorphism
σ̃ : [0, 1] × Spin(n + k) ∼= Pspin(L ⊕ V )|{p}×[0,1], which covers σ∗. (There are two

choices of σ̃.) Gluing Pspin(L⊕V )|{p}×[0,1] with Pspin(L(i), V ), i = 0, 1, by ιi◦(σ̃)−1,

we obtain a spin structure of L ⊕ V on K(L(0), L(1))[2]. It is easy to see that the
resulting spin structure does not depend on the choice of a lift σ̃ of σ∗.
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Let Iλp
be the space of trivializations σ of λ̃p, which respect the orientation,

and Ĩλp
the space of triples (σ, ι0, ι1) as above. It is clear that Iλp

is homotopy

equivalent to SO(n) and Ĩλp
is homotopy equivalent to

{(g0, g1) ∈ Spin(n) × Spin(n) | π(g0) = π(g1)}/{±1},

where π : Spin(n) → SO(n) is the canonical projection and ±1 acts on Spin(n) ×
Spin(n) diagonally. Then we find that Ĩλp

→ Iλp
is a trivial double covering space,

i.e., Ĩλp
is the union of two copies of Iλp

.

Now we consider the space Pp(TL
(0), TL(1)) of all paths in Λori(TpM) from

TpL
(0) to TpL

(1). Define

I(p) =
⋃

λp∈Pp(TL(0),TL(1))

Iλp

and
Ĩ(p) =

⋃

λp∈Pp(TL(0),TL(1))

Ĩλp
.

As we saw in §44.2, there is an oriented non-spin Lagrangian subbundle in (S1 ×
S1) × Cn. Hence Ĩ(p) → I(p) is a non-trivial double covering space.

For each p, we pick λp ∈ Pp(TL
(0), TL(1)) and consider the elliptic operators

∂λp,Z±
: W 1,p

λp
(Z±;TpM) → Lp(Z±;TpM ⊗ Λ0,1(Z±)).

on the capped half infinite cylinders

Z− = {z ∈ C | |z| ≤ 1} ∪ {z ∈ C | Rez ≥ 0, |Imz| ≤ 1}
Z+ = {z ∈ C | Rez ≤ 0, |Imz| ≤ 1} ∪ {z ∈ C | |z| ≤ 1}.

as in §12.5. (See right before Definition 12.62.)
We define the Maslov-Morse index µ(p, λp) of the intersection point p ∈ L(0)∩L(1)

with a path λp of Lagrangian subspaces in TpM by

(44.11) µ(p, λp) = Index(∂λp,Z−
).

For R > 0, we define the space

Z−#R(R × [0, 1])#RZ+

as follows. We consider

Z−,R = {z ∈ Z− | Re z ≤ R}
Z+,R = {z ∈ Z− | Re z ≥ −R}.
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We glue 3 spaces Z−,R, [−R,R] × [0, 1], Z+,R, by identifying (R, t) ∈ Z−,R with
(−R, t) ∈ [−R,R]× [0, 1] and (R, t) ∈ [−R,R]× [0, 1] with (−R, t) ∈ Z+,R, respec-
tively.

Figure 44.2

We consider operators ∂λp,Z±
on Z± and Du∂ on R × [0, 1]. (Here Du∂ is the

linearization of the Cauchy-Riemann equation at u.) We can use appropriate par-
tition of unity to glue these 3 operators and obtain an operator ∂u;λ

p+ ,λ
p−

on

Z−#R(R × [0, 1])#RZ+. Now index sum formula implies

(44.12) Index(∂λp,Z−
) + Index(Du∂) + Index(∂λp,Z+

) = Index(∂u;λ
p+ ,λ

p−
).

We define û : Z−#R(R× [0, 1])#RZ+ →M by gluing u with constant maps to p±,
by appropriate partition of unity. We trivialize the bundle

û∗TM ∼= (Z−#R(R × [0, 1])#RZ+) × Cn.

We then obtain a path

λ : ∂(Z−#R(R × [0, 1])#RZ+) → Λ(Cn)

in Lagrangian Grassmannian by

λ(eπ
√
−1(1/2±t)) = λp±(t), where eπ

√
−1(1/2±t) ∈ ∂Z±,

λ(τ, i) = Tu(τ,i)L
(i) i = 0, 1.

It is easy to see

(44.13) Index(∂u;λ
p+ ,λ

p−
) = Index(∂Cn,λ)
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where the right hand side is as in Proposition 44.4. Pick (σ, ι0, ι1) ∈ Ĩλp
, then

the spin structure of L ⊕ V induces an orientation of the virtual vector space
Index(∂Cn,λ) in the same way as the proof of Theorem 44.1.

Therefore, once we choose an orientation on Index ∂λ
p+ ,Z±

and Index ∂λ
p− ,Z±

as well as (σ±, ι±0 , ι
±
1 ) ∈ Ĩλ

p±
, an orientation of Index Du∂ is induced by (44.12),

(44.13). Thus (using Remark 44.15 (1) also) we have proved the following:

Theorem 44.14. Suppose that a pair of Lagrangian submanifolds (L(0), L(1)) is

relatively spin. Then for any p± ∈ L(0) ∩ L(1), the moduli space M(p+, p−) of con-

necting orbits in Lagrangian intersection Floer cohomology is orientable. Further-

more, orientations on Index ∂λ
p± ,Z−

, (σ, ι0, ι1) ∈ Ĩλp
and relative spin structures

for the pair (L(0), L(1)) canonically determine the orientation on M(p+, p−).

Remark 44.15. (1) We consider up (where up(τ, t) ≡ p) and glue ∂λp,Z−
, Dup

∂

and ∂λp,Z+
as above to obtain an operator ∂up;λp,λp

. The index of ∂up;λp,λp
is

canonically isomorphic to TpL
(0) and hence is oriented. The index of Dup

∂ is

trivial and is also oriented. Therefore by (44.12), an orientation of Index(∂λp,Z−
),

determines an orientation of Index ∂λp,Z+
. Hence in Theorem 44.14, it is enough to

choose an orientation on Index ∂(∂λp,Z−
) for each p = p±.

(2) The orientation determined by the relative spin structure (Theorems 44.1
and 44.14) automatically satisfies the coherence condition [FlHo93], i.e., the com-
patibility under gluing process. See Proposition 46.3 and Lemma 46.5 below for
compatibility of orientation on moduli spaces of holomorphic discs. The compat-
ibility for the moduli space of connecting orbits is also proven based on Lemma
46.5, see the proof of Proposition 50.3. For the procedure of giving orientation in
Theorem 44.14, we follow the argument from §21 [FuOn99II]. (See also [FlHo93] for
argument on the coherent orientation problem.)

We remark that coherent system of orientations in the sense of [FlHo93] is not

unique. In fact, there are coherent orientation systems, which derive non-isomorphic
cohomologies. In finite dimensional case, if the manifold is not simply connected,
one can twist the Morse complex by local systems to obtain the cohomology with
coefficients in local systems. We then obtain a twisted cohomology which are not
isomorphic to the untwisted cohomology, in general. The holonomy of a local system
contributes to signs in “counting connecting orbits”. In Floer theory for Lagrangian
submanifolds, Cho found spin structures, which derives non-isomorphic Floer coho-
mologies [Cho04].

In other words, to define Floer cohomology, it is not enough to prove existence
of orientation satisfying the coherence condition, but we need to specify the way to
orient the moduli spaces satisfying the coherence condition.

(3) The determinant line bundle of Index ∂·,Z−
over each connected component

of Pp(TL
(0), TL(1)) is non-orientable , but its pull-back to Ĩ(p) is orientable. To see

this, we use the argument in (1). Pick and fix (λp, σ, ι0, ι1) ∈ Ĩ(p). Glue the family
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∂·,Z−
with ∂λp,Z+

to obtain a family of Dolbeault type operators with totally real
boundary condition. Then the example in §44.2 implies that the determinant line
bundle of the family index is not orientable. Since ∂λp,Z+

does not depend on the

elements in Pp(TL
(0), TL(1)), the index bundle of ∂·,Z−

is not orientable. It is easy

to see that the pull-back by I(p) → Pp(TL
(0), TL(1)) is also non-orientable on each

connected component, since the totally real boundary condition does not depend

on the elements in Iλp
. Note that Ĩ(p) → I(p) is the unique double covering space,

which is non-trivial over each connected component of I(p). Therefore the pull-back
of the index bundle should be orientable, hence the claim. (We can also directly

find the second claim, since Ĩ(p) provides a consistent family of spin structures on
the totally real subbundles.)

Hence, we can rephrase “a choice of an orientation on Index ∂λ
p± ,Z−

as well

as (σ±, ι±0 , ι
±
1 )” by the orientation of the determinant line bundle of the family

Index ∂·,Z−
on Ĩ(p). This interpretation is more canonical and can be adopted to

other cases, e.g., Bott-Morse case, see Proposition 51.1.

(4) In [Oh97II], the second named author previously studied the orientation
problem for the Floer homology of Lagrangian intersection for the case where L(0) =
φ(oN ) and L(1) = oN on M = T ∗N (or more generally L(0) = ν∗S the conormal
bundle of S ⊂ N). He proved that in this case there exists a coherent orientation
on the Floer complex for any compact manifold N irrespective of orientability of

N . In this case, the condition on w2 is automatically satisfied and there are no
holomorphic discs with boundary on L(0) nor L(1).

§45. Conventions and Preliminaries.

In this section, we will fix some basic conventions and prepare some formulae
concerning orientation. At the beginning, we assume that spaces are smooth (so
manifolds), and mappings are submersions. Later we incorporate Kuranishi struc-
ture and deal with the space with Kuranishi structure and the fiber product of
weakly submersive strongly smooth maps in the sense of Kuranishi structure. In
this section, we denote dimensions of spaces X or Y by corresponding small letters
x or y respectively. We will denote by ∗ a generic point without specifying it from
now on.

Convention 45.1.

(1) Let X be an oriented smooth manifold with boundary ∂X. Then we define



18 FUKAYA, OH, OHTA, ONO

an orientation on ∂X so that

(45.1.1) T∗X ' Rout × T∗(∂X)

is an isomorphism of oriented vector spaces. Here Rout is R oriented by an outer
normal vector.

In order to discuss the case of spaces with Kuranishi structure, we prepare some
notations. A Kuranishi neighborhood around p ∈ X is a quintuple (Vp, Ep,Γp, ψp, sp)
as in Definition A1.1. We denote the quotient Vp/Γp by Up. By definition of the
orientation of the Kuranishi structure (see Definition A1.17 and [FuOn99II] Def-
inition 5.8), we have an orientation on detEp ⊗ detT∗Vp and the finite group Γp

acts on Ep and Vp preserving orientation of detE∗
p ⊗ detTVp. Then we find that

the group action does not effect on orientation problem. So we may assume here
the action is trivial in the argument below. Namely, we consider the case that Γp

is trivial and identify Vp with Up. In this chapter we denote by an (oriented) Ku-
ranishi neighborhood (local chart of a space with oriented Kuranishi structure) by
(s;E → U), where E → U be a vector bundle and s is a section of it. Here s is
a section of a vector bundle E over U . When s fails to be transversal to the zero
section, we use multi-valued perturbations to get the virtual fundamental chain.
Our task here is to assign a canonical orientation to each zero locus. So we assume,
after perturbations, that s is transversal to the zero section. Then we have the
exact sequence

(45.2) 0 −→ T∗s
−1(0) −→ T∗U

D∗s−→ E∗ −→ 0

where D∗s : T∗U → E∗ is the covariant derivative of s : U → E at ∗ with respect to
a connection. Note that this derivative does not depend on the choice of connection
as long as ∗ ∈ s−1(0). We arrange the basis of T∗U so that the basis of E∗ comes

first and then that of T∗s−1(0) next. We then define the orientation on s−1(0) by

E∗ × T∗s
−1(0) = T∗U.

(Note that since an orientation on detE∗ ⊗ detT∗U in given, the above equality
determines the orientation on T∗s−1(0).)

Let (s;E → U) be a local chart of a space with oriented Kuranishi structure
with boundary. Recall that the orientation of (s;E → U) is the orientation of
detE⊗det TU . If necessary, we choose U smaller so that we may assume that U is
an oriented manifold with boundary and E is an oriented vector bundle on it. We
define the orientation of the boundary of (s;E → U) by

∂(s;E → U) = (−1)rankE(s|∂U ;E|∂U → ∂U).

Here ∂U is oriented as the boundary of U .
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(2) Let G be a Lie group given an orientation. When G acts from the right on
an oriented manifold X smoothly and freely, then we define an orientation of the
quotient space X/G so that

(45.1.2) T∗X ' T∗(X/G) × Lie G

is an isomorphism of oriented vector spaces. Here Lie G is the Lie algebra of G.
If G acts on the space X with oriented Kuranishi structure such that the isotropy

subgroup at any point is finite, the quotient space inherits a structure of oriented
Kuranishi structure. Namely, for a G-equivariant Kuranishi neighborhood (s;E →
U), the quotient space U/G is oriented as above. The bundle E and its section s
descend to an (orbi)bundle E/G → U/G and its section s. Then (s;E/G→ U/G)
is oriented, since

detEx ⊗ detTxU

∼= detE[x] ⊗ det
(
T[x](U/G) ⊕ Lie G

)

∼= detE[x] ⊗ detT[x](U/G) ⊗ det Lie G,

where x ∈ U and [x] is the equivalence class in U/G.
(3) (Fiber product orientation). Let Xi (i = 1, 2) and Y be oriented smooth

manifolds and fi : Xi → Y two submersions. We denote the fiber product by
X1f1

×f2
X2 or X1 ×Y X2. Take a point q ∈ f1(X1) ∩ f2(X2). Let 〈u1, · · · , uy〉 be

an oriented basis of TqY . By transversality, we have 〈vXi,1, · · · , vXi,y〉 ∈ Tpi
Xi for

pi ∈ f−1
i (q) such that (dfi)pi

(vXi,k) = uk for k = 1, · · · , y. We can choose a basis
〈ηXi,1, · · · , ηXi,xi−y〉 in Ker(dfi)pi

so that

〈ηX1,1, · · · , ηX1,x1−y, vX1,1, · · · , vX1,y〉 ∈ Tp1
X1 ' Ker(df1)p1

× Im(df1)p1

is a basis compatible with the given orientation of Tp1
X1 and

〈vX2,1, · · · , vX2,y, ηX2,1, · · · , ηX2,x2−y〉 ∈ Tp2
X2 ' Im(df2)p2

× Ker(df2)p2

is a basis compatible with the given orientation of Tp2
X2 respectively. Then we

define an orientation on the fiber product X1 ×Y X2 so that

〈ηX1,1, · · · , ηX1,x1−y, u1, · · · , uy, ηX2,1, · · · , ηX2,x2−y〉

is an oriented basis at T[p1,p2](X1 ×Y X2). Here we identify TqY with T[p1,p2]((s1 ×
s2)Y ), where si is a local section of fi : Xi → Y .

In other words, we identify T[p1,p2](X1×Y X2) and Ker(df1)p1
×TqY ×Ker(df2)p2

,
as vector spaces and define an orientation on T[p1,p2](X1 ×Y X2) so that

T[p1,p2](X1 ×Y X2) ' Ker(df1)p1
× TqY × Ker(df2)p2
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is an isomorphism of oriented vector spaces. Here we define the orientation on
Ker(dfi)pi

such that

Tp1
X1 ' Ker(df1)p1

× Im(df1)p1
(45.1.3)

Tp2
X2 ' Im(df2)p2

× Ker(df2)p2
(45.1.4)

are isomorphisms as oriented vector spaces respectively. Here Im(dfi)pi
is isomor-

phic to TqY as oriented vector spaces. (When (dfi)pi
(i = 1, 2) is bijective, we define

the orientation on the one-point set Ker(dfi)pi
by εi, where εi = +1 if (dfi)pi

is an
orientation preserving isomorphism, and εi = −1 if (dfi)pi

is an orientation reserv-
ing isomorphism.) In this sense, when we consider orientations of fiber products,
we will hereafter write oriented isomorphisms (45.1.3)-(45.1.4) such as

X1 = X◦
1 × Y(45.1.5)

X2 = Y × ◦X2.(45.1.6)

Then we will write the fiber product X1 ×Y X2 as X◦
1 ×Y × ◦X2. (Of course, these

equalities make sense as equalities at tangent space level.)
(4) (Fiber product of Kuranishi structure.) Let (s1;E1 → U1) and (s2;E2 → U2)

be Kuranishi neighborhoods of X1 and X2. Then we can take the product (s1 ⊕
s2;E1⊕E2 → U1×U2), which gives a Kuranishi structure on the product X1×X2.
Note that the orientation on (s1⊕s2)−1(0) defined by (s1⊕s2;E1⊕E2 → U1×U2) is
different from the product orientation on X1×X2 = s−1

1 (0)×s−1
2 (0). The difference

is given by

X1 ×X2 = (−1)rankE2 dim X1(s1 ⊕ s2)
−1(0)

= (−1)rankE2(dim U1−rankE1)(s1 ⊕ s2)
−1(0).

As for the general case of fiber products, we define the orientation on the fiber
product with Kuranishi structures as follows. Here we assume that the maps to
define the fiber product are weakly submersive (see §A1). Let f1 : U1 → B and
f2 : U2 → B be submersions. Take the fiber product of them, i.e., U1 ×B U2 =
U1f1

×f2
U2. We have the orientation on U1 ×B U2 defined by Convention 45.1 (3).

We restrict the bundle E1⊕E2 on U1×U2 to U1×B U2. The orientation on E1⊕E2

is also induced. The Kuranishi neighborhood (s1⊕s2;E1⊕E2 → U1×B U2) defines
an orientation on (s1 ⊕ s2)

−1(0) by

(E1 ⊕ E2)∗ × T∗(s1 ⊕ s2)
−1(0) = T∗(U1 ×B U2).

Then we define the fiber product X1 ×B X2 by

X1 ×B X2 = (−1)rankE2(dim X1−dim B)(s1 ⊕ s2)
−1(0)

= (−1)rankE2(dim U1−rankE1−dim B)(s1 ⊕ s2)
−1(0).
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Note that this convention is independent of the choice of Kuranishi neighborhoods
(si, Ei → Ui).

As consequences of these conventions, we have the following fundamental for-
mulae which will be used later. Hereafter (−1)-oriented isomorphism (resp. (+1)-
oriented isomorphism ) stands for orientation reversing (resp. preserving) isomor-
phism.

Lemma 45.3. (1) Assume X1 and X2 have boundaries and the boundary of Y is

empty. For X1 → Y and X2 → Y , we have

∂(X1 ×Y X2) = ∂X1 ×Y X2

⊔
(−1)x1+y(X1 ×Y ∂X2).

(2) (Associativity.) For X1 → Y1, X2 → Y1 × Y2 and X3 → Y2, we have

(X1 ×Y1
X2) ×Y2

X3 = X1 ×Y1
(X2 ×Y2

X3).

(3) (Iteration formula.) For X1 → Y1 × Y2, X2 → Y1 and X3 → Y2, we have

X1 ×Y1×Y2
(X2 ×X3) = (−1)y2(y1+x2)(X1 ×Y1

X2) ×Y2
X3.

(4) Let fi : Xi → X ′
i (i = 1, 2) be an ε(fi)-oriented isomorphism and g : Y → Y ′

an ε(g)-oriented isomorphism. Then for Xi → Y and X ′
i → Y ′, the induced map

f1 ×g f2 : X1 ×Y X2 −→ X ′
1 ×Y ′ X ′

2

is an ε(f1)ε(f2)ε(g)-oriented isomorphism.

Proof: All claims are trivial except signs. So we only check signs. Firstly we consider
the case that all maps are submersions between manifolds.

(1) We put X1 = X◦
1 × Y and X2 = Y × ◦X2 as in (45.1.5)-(45.1.6). Moreover

we put ∂X1 = (∂X1)
◦ × Y and ∂X2 = Y × ◦(∂X2). From the convention of the

boundary orientation (45.1.1), we have

RX1
× (∂X1)

◦ × Y = X◦
1 × Y

RX2
× (Y × ◦(∂X2)) = Y × ◦X2,

where RXi
is oriented by the outward normal vector. Thus we have

RX1
× (∂X1)

◦ = X◦
1

(−1)y(RX2
× ◦(∂X2)) = ◦X2.
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Hence we have

RX1×Y X2
× ∂(X1 ×Y X2) = X1 ×Y X2 = X◦

1 × Y × ◦X2

= RX1
× (∂X1)

◦ × Y × ◦X2⊔
X◦

1 × Y × (−1)y(RX2
× ◦(∂X2))

= RX1
× (∂X1 ×Y X2)

⊔
(−1)x1+yRX2

× (X1 ×Y ∂X2)),

which proves (1).
(2) Put

X1 = X◦
1 × Y1

X2 = Y1 × ◦X2 = X◦
2 × Y2 = Y1 × ◦X◦

2 × Y2

X3 = Y2 × ◦X3.

Then we have ◦X2 = ◦X◦
2 × Y2 and X◦

2 = Y1 × ◦X◦
2 . Since

X1 ×Y1
X2 = X◦

1 × Y1 × ◦X2 = X◦
1 × Y1 × ◦X◦

2 × Y2,

we have
(X1 ×Y1

X2) ×Y2
X3 = X◦

1 × Y1 × ◦X◦
2 × Y2 × ◦X3.

On the other hand, since

X2 ×Y2
X3 = X◦

2 × Y2 × ◦X3 = Y1 × ◦X◦
2 × Y2 × ◦X3,

the right hand side in (2) can be written as

X1 ×Y1
(X2 ×Y2

X3) = X◦
1 × Y1 × ◦X◦

2 × Y2 × ◦X3,

which implies the associativity.
(3) We put

X1 = X◦
1 × Y1 × Y2, X2 = Y1 × ◦X2, X3 = Y2 × ◦X3.

Then since we have X2 × X3 = (−1)y2(x2−y1)Y1 × Y2 × ◦X2 × ◦X3, the left hand
side is written as

(45.4) X1 ×Y1×Y2
(X2 ×X3) = (−1)y2(x2−y1)X◦

1 × Y1 × Y2 × ◦X2 × ◦X3.

On the other hand, since we have

X1 ×Y1
X2 = (−1)y1y2X◦

1 × Y2 × Y1 × ◦X2

=(−1)y1y2(−1)y2x2X◦
1 × Y1 × ◦X2 × Y2,
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the right hand side is written as

(X1 ×Y1
X2) ×Y2

X3

=(−1)y2(y1+x2)X◦
1 × Y1 × ◦X2 × Y2 × ◦X3

=(−1)y2(y1+x2)(−1)y2(x2−y1)X◦
1 × Y1 × Y2 × ◦X2 × ◦X3.(45.5)

Comparing (45.4) and (45.5), we get the formula.
(4) We put X1 = X◦

1 × Y and X2 = Y × ◦X2. Then we can write as

X1 ×Y X2 = X◦
1 × Y × ◦X2.

Similarly we have X ′
1×Y ′X ′

2 = X ′◦
1 ×Y ′×◦X ′

2. Since Y ′ = ε(g)Y and X ′
i = ε(fi)Xi,

we have X ′◦
1 = ε(f1)ε(g)X

◦
1 and ◦X ′

2 = ε(f2)ε(g)
◦X2. Thus we get (4).

The same conclusions hold for spaces with Kuranishi structures. In fact, Con-
vention 45.1 (1) and (4) are designed so that the above argument works with the
following modification. If dimX < dimY , we regard X as the space with Kuranishi
structure (s;E → U). When X is a submanifold of Y , X◦ plays the role of the
obstruction bundle E on U = Y .

In general, the statements (1), (2), (3) and (4) in the case of spaces of Kuranishi
structure are proved as follows.

(1) Let Xi = (si;Ei → Ui). By Convention 45.1 (1) and (4), we have

∂(X1 ×Y X2) = (−1)δ1

(
(s1 ⊕ s2)|∂(U1×Y U2); (E1 ⊕E2)|∂(U1×Y U2) → ∂(U1 ×Y U2)

)
,

where δ1 = rankE1 + rankE2 + rankE2(dimX1 − dimY ).
Similarly, we have

∂X1 ×Y X2 = (−1)δ2

(
(s1 ⊕ s2)|∂U1×Y U2

; (E1 ⊕ E2)|∂U1×Y U2
→ ∂U1 ×Y U2

)
,

where δ2 = rankE2(dimX1 − 1 − dimY ) + rankE1, and

X1 ×Y ∂X2 = (−1)δ3

(
(s1 ⊕ s2)|U1×Y ∂U2

; (E1 ⊕ E2)|U1×Y ∂U2
→ U1 ×Y ∂U2

)
,

where δ3 = rankE2 + rankE2(dimX1 − dimY ).
Note that, for oriented manifolds U1, U2, we have

∂(U1 ×Y U2) = ∂U1 ×Y U2

⊔
(−1)δ4U1 ×Y ∂U2,

where δ4 = dimU1 + dimY .
Then we find δ1 ≡ δ2 and δ1 + δ3 + δ4 ≡ dimX1 + dimY modulo 2. Here we

used the equality dimU1 − rankE1 = dimX1, which is the virtual dimension of
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X1 = (s1;E1 → U1) as the space with Kuranishi structure. (See Definition A1.5.)
Hence we obtain

∂(X1 ×Y X2) = ∂X1 ×Y X2

⊔
(−1)dim X1+dim Y X1 ×Y ∂X2.

(2) By Convention 45.1 (4), we have

(X1 ×Y1
X2) ×Y2

X3 = (−1)δ5(s1 ⊕ s2;E1 ⊕E2 → U1 ×Y1
U2) ×Y2

X3

= (−1)δ5+δ6

(
s1 ⊕ s2 ⊕ s3;E1 ⊕ E2 ⊕ E3 → (U1 ×Y1

U2) ×Y2
U3

)
,

where
δ5 = rank E2(dimX1 − dimY1)

and
δ6 = rank E3(dimX1 + dimX2 − dimY1 − dimY2).

Similarly, we have

X1 ×Y1
(X2 ×Y2

X3) = (−1)δ7X1 ×Y1
(s2 ⊕ s3;E2 ⊕ E3 → U2 ×Y2

U3)

= (−1)δ7+δ8

(
s1 ⊕ s2 ⊕ s3;E1 ⊕ E2 ⊕ E3 → U1 ×Y1

(U2 ×Y2
U3)
)
,

where
δ7 = rank E3(dimX2 − dimY2)

and
δ8 = (rank E2 + rank E3)(dimX1 − dimY1).

For oriented manifolds U1, U2, U3, we showed that (U1 ×Y1
U2) ×Y2

U3 = U1 ×Y1

(U2 ×Y2
U3). Since δ5 + δ6 = δ7 + δ8, we obtain

(X1 ×Y1
X2) = X1 ×Y1

(X2 ×Y2
X3).

(3) By Convention 45.1 (4), we have

X1 ×Y1×Y2
(X2 ×X3) = (−1)δ9X1 ×Y1×Y2

(s2 ⊕ s3;E2 ⊕E3 → U2 × U3)

= (−1)δ9+δ10

(
s1 ⊕ s2 ⊕ s3;E1 ⊕ E2 ⊕ E3 → U1 ×Y1×Y2

(U2 × U3)
)
,

where
δ9 = rank E3 · dimX2

and
δ10 = (rank E2 + rank E3)(dimX1 − dimY1 − dimY2).
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On the other hand, we have

(X1 ×Y1
X2) ×Y2

X3 = (−1)δ11(s1 ⊕ s2;E1 ⊕E2 → U1 ×Y1
U2) ×Y2

X3

= (−1)δ11+δ12

(
s1 ⊕ s2 ⊕ s3;E1 ⊕E2 ⊕E3 → (U1 ×Y1

U2) ×Y2
U3

)
,

where
δ11 = rank E2(dimX1 − dimY1)

and
δ12 = rank E3(dimX1 + dimX2 − dimY1 − dimY2).

Recall that, for oriented manifolds U1, U2, U3, we showed

U1 ×Y1×Y2
(U2 × U3) = (−1)δ13(U1 ×Y1

U2) ×Y2
U3,

where
δ13 = dimY2(dimY1 + dimU2).

Since δ9 + δ10 + δ11 + δ12 + δ13 ≡ dimY2(dimY1 + dimX2) modulo 2, we obtain

X1 ×Y1×Y2
(X2 ×X3) = (−1)dim Y2(dim Y1+dim X2)(X1 ×Y1

X2) ×Y2
X3.

(4) By Convention 45.1 (4), we defined the orientation of the fiber product X1×Y

X2 of spaces with Kuranishi structure depends only on the orientations of X1, X2

in the sense of Kuranishi structure and the orientation of Y . (In other words, it
does not depend on the choice of local charts with orientation.) Thus (4) clearly
holds. �

Remark 45.6. By using our expression of a fiber product, we can write the fiber
product in a simple manner as follows. Let fk : X → Yk and gk : Xk → Yk

(k = 1, . . . , `). For k = 1, . . . , `, we put

X =: X◦ ×
∏̀

k=1

Yk, Xk =: Yk × ◦Xk.

Then the orientation on the fiber product is given by

(45.7) X(f1,... ,f`) ×g1×···×g`

(∏̀

k=1

Xk

)
= X◦ ×

∏̀

k=1

(Yk × ◦Xk).

To prove (45.7), we put

∏̀

k=1

Xk =:

(∏̀

k=1

Yk

)
× ◦

(∏̀

k=1

Xk

)
.
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Then by definition of the orientation on the fiber product, we have

X(f1,... ,f`) ×g1×···×g`
(
∏̀

k=1

Xk) = X◦ ×
(∏̀

k=1

Yk

)
× ◦

(∏̀

k=1

Xk

)
.

On the other hand, it is easy to see that

◦
(∏̀

k=1

Xk

)
= (−1)δ1

∏̀

k=1

◦Xk, where δ1 =
∑̀

k=2

yk

k−1∑

j=1

(xj − yj).

Thus we have

X(f1,... ,f`) ×g1×···×g`

(∏̀

k=1

Xk

)
= (−1)δ1X◦ ×

(∏̀

k=1

Yk

)
×
(∏̀

k=1

◦Xk

)

= (−1)δ1+δ2X◦ ×
∏̀

k=1

(Yk × ◦Xk).

But it is clear that δ1 = δ2, so we find the formula (45.7).

§46. Orientation on the moduli space of marked pseudo-holomorphic

discs and on the singular strata of the moduli space.

In this section, we firstly give an orientation on the moduli space of marked
pseudo-holomorphic discs and, then, we describe the orientation on the moduli space
of pseudo-holomorphic maps from the union of 2 discs glued at one point, by re-
garding it as the boundary of the moduli space of (irreducible) pseudo-holomorphic
discs.

First of all, we fix the orientation on PSL(2; R) as follows.

Convention 46.1. Recall that we adopt our orientation convention for ∂D2 by
the counter-clock-wise orientation. We pick three distinct marked points z0, z1 and
z2 on ∂D2, whose order respects the counter-clock-wise orientation of the boundary.
We embed PSL(2; R) in ∂D2 × ∂D2 × ∂D2 by g 7→ (g · z0, g · z1.g · z2) and orient
PSL(2; R) as an open subset of ∂D2 × ∂D2 × ∂D2. If we fix the first two marked
points z0 and z1, the common stabilizer of z0 and z1 is R, whose orientation is given
as follows. The orbit t 7→ t · p, where p 6= z0, z1, converges to z0 as t tends to +∞
and converges to z1 as t tends to −∞. To make the PSL(2; R)-action on ∂D2 into
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the right action, we set z · g := g−1z. Thus we adopt the opposite orientation on

PSL(2; R) and R.

Let M̃reg(β) = M̃reg(L; β) be the space of pseudo-holomorphic maps from the
unit disc representing the homotopy class β ∈ π2(M,L). (For simplicity of nota-
tions, we will often omit L.) In §46 and §47, we deal with all the components of

M̃reg(β). In §48, we restrict ourselves to the main component and give signs in the
filtered A∞-operations. Recall that relative spin structure determine an orientation

on M̃reg(β) by Theorem 44.1. We write

Mreg
m+1(β) =

(
M̃reg(β) × (∂D2)m+1

)
/PSL(2; R).

We assign the point +1 ∈ ∂D2 to the 0-th marked point z0 and −1 to the first one
z1 and set

M̂reg
m+1(β) = M̃(β) × (∂D2)m−1,

which can be regarded as the space of pseudo-holomorphic maps from the unit disc
representing the homotopy class β with m + 1 marked points (z0, · · · , zm) on the
boundary of the disc, such that z0 = 1, z1 = −1 are fixed.

Strictly speaking, we require all the marked points are distinct. So M̂reg
m+1(β) is

not M̃reg(β) × (∂D2)m−1 itself but is its open subset. However when we consider

the orientation problem, we often write it as M̂reg
m+1(β) = M̃reg(β)× (∂D2)m−1 for

simplicity.

Then Mreg
m+1(β) is identified with M̂reg

m+1(β)/Aut(D2; z0, z1). Here Aut(D2; z0, z1)

is the biholomorphic automorphisms group of D2 fixing z0 and z1.
Since PSL(2; R)/Aut(D2; z0, z1) is even dimensional, the orientation of Mreg

m+1(β)

as the quotient by PSL(2; R) coincides with one as the quotient by Aut(D2; z0, z1),
cf. (45.1.2). We denote by Rβ the automorphism group Aut(D2; z0 = +1, z1 = −1)

acting on M̂reg
m+1(β). (Under our definition of the orientation on PSL(2; R), which

acts on D2 from the right, orbits of this R-action converge to −1 (resp. +1), as

t ∈ R tends to +∞ (resp. −∞). ) Note that dim M̂reg
m+1(β) = n+ µ(β) +m− 1.

Orientation on these spaces are defined as the product of oriented spaces and the
quotient by the automorphism group (see Convention (45.1.2) in §45). So when we
consider orientations, we shall simply write as

(46.2) M̂reg
m+1(β) = Mreg

m+1(β) × Rβ ,

and dimMreg
m+1(β) = n+ µ(β) +m− 2 ≡ n+m (mod 2). Recall the Maslov index

is even since we assume that Lagrangian submanifolds are oriented.

We denote by evβ
j the evaluation map : Mreg

m+1(β) → L at the marked point zj

(j = 0, . . . ,m).
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Proposition 46.3. We have an isomorphism

∂Mreg
m+1(β

′ + β′′)

=
⋃

(−1)(m1−1)(m2−1)+(n+m1)Mreg
m1+1(β

′)
evβ′

1

×
evβ′′

0

Mreg
m2+1(β

′′),

where n = dimL, as oriented spaces with Kuranishi structures. Here the union is

taken over β = β′ + β′′ and m = m1 +m2 − 1.

Remark 46.4. Here the order of marked points on the boundary of the unit disc is
specified as follows. After gluing holomorphic discs, the first marked point z1,β′ of
the β′-disc is glued with the 0-th marked point z0,β′′ of the β′′-disc and the marked
points disappear after smoothing. After gluing, the 0-th marked point z0,β′ of the
β′-disc becomes the 0-th marked point z0,β′+β′′ of the (β′ + β′′)-disc. The rest of
the marked points of β′′-disc are numbered from 1 to m2 and then the rest of the
marked points of β′-disc are numbered from m2 + 1 to m = m1 +m2 − 1. Namely,
zj,β′+β′′ = zj,β′′ (j = 1, . . . ,m2) and zm2+j,β′+β′′ = zj+1,β′ (j = 1, . . . ,m1 − 1).
We write this convention as

∂D2
2,β′+β′′ × · · · × ∂D2

m,β′+β′′ = ∂D2
2,β′′ × · · · × ∂D2

m2,β′′ × ∂D2
2,β′ × · · · × ∂D2

m1,β′ ,

or simply

(∂D2)m−1 = (∂D2)m2−1 × (∂D2)m1−1.

Figure 46.1

Proof of Proposition 46.3: Firstly we state the following.
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Lemma 46.5. The gluing map

M̃reg(β′)
evβ′

1

×
evβ′′

0

M̃reg(β′′) → M̃reg(β′ + β′′)

is orientation preserving in the sense of Kuranishi structure.

We will simply write

M̃reg(β′ + β′′) = M̃reg(β′)
evβ′

1

×
evβ′′

0

M̃reg(β′′),

when we consider the orientation problem.
The proof of Lemma 46.5 is given at the end of this section. Using this lemma,

the proof of Proposition 46.3 goes as follows.

M̂reg
m+1(β

′ + β′′) = M̃reg(β′ + β′′) × (∂D2)m−1

=(M̃reg(β′)
evβ′

1

×
evβ′′

0

M̃reg(β′′)) × (∂D2)m−1

=(−1)(m1−1)(m2−1)(M̃reg(β′) × (∂D2)m1−1)
evβ′

1

×
evβ′′

0

(M̃reg(β′′) × (∂D2)m2−1)

=(−1)(m1−1)(m2−1)(Mreg
m1+1(β

′) × Rβ′)
evβ′

1

×
evβ′′

0

(Mreg
m2+1(β

′′) × Rβ′′) by (46.2)

=(−1)(m1−1)(m2−1)+(n+m1)(Rβ′ ×Mreg
m1+1(β

′))
evβ′

1

×
evβ′′

0

(Mreg
m2+1(β

′′) × Rβ′′)

=(−1)(m1−1)(m2−1)+(n+m1)Rβ′ × (Mreg
m1+1(β

′)
evβ′

1

×
evβ′′

0

Mreg
m2+1(β

′′)) × Rβ′′

=(−1)(m1−1)(m2−1)+(n+m1)Rout × (Mreg
m1+1(β

′)
evβ′

1

×
evβ′′

0

Mreg
m2+1(β

′′)) × Rβ′+β′′ .

Here we explain the proof of some of the equalities above. To prove the equality in
the third line, we put

M̃reg(β′) = M̃reg(β′)◦ × L, M̃reg(β′′) = L× ◦M̃reg(β′′).

Then since

M̃reg(β′) × (∂D2)m1−1 = (−1)(m1−1)nM̃reg(β′)◦ × (∂D2)m1−1 × L,

we have

(M̃reg(β′) × (∂D2)m1−1)
evβ′

1

×
evβ′′

0

(M̃reg(β′′) × (∂D2)m2−1)

=(−1)(m1−1)nM̃reg(β′)◦ × (∂D2)m1−1 × L× ◦M̃reg(β′′) × (∂D2)m2−1

=(−1)(m1−1)n+(m1−1)(n+m2−1)M̃reg(β′)◦ × L× ◦M̃reg(β′′) × (∂D2)m2−1 × (∂D2)m1−1

=(−1)(m1−1)(m2−1)(M̃reg(β′)
evβ′

1

×
evβ′′

0

M̃reg(β′′)) × (∂D2)m−1.
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In the last equality, Rout and Rβ′+β′′ are anti-diagonal and diagonal oriented sub-
manifolds in Rβ′ × Rβ′′ , i.e., Rout is generated by (1,−1) ∈ Rβ′ × Rβ′′ and Rβ′+β′′

is generated by (1, 1). So the orientation on Rβ′ × Rβ′′ coincides with that on
Rout × Rβ′+β′′ . The factor Rout can be regarded as the space of the gluing pa-
rameter of holomorphic discs and the Rβ′+β′′ can be regarded as an R-action on

M̃reg
m+1(β

′ + β′′). (See Figure 46.2.) From our definition of orientations on the
boundary and the quotient, we get Proposition 46.3. �

(1,−1) (1, 1)
Rout, gluing Rβ′+β′′

Figure 46.2

Proof of Lemma 46.5: Let u ∈ M̃reg(β′) and v ∈ M̃reg(β′′) be holomorphic
discs with u(−1) = v(1). For a fixed sufficiently large R > 0, we glue u and v
in 1/R-neighborhoods of −1 and 1, respectively, using a partition of unity and

implicit function theorem. (See §29.3.) Denote by u#Rv ∈ M̃reg(β′ + β′′) the
glued holomorphic disc. A relative spin structure on L gives a stable trivialization
of (u|∂D2)∗TL, (u|∂D2)∗TL and ((u#Rv|∂D2)∗TL, which are compatible under the
gluing. Hence Lemma 46.5 reduces to the linearized problem. Namely Lemma 46.5
follows from Lemma 46.10 below. �

To state Lemma 46.10 we need some notations. Let (E1, F1) and (E2, F2) be com-
plex vector bundles over the unit disc with totally real subbundles on the boundary.
(Namely it is a complex bundle pair in the sense of Definition 2.9.) We have Dol-
beault operators :

∂Ei,Fi
: W 1,p(D2, ∂D2;Ei, Fi) → Lp(D2;Ei)

(i = 1, 2) which are Fredholm maps. For p > 2 and z ∈ ∂D2 we define evaluation
maps

evz : W 1,p(D2, ∂D2;Ei, Fi) → Fi|z
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by
evz(ζ) = ζ(z).

Suppose we have an identification F1|−1
∼= F2|1. We can use it to glue bundle pairs

(E1, F1), (E2, F2) to obtain a complex bundle pair (E,F ) on (D2, ∂D2). (Here D2

is obtained by gluing two copies D2
1, D

2
2 of D2 at −1 ∈ D2

1 and +1 ∈ D2
2.

We define the fiber product

Index(∂E1,F1
)ev−1

×ev1
Index(∂E2,F2

)

of indices as follows. We take finite dimensional complex linear subspaces Ei ⊂
Lp(D2;Ei) with the following properties.

(46.6) Im(∂Ei,Fi
) + Ei = Lp(D2;Ei) (i = 1, 2).

(46.7.1) ev1 : ∂
−1

E1,F1
(E1) → F1|1 is surjective.

(46.7.2) ev−1 : ∂
−1

E2,F2
(E2) → F2|−1 is surjective.

Definition 46.8. We put

∂
−1

E1,F1
(E1) ev1

×ev−1
∂
−1

E2,F2
(E2)

= {(v1, v2) ∈W 1,p(D2, ∂D2;E1, F1) ⊕W 1,p(D2, ∂D2;E2, F2)

| ∂Ei,Fi
(vi) ∈ Ei, (i = 1, 2), ev1(v1) = ev−1(v2)},

and define

(46.9)
Index(∂E1,F1

)ev−1
×ev1

Index(∂E2,F2
)

= ∂
−1

E1,F1
(E1) ev1

×ev−1
(∂

−1

E2,F2
)(E2) − E1 − E2.

Here (46.9) is an equality of oriented virtual vector spaces. It is easy to see that
the right hand side of (46.9) is independent of the choice Ei.

Lemma 46.10. There exists an isomorphism of oriented virtual vector spaces

Index(∂E,F ) = Index(∂E1,F1
)ev−1

×ev1
Index(∂E2,F2

).

Proof. First of all, we consider the case when (E1, F1) and (E2, F2) are both trivial,
that is the case when F1 and F2 extend to totally real subbundles of E1 and E2

over the disc, respectively. In this case, Index(∂E,F ) can be identified with the fiber
F |∗ of F at ∗ ∈ ∂D2. Moreover, we may take Ei = 0 and then (46.7.1) and (46.7.2)
are orientation preserving isomorphisms. Thus Lemma 46.10 holds in this case.

In the general case , we use the (stable) trivialization of the totally real subbundle
over the boundary to push down the bundle to the one-point union of the disc and



32 FUKAYA, OH, OHTA, ONO

the Riemann sphere in the same way as the proof of Proposition 44.4. Note that the
points which are identified are interior points of the disc and the Riemann sphere.
Therefore the fiber product is taken over a fiber of a complex vector bundle, which
has complex orientation.(See Figure 46.3.)

Figure 46.3

In order to check that orientations on ∂
−1

(E,F )(E1 ⊕ E2) and ∂
−1

E1,F1
(E1) ev1

×ev−1

∂
−1

E2,F2
(E2) are compatible, it is enough to show that the following linear gluing

problem : The real index of the Dolbeault operator on the genus 0 bordered Riemann
surface with two interior double points (i.e., two copies of CP 1 are attached at two
interior points on the disc), is isomorphic to the real index of the Dolbeault operator
on the glued Riemann sphere with the glued vector bundle.

Since they carry natural orientations coming from the complex structure, it is
obvious that they are compatible. �

§47. The orientation on M`+1(β;P1, . . . , P`).

§47.1. Definition of the orientation on M`+1(β;P1, . . . , P`).

Let L be a relatively spin Lagrangian submanifold of (M,ω). Theorem 44.1
shows that the moduli space Mreg

`+1(β) of pseudo-holomorphic maps from the unit
disc representing the homotopy class β ∈ π2(M,L) with (`+1)-marked points on the
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boundary is oriented in a canonical way. When we consider the orientation problem,
it is convenient to fix two marked points. Because the group of biholomorphic
automorphisms of the disc fixing two points is R, it can be interpreted as the
gluing parameter of two holomorphic discs. (See §46.) In general, we can choose
the fixed marked points arbitrarily. For example, if we choose any zi and zj , as
those marked points we fix, then we can define an orientation on Mreg

`+1(β) by
the following equalities (*). In order to define A∞ operations, it is enough to
give a canonical orientation on the top dimensional stratum Mreg

`+1(β;P1, . . . , P`)
of M`+1(β;P1, . . . , P`). Thus, from now on, we simply denote by M`+1(β) and
M`+1(β;P1, . . . , P`) their top dimensional strata.

(*)

{
M̂`+1(β) := M̃(β) × ∂D2

0 × · · · × ˇ∂D2
i × · · · × ˇ∂D2

j × · · · × ∂D2
` ,

M`+1(β) := M̂`+1(β)/R.

If we change the order of marked points by an element σ of (` + 1)-th symmetric
group S`+1, then it exchanges connected components of the moduli space. This
diffeomorphism is orientation preserving if and only if σ is even permutation. (See
Proposition 2.22.) Hereafter we chose the 0-th marked point z0 and the first marked

point z1, as the marked points we fix. This convention is the same as in §46. Note
in the case we choose any other zi, zj , the orientation we obtain on M`+1(β) by
this choice can be compared to the case we choose z0, z1, by using the action of
S`+1 mentioned above.

We note that, when we consider the moduli space M1(β) with only one marked
point, we add another second marked point arbitrarily and we follow the convention
explained above to define an orientation on M2(β). After that, we consider the map
M2(β) → M1(β) of forgetting the second marked point. Since the fiber of this
map is homeomorphic to an interval which has a canonical orientation determined
by ∂D2, we have an orientation on M1(β).

Now let [Pk, fk] be a smooth singular simplex in L with dimPk = pk. We put
degPk = n − pk, which is the degree as a cochain. By Proposition 29.1, ev :
M`+1(β) → L`+1 is weakly submersive. Therefore the fiber product in Definition
47.1 below is “transversal” in the sense of Convention 45.1 (4). We define a space
M`+1(β;P1, . . . , P`) with Kuranishi structure as the following;

Definition 47.1.

M`+1(β;P1, . . . , P`) := (−1)ε1M`+1(β)(ev1,... ,ev`) ×f1×···×f`

(∏̀

k=1

Pk

)
,

where

ε1 = (n+ 1)

`−1∑

k=1

k∑

j=1

degPj .
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Remark 47.2. (1) Using the iteration formula in Lemma 45.3 (3) or the formula
(45.7) in Remark 45.6, we can rewrite the right hand side as

M`+1(β;P1, . . . , P`)

=(−1)
P`−1

k=1

Pk
j=1 deg Pj

(
· · · ((M`+1(β)ev1

×f1
P1)ev2

×f2
P2) × · · ·

)
ev`

×f`
P`.

(2). If all Pk are bounding chains B(L; βk) with βk ∈ π2(M,L) (see §5.6), then we
have degB(L; βk) ≡ 1 (mod 2). In this case, ε1 is given by

(n+ 1)`(`− 1)

2
.

When we change the ordering of marked points, we can find the difference of
orientations by the following key lemma, which plays a fundamental role in our
argument later.

Lemma 47.3. Let σ be the transposition element (i, i + 1) in the `-th symmetric

group S`. (i = 1, . . . , `−1). Then the action of σ on M`+1(β;P1, . . . , Pi, Pi+1, . . . , P`)
by changing the order of marked points is described by the following.

σ(M`+1(β;P1, . . . , Pi, Pi+1, . . . , P`))

=(−1)(deg Pi+1)(deg Pi+1+1)M`+1(β;P1, . . . , Pi+1, Pi, . . . , P`).

Proof: By definition we have

(47.4.1)

M`+1(β;P1, . . . , Pi, Pi+1, . . . , P`)

= (−1)ε1M`+1(β)(ev1,... ,evi,evi+1,... ,ev`) ×f1×···fi×fi+1···×f`

(∏̀

k=1

Pk

)
,

and

(47.4.2)

M`+1(β;P1, . . . , Pi+1, Pi, . . . , P`)

= (−1)ε2M`+1(β)(ev1,... ,evi,evi+1,... ,ev`)×f1×···fi+1×fi···×f`(
i−1∏

k=1

Pk × Pi+1 × Pi ×
∏̀

k=i+2

Pk

)
,

where ε1 is the same as in Definition 47.1 and ε2 is given by

ε2 = ε1 − (n+ 1)(degPi − degPi+1).
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To compute the difference between the fiber product orientations on the right hand
sides above, we recall Lemma 45.3 (4). The element σ acts on M`+1(β) by chang-
ing the order of marked points. Thus σ induces a (−1)-oriented isomorphism on
M`+1(β). Clearly we have

∏̀

k=1

Pk = (−1)pipi+1

i−1∏

k=1

Pk × Pi+1 × Pi ×
∏̀

k=i+2

Pk.

Here pi = dimPi and pi+1 = dimPi+1. Moreover, as for the orientation of base
spaces of the fiber products, we have

∏̀

k=1

Lk = (−1)n
i−1∏

k=1

Lk × Li+1 × Li ×
∏̀

k=i+2

Lk.

Here Lk is a copy of L. Therefore by Lemma 45.3 (4), we can find that

(47.5)

M`+1(β)(ev1,... ,evi,evi+1,... ,ev`) ×f1×···fi×fi+1···×f`

(∏̀

k=1

Pk

)

= (−1)1+pipi+1+nM`+1(β)

(ev1,... ,evi,evi+1,... ,ev`) ×f1×···fi+1×fi···×f`

(
i−1∏

k=1

Pk × Pi+1 × Pi ×
∏̀

k=i+2

Pk

)

By combining (47.4) and (47.5), we can see that

ε1 + ε2 + 1 + pipi+1 + n ≡ (degPi + 1)(degPi+1 + 1) (mod 2),

which proves Lemma 47.3. �

§47.2. Anti-symplectic involution and orientation.

In this subsection we will prove Proposition 38.7 and Lemma 38.17 in Chapter
8. We briefly recall the situation in §38. Let τ : (M,ω) → (M,ω) be an anti-
symplectic involution on a compact symplectic manifold (M,ω). Assume that L =
Fix τ is nonempty. We denote by J τ

ω the set of all τ -anti-invariant compatible almost
complex structures. Pick J ∈ J τ

ω . For a J holomorphic curve w : (D2, ∂D2) →
(M,L), we define w̃ by

w̃(z) = (τ ◦ w)(z).
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Moreover for [(D2, w)] ∈ Mreg(J ; β), [((D2, ~z, ~z+), w)] ∈ Mreg
k+1,m(J ; β) we define

τ∗([(D
2, w)]) = [(D2, w̃)], τ∗([((D

2, ~z, ~z+), w)]) = [((D2,~z,~z
+
), w̃)],

where
~z = (z0, · · · , zk), ~z

+
= (z+

0 , · · · , z+
m).

Then by Lemma 38.6 τ induces the maps

τ∗ : Mreg(J ; β) → Mreg(J ; β), τ∗ : Mreg
k+1,m(J ; β) → Mreg

k+1,m(J ; β)

for β ∈ Π(L) = π2(M,L)/ ∼. Then Proposition 38.7 is stated as follows.

Proposition 38.7. Let J ∈ J τ
ω . The map τ∗ : Mreg(J ; β) → Mreg(J ; β) induces

an involution of the space with Kuranishi structure. It is orientation preserving if

µL(β) ≡ 0 mod 4 and is orientation reversing if µL(β) ≡ 2 mod 4.

Proof. Let [D2, w] ∈ M(J ; β). We consider the deformation complex

(47.6.1) Dw∂ : Γ(D2, ∂D2 : w∗TM,w|∗∂D2TL) → Γ(D2; Λ0,1 ⊗ w∗TM),

and

(47.6.2) D ew∂ : Γ(D2, ∂D2 : w̃∗TM, w̃|∗∂D2TL) → Γ(D2; Λ0,1 ⊗ w̃∗TM).

(Here and hereafter, Λ1 = Λ1,0 ⊕ Λ0,1 is the decomposition of the complexified
cotangent bundle of the domain (that is D2 or S2).)

We have the commutative diagram of bundle pairs

(w∗TM,w|∗∂D2TL)
Tτ−→ (w̃∗TM, w̃|∗∂D2TL)

↓ ↓
(D2, ∂D2)

c−→ (D2, ∂D2)

Diagram 47.1.

where c(z) = z and we denote by Tτ the differential of τ . It induces a bundle map

(47.7) HomR(TD2, w∗TM) → HomR(TD2, w̃∗TM),

which covers z 7→ z. The map (47.7) is anti-complex linear. Therefore it preserves
the decomposition

(47.8) HomR(TD2, w∗TM) ⊗ C = (Λ1,0 ⊗ w∗TM) ⊕ (Λ0,1 ⊗ w∗TM),
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since (47.8) is the decomposition to the complex and anti-complex linear parts.
Hence we obtain a map

(47.9) Tw,1τ∗ : Γ(D2; Λ0,1 ⊗ w∗TM) → Γ(D2; Λ0,1 ⊗ w̃∗TM)

which is anti-complex linear. In the similar way, we obtain an anti-complex linear
map :

(47.10) Tw,0τ∗ : Γ(D2, ∂D2 : w∗TM,w|∗∂D2TL) → Γ(D2, ∂D2 : w̃∗TM, w̃|∗∂D2TL).

Since τ is an isometry, it commutes with the covariant derivative. This gives rise
to the following commutative diagram.

Γ(D2, ∂D2 : w∗TM,w|∗∂D2TL)
Dw∂−−−−→ Γ(D2; Λ0,1 ⊗ w∗TM)

Tw,0τ∗

y Tw,1τ∗

y

Γ(D2, ∂D2 : w̃∗TM, w̃|∗∂D2TL)
Dew∂−−−−→ Γ(D2; Λ0,1 ⊗ w̃∗TM)

Diagram 47.2.

To define a Kuranishi chart in a neighborhood of [D2, w] we need to take a finite
dimensional subspace E[D2,w] of Γ(D2; Λ0,1 ⊗ w∗TM) such that

ImDw∂ +E[D2,w] = Γ(D2; Λ0,1 ⊗ w∗TM).

We choose E[D2,w] so that it is invariant under Tw,1τ∗, i.e.,

(47.11) E[D2, ew] = Tw,1τ∗(E[D2,w]).

Let w′ : (D2, ∂D2) → (M,L) be a map C0 close to w. By definition it is easy to
see that

(47.12) ∂w̃′ = (Tw′,0τ∗)(∂w
′).

We may take an isomorphism

Iw,w′ : Γ(D2, ∂D2 : w∗TM,w|∗∂D2TL) ∼= Γ(D2, ∂D2 : (w′)∗TM,w′|∗∂D2TL)

so that it is complex linear and satisfies

(47.13) Tw′,0τ∗ ◦ Iw,w′ = I ew, ew′ ◦ Tw,0τ∗.
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Now a Kuranishi neighborhood V[D2,w] was defined in §29 so that it is the set of
solutions of the equation

(47.14) ∂w̃′ ≡ 0 mod Iw,w′(E[D2,w]).

Hence by (47.13) w′ 7→ w̃′ defines a diffeomorphism

τ∗ : V[D2,w]
∼= V[D2, ew].

Moreover the Kuranishi map w′ 7→ s(w′) = ∂w′ commutes with τ∗. Hence τ∗
induces an involution of the Kuranishi structure.

We next study the orientation. Let w ∈ M̃(J ; β) and w̃ ∈ M̃(J ; β) be the
corresponding element. We consider commutative Diagram 47.1. A trivialization

Φ : (w∗TM,w|∗∂D2TL) → (D2, ∂D2; Cn,Λ)

naturally induces a trivialization

Φ̃ : (w̃∗TM, w̃|∗∂D2TL) → (D2, ∂D2; Cn, Λ̃),

where Λ : S1 ' ∂D2 → Λ(Cn) is a loop of Lagrangian subspaces given by Λ(z) :=

Tw(z)L in the trivialization and Λ̃ is defined by

Λ̃(z) = Λ(z).

With respect to these trivializations, we have the commutative diagram

(D2, ∂D2; Cn,Λ)
eΦ◦Tτ◦Φ−1

−→ (D2, ∂D2; Cn, Λ̃)
↓ ↓

(D2, ∂D2)
c−→ (D2, ∂D2)

Diagram 47.3.

and the elliptic complex (47.6). Note that the map

τz := Φ̃ ◦ Tτ ◦ Φ−1(z, ·) : (Cn,Λ(z)) → (Cn,Λ(z))

defines an involution with the Lagrangian subspace Λ(z) fixed. Now we deform
the metric on D2 and the trivialization Φ so that Λ(z) ≡ Rn as in the proof of
Proposition 44.4 in this chapter. Recall that we assume L is orientable and so the
bundle w|∗∂D2TL → S1 is trivial. After deforming further the Cauchy-Riemann
operator on (D2, ∂D2; Cn,Λ), we are reduced to considering the case

C : Hol (D2, ∂D2 : Cn,Rn) × Hol (CP 1 : E)

→ Hol (D2, ∂D2 : Cn,Rn) × Hol (CP 1 : E)
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where E is a holomorphic vector bundle whose topology is determined by Λ (see the
proof of Proposition 44.4) and C is the natural map induced from the conjugation
on Cn and E. In particular, we have dimC Hol (CP 1 : E) = 1

2µ(Λ). The first factor

is invariant under the conjugation because Hol (D2, ∂D2 : Cn,Rn) ' Rn. For the

second factor, we have Hol (CP 1 : E) ' C
1
2 µ(Λ) with C is reduced to the standard

conjugation on C
1
2 µ(Λ). Therefore it boils down to considering the conjugation

C : C
1
2 µ(Λ) → C

1
2 µ(Λ).

It is easy to see that this map is orientation preserving if and only if 1
2
µ(Λ) ≡ 0

mod 2, i.e., µ(Λ) ≡ 0 mod 4. This finishes the proof. �

We next prove Lemma 38.17. By considering the assignment given in (38.13)

(w, (z1, z2, · · · , zk−1, zk, z0)) 7→ (w̃, (zk, zk−1, · · · , z2, z1, z0)),

an anti-symplectic involution τ induces

τmain
∗ : Mmain

k+1 (J ; β) → Mmain
k+1 (J ; β)

which is an involution of the space with Kuranishi structure. See Lemma 38.14. Let
P1, · · · , Pk be smooth singular simplexes on L. Then τmain

∗ induces the involution

(47.15) τmain
∗ : Mmain

k+1 (J ; β;P1, · · · , Pk) → Mmain
k+1 (J ; β;Pk, · · · , P1).

See (38.16). We put

ε = µL(β)/2 + k + 1 +
∑

1≤i<j≤k

deg′ Pi deg′ Pj .

Here deg′ is the shifted degree. Then by using Lemma 47.3 in the previous subsec-
tion, we can show the following.

Lemma 38.17. The involution (47.15) preserves orientation if ε is even, and re-

verses orientation if ε is odd.

Proof. By Proposition 38.7, τ∗ : Mreg(J ; β) → Mreg(J ; β) is orientation preserving
if and only if µL(β)/2 is even. By the involution τ∗, each boundary marked point
zi is mapped to zi. Denote by M′reg

k+1(J ; β) the moduli space with the boundary
marked points (z0, z1, . . . , zk) respect the clock-wise orientation. Since z 7→ z re-
verses the orientation on the boundary, τ∗ : Mreg

k+1(J ; β) → M′reg
k+1(J ; β) respects

the orientation if and only if µL(β)/2 + k + 1 is even. Thus we have

Mreg
k+1(β;P1, . . . , Pk) = (−1)µL(β)/2+k+1M′reg

k+1(β;P1, . . . , Pk).
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Combining Lemma 47.3, we obtain Lemma 38.17. �

§47.3. Cyclic symmetry and orientation.

In this subsection, we describe the behavior of the orientation under the cyclic
symmetry and complete the proof of Proposition 37.27. First of all, we introduce a
version of the intersection pairing 〈, 〉 used in (37.26).

Definition 47.16. For a pair P1, P2 of smooth singular simplexes, which are

transversal and of complementary dimension, we define

〈P1, P2〉 := #(P1 ×L P2).

Remark 47.17. (1) Let Ni be the normal bundle of Pi in L. Extend Ni to a
tubular neighborhood of Pi, i = 1, 2. Then Pi is written as the zero locus of the
tautological section si of Ei on the tubular neighborhood. Then by Convention 45.1
(4), we find that

P1 ×L P2 = (s1;N1 → L) ×L (s2;N2 → L)

= (−1)deg P2·deg P1(s1 ⊕ s2)
−1(0).

Taking Convention 49.1 into account, we obtain

〈P1, P2〉 = (−1)deg P1·deg P2#(P1 ∩ P2).

Regard P1, P2 as currents T (P1), T (P2), respectively. Since we assumed that P1

and P2 intersects transversally, the product T (P1) ∧ T (P2) is defined. Then the
above observation is rephrased as

〈P1, P2〉 = (−1)deg P1·deg P2

∫

L

T (P1) ∧ T (P2) =

∫

L

T (P2) ∧ T (P1).

(2) In order to define the pairing on C•(L), we take the intersection number after
perturbation in a similar way to the A∞-structure.

Proposition 37.27 is a direct consequence of the following

Proposition 37.27’.

〈P0,mk,β(P1, . . . , Pk)〉 = (−1)deg′ Pk(deg′ P0+···+deg′ Pk−1)〈Pk,mk,β(P0, . . . , Pk−1)〉.

As in Lemma 47.3, we use the moduli space of bordered stable maps, which is
not the main component, i.e., the marked points do not respect the canonical cyclic
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ordering on the boundary. Here we apply the permutation of the zero-th and first
marked points. Let M′

k+1(β) be the moduli space with (z1, z0, z2, . . . , zk) respects
the counter clockwise orientation and write

M′
k+1(β;P0, P2, . . . , Pk) = (−1)ε′M′

k+1(β) ×L×···×L (P0 × P2 × . . . Pk),

where

ε′ = (n+ 1)
(
(k − 1) degP0 +

k−1∑

j=2

j∑

i=2

degPj

)
,

see Definition 47.1.

Lemma 47.18.

P0×LMk+1(β;P1, P2, . . . , Pk) = (−1)(deg P0+1)(deg P1+1)P1×LM′
k+1(β;P0, P2, . . . , Pk).

Proof. Denote by Li the target of the evaluation map corresponding to Pi and write

Mk+1(β) = L0 × ◦Mk+1(β)◦ × L1 × L2 · · · × Lk,

M′
k+1(β) = L1 × ◦M′

k+1(β)◦ × L0 × L2 × . . . Lk.

Note that Mk+1(β) = −M′
k+1(β), since the first two marked points are exchanged

and
◦Mk+1(β)′◦ = (−1)γ◦Mk+1(β)◦,

where γ = (dimL)2 + 1 ≡ n+ 1 mod 2. Taking (45.7) into account, by Definition
47.1, we have

Mk+1(β;P1, . . . Pk) = (−1)εL0 × ◦Mk+1(β)◦ × L1 × ◦P1 × · · · × Lk × ◦Pk,

where

ε = (n+ 1)
k−1∑

j=1

j∑

i=1

degPi

and

M′
k+1(β;P0, P2, . . . Pk) = (−1)ε′L1×◦M′

k+1(β)◦×L0×◦P0×P2×◦P2×· · ·×Lk×◦Pk.

Then we have

P0 ×L Mk+1(β;P1, P2, . . . , Pk)

=(−1)ε(P ◦
0 × L0) × ◦Mk+1(β)◦ × (L1 × ◦P1) × (L2 × ◦P2) × · · · × (Lk × ◦Pk)

=(−1)ε+δ(L1 × ◦P1) × ◦Mk+1(β)◦ × (P ◦
0 × L0) × (L2 × ◦P2) × · · · × (Lk × ◦Pk)

=(−1)ε+δ+γ(P ◦
1 × L1) × ◦M′

k+1(β)◦ × (L0 × ◦P0) × (L2 × ◦P2) × · · · × (Lk × ◦Pk)

=(−1)ε+δ+γ+ε′P1 ×L M′
k+1(β;P0, P2, . . . , Pk),
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where
δ = p0p1 + (n+ 1)(p0 + p1)k, (pi = dimPi).

In the second equality, we note that

dim ◦Mk+1(β)◦ = n+ µ(β) + k + 1 − 3 − k(n+ 1) ≡ (n+ 1)k mod 2.

We used
L× ◦P = P = L× P ◦

in the third equality. Noting that

ε+ ε′ ≡ (n+ 1)(k + 1)(p0 + p1) mod 2,

we have

ε+ δ + γ + ε′ ≡ (n+ 1 + p0)(n+ 1 + p1) ≡ (degP0 + 1)(degP1 + 1) mod 2.

Hence the proof of Lemma 47.18 is complete. �

Proof of Proposition 37.27’. Proposition 37.27’ follows from Lemma 47.3 and Lemma
47.18. �

§48. The filtered A∞ algebra case.

We recall that, when we study the structure of the filtered A∞ algebra associated
to a Lagrangian submanifold L, we use the main component of the moduli space.
(See §2.2 for the definition of the main component.) So we choose the order of the
marked points on the boundary so that it is consistent with the counter clockwise
orientation of the boundary. Let [Pi, fi] ∈ Cgi(L,Λ0,nov).

By Definition 47.1 we have :

Mmain
k+1 (β;P1, . . . , Pk) := (−1)ε1Mmain

k+1 (L; β)(ev1,... ,evk) ×f1×···×fk

(
k∏

i=1

Pi

)
,

where

ε1 = (n+ 1)
k−1∑

j=1

j∑

i=1

degPi.
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We will check signs and complete the proof of Theorem 10.11, which states that
(C(L; Λ0,nov),m) is a filtered A∞ algebra. There are two points where we need to

check signs. The first one is in the proof of d̂ ◦ d̂ = 0, and the second one is in
the comparison of our orientation on (Mmain

3 (L, β0;P1, P2), ev0) with the geometric
orientation on P1∩P2. (Note β0 = 0.) We will check the first part in this subsection
and the second one in the next subsection. To prove (10.17.1) and (10.17.2), we
need the following Proposition 48.1 (2) and (1), respectively.

Proposition 48.1. (1) For β = β1 + β2, we have

Mmain
k−k2+2(β1;P1, . . . , Pi−1,Mmain

k2+1(β2;Pi, . . . , Pi+k2−1), Pi+k2
, . . . , Pk)

⊂ (−1)ε2∂Mmain
k+1 (β;P1, . . . , Pi−1, Pi, . . . , Pi+k2−1, Pi+k2

, . . . , Pk),

where

ε2 = n+ 1 +
i−1∑

j=1

(degPj + 1).

(2) We have

Mmain
k+1 (β;P1, . . . , ∂Pi, . . . , Pk) ⊂ (−1)ε3∂Mmain

k+1 (β;P1, . . . , Pi, . . . , Pk),

where

ε3 = 1 +
i−1∑

j=1

(degPj + 1).

Proof. The proof of (1) is divided into several steps.
Step 1. We note that the main component is not preserved by the change the order
of marked points except by cyclic permutations. However we will use the compo-
nents other than main components at the intermediate stage of the calculation.
From Proposition 10.2, we note that

degMmain
k2+1(β2;Pi, . . . , Pi+k2−1) ≡

i+k2−1∑

j=i

(degPj + 1) ( mod 2 ).

Then by using Lemma 47.3 repeatedly, we find

Mmain
k−k2+2(β1;P1, . . . ,Mmain

k2+1(β2;Pi, . . . , Pi+k2−1), Pi+k2
, . . . , Pk)

⊆ (−1)δ1Mk−k2+2(β1;Mmain
k2+1(β2;Pi, . . . , Pi+k2−1), P1, . . . , Pi−1, Pi+k2

, . . . , Pk),

where

δ1 =

(
1 +

i+k2−1∑

j=i

(degPj + 1)

)(i−1∑

j=1

(degPj + 1)

)
.
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Step 2. Next, we compare the orientation on

Mk−k2+2(β1;Mmain
k2+1(β2;Pi, . . . , Pi+k2−1), P1, . . . , Pi−1, Pi+k2

, . . . , Pk)

with that on

∂Mk+1(β;Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk).

By Definition 47.1, we have

Mk+1(β;Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk)

=(−1)γ1Mk+1(β)(ev1,... ,evk) ×




i+k2−1∏

j=i

Pj ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,

where

γ1 = (n+ 1)

(
i+k2−1∑

j=i

j∑

`=i

degP` +

i−1∑

j=1

(i+k2−1∑

m=i

degPm +

j∑

`=1

degP`

)

+
k−1∑

j=i+k2

(i+k2−1∑

m=i

degPm +
i−1∑

m=1

degPm +

j∑

`=i+k2

degP`

))
.

Using the iteration formula Lemma 45.3 (3), we have

Mk+1(β)(ev1,... ,evk) ×




i+k2−1∏

j=i

Pj ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj




=(−1)γ2


Mk+1(β)(ev1,... ,evk2

) ×




i+k2−1∏

j=i

Pj






(evk2+1,... ,evk) ×




i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,

where

γ2 = (k − k2)n
(
k2n+

i+k2−1∑

j=i

(n− degPj)
)
≡ (k − k2)n

i+k2−1∑

j=i

degPj .
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When we glue two holomorphic discs together with marked points, our convention
(see Remark 46.4) of the ordering of marked points and of the boundary orientation
(and Proposition 46.3) show that

∂


Mk+1(β)(ev1,... ,evk2

) ×




i+k2−1∏

j=i

Pj






(evk2+1,... ,evk) × (

i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj)

⊃(−1)γ3

((
Mk−k2+2(β1)ev

β1
1

×
ev

β2
0

Mk2+1(β2)
)

(evβ
1 ,... ,evβ

k2
) ×




i+k2−1∏

j=i

Pj



)

(evβ

k2+1,... ,evβ

k
) ×




i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,

where

γ3 = (k − k2)(k2 − 1) + n+ k − k2 + 1 ≡ n+ 1 + kk2 + k2 (mod 2).

By the associativity property Lemma 45.3 (2) and Definition 53.1, we have

((
Mk−k2+2(β1)ev

β1
1

×
ev

β2
0

Mk2+1(β2)
)

(evβ
1 ,... ,evβ

k2
) ×




i+k2−1∏

j=i

Pj



)

(evβ

k2+1,... ,evβ

k
) ×




i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj




=

(
Mk−k2+2(β1)ev

β1
1

×
ev

β2
0


Mk2+1(β2)(ev

β2
1 ,... ,ev

β2
k2

)
×




i+k2−1∏

j=i

Pj





)

(evβ

k2+1,... ,evβ

k
) ×




i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj




=(−1)γ4

(
Mk−k2+2(β1)ev

β1
1

×
ev

β2
0

Mk2+1(β2;Pi, . . . , Pi+k2−1)

)

(evβ

k2+1
,... ,evβ

k
) ×




i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,

where

γ4 = (n+ 1)

i+k2−2∑

j=i

j∑

`=i

degP`.
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Again by using the iteration formula, we find that

(
Mk−k2+2(β1)ev

β1
1

×
ev

β2
0

Mk2+1(β2;Pi, . . . , Pi+k2−1)

)

(evβ

k2+1,... ,evβ

k
) ×




i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj




=(−1)γ5Mk−k2+2(β1)(ev
β1
1 ,... ,ev

β1
k−k2+1

)
×

(
Mk2+1(β2;Pi, . . . , Pi+k2−1) ×




i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj



)

=(−1)γ5+γ6Mk−k2+2(β;Mk2+1(β2;Pi, . . . , Pi+k2−1), P1, . . . , Pi−1, Pi+k2
, . . . , Pk),

where

γ5 = n(k − k2)(2n−
i+k2−1∑

j=i

(degPj + 1)) ≡ n(k − k2)


k2 +

i+k2−1∑

j=i

degPj


 ,

γ6 = (n+ 1)

(
degMk2+1(β2;Pi, . . . , Pi+k2−1)

+

i−1∑

j=1

(
degMk2+1(β2;Pi, . . . , Pi+k2−1) +

j∑

`=1

degP`

)

+

k−1∑

j=i+k2

(
degMk2+1(β2;Pi, . . . , Pi+k2−1) +

i−1∑

m=1

degPm +

j∑

`=i+k2

degP`

))

= (n+ 1)

(
(k − k2)

(
k2 +

i+k2−1∑

m=i

degPm

)
+ (k − i− k2)

(
i−1∑

m=1

degPm

)

+

i−1∑

j=1

j∑

`=1

degP` +

k−1∑

j=i+k2

j∑

`=i+k2

degP`


 .

Then an elementary calculation shows that

γ1 + γ2 + γ3 + γ4 + γ5 + γ6 ≡ n+ 1 (mod 2) .

Hence we have found that

Mk−k2+1(β1;Mmain
k2+1(β2;Pi, . . . , Pi+k2−1), P1, . . . , Pi−1, Pi+k2

, . . . , Pk)

⊂ (−1)n+1∂Mk+1(β;Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk).
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Step 3. On the other hand, by using Lemma 47.3 again, we can see that

Mk+1(β;Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk)

= (−1)δ2Mmain
k+1 (β;P1, . . . , Pi−1, Pi, . . . , Pi+k2−1, Pi+k2

, . . . , Pk),

where

δ2 =

(i+k2−1∑

j=i

(degPj + 1)

)(i−1∑

j=1

(degPj + 1)

)
.

Therefore we have

δ1 + n+ 1 + δ2 ≡ n+ 1 +

i−1∑

j=1

(degPj + 1) ( mod 2 ),

which proves Proposition 48.1 (1).

(2) We prove Proposition 48.1 (2). We recall that

Mmain
k+1 (β;P1, . . . , Pi, . . . , Pk) = (−1)ε1Mmain

k+1 (β)(ev1,... ,evk) ×f1×···×fk




k∏

j=1

Pj




with

ε1 = (n+ 1)
k−1∑

j=1

j∑

`=1

degP`.

By Lemma 45.3 (1), we find that

∂
(
Mmain

k+1 (β)(ev1,... ,evk) ×f1×···×fk




k∏

j=1

Pj






=∂Mmain
k+1 (β)(ev1,... ,evk) ×f1×···×fk




k∏

j=1

Pj




⊔
(−1)n+k+nkMmain

k+1 (β)(ev1,... ,evk) ×f1×···×fk
∂




k∏

j=1

Pj


 ,

because dimMmain
k+1 (β) = n+ µ(β)− 3 + k + 1 ≡ n+ k. Moreover by using Lemma

45.3 again, it is easy to see that

∂




k∏

j=1

Pj


 =

k⊔

i=1

(−1)
Pi−1

j=1 dim PjP1 × · · · × ∂Pi × · · · × Pk.
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On the other hand, Definition 47.1 yields that

Mmain
k+1 (β;P1, . . . , ∂Pi, . . . , Pk)

=(−1)ε2Mmain
k+1 (β)(ev1,... ,evk) ×f1×···×fk

(

i−1∏

j=1

Pj × ∂Pi ×
k∏

j=i+1

Pj)

with

ε2 = (n+ 1)

k−1∑

j=1

j∑

`=1

(degP`)
′

,

where

(degP`)
′

=

{
degP` for ` 6= i

degP` + 1 for ` = i.

Therefore we can see that

ε1 + n+ k + nk +

i−1∑

j=1

(n− degPj) + ε2 ≡
i−1∑

j=1

(degPj + 1) + 1 (mod 2),

which proves Proposition 48.1 (2). �

Then Proposition 48.1 (1) and (2) imply (10.17.2) and (10.17.1) respectively.
Therefore we complete proving that

d̂ ◦ d̂ = 0

in (C(L; Λ0,nov),m).

§49. Orientation on the moduli space of constant maps.

Next, let us assume that P1 and P2 are oriented submanifolds. Considering the
moduli space of constant maps Mmain

3 (L, β0;P1, P2), we have Mmain
3 (L, β0;P1, P2) =

P1 ∩ P2 as sets. We have to study the difference of orientations between them. To
do this, we firstly confirm the convention on orientation on P1 ∩ P2.

Convention 49.1. We assume P1 and P2 are submanifolds in L and intersect
transversally. We denote the dimensions of L, P1 and P2 by n, p1 and p2. Suppose
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that L, P1 and P2 are oriented. Take x ∈ P1 ∩ P2. The orientation on the normal
bundle NPi

L of Pi (i = 1, 2) in L is defined by

TxL = Nx,Pi
L× TxPi.

Since P1 and P2 intersect transversally, we may assume that Nx,P1
L ⊂ TxP2 and

Nx,P2
⊂ TxP1. Then we define the orientation on P1 ∩ P2 by

TxL = Nx,P1
L×Nx,P2

L× Tx(P1 ∩ P2).

Remark 49.2. The convention defines “cohomology orientation” on P1∩P2. Namely
we have P1 ∩ P2 = (−1)(n−p1)(n−p2)P2 ∩ P1.

Then we can show the following;

Proposition 49.3. We can give an oriented Kuranishi structure on Mmain
3 (L; β0)

so that we have the following oriented isomorphism

ev0 : Mmain
3 (L; β0)(ev1,ev2) ×f1×f2

(P1 × P2) → (−1)n(p1+p2)+p1(n−p2)P1 ∩ P2.

Note that since we have from Definition 47.1

Mmain
3 (L; β0;P1, P2) = (−1)(n+1) deg P1Mmain

3 (L; β0)(ev1,ev2) ×f1×f2
(P1 × P2),

we can immediately obtain the following consequence.

Corollary 49.4. Using the oriented Kuranishi structure on Mmain
3 (L; β0) in Propo-

sition 49.3, we have

(Mmain
3 (L; β0;P1, P2), ev0) = (−1)deg P1(deg P2+1)P1 ∩ P2.

Proof of Proposition 49.3. In order to show Proposition 49.3, we are going to explic-
itly describe (weakly submersive) Kuranishi structures on Mmain

3 (L; β0), P1×P2 and
their fiber product. Firstly, we describe the Kuranishi structure on Mmain

3 (L; β0).
We like to study orientation on the Kuranishi structure on Mmain

3 (L; β0). Since
Mmain

3 (L; β0) consists of constant maps, the argument is a local problem. Here we
shall consider the case L = Rn and M = Cn with the standard orientations. We
put three marked points z0 = 1, z1 =

√
−1, z2 = −1 on the boundary of the unit

disc D2. The maps ev1 and ev2 on Mmain
3 (L; β0) are the evaluation maps at z1 and

z2, respectively.
Now we put

U :=

{
ua,b : D2 → Cn

∣∣∣∣ ua,b(z) =
1

2
a
√
−1z + b− 1

2
a
√
−1z, a, b ∈ Rn

}

E := {(ua,b, c) | z ∈ D2, a, b, c ∈ Rn}
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and define a section s : U → E by s(ua,b) = (ua,b, a). Then the moduli space
Mmain

3 (L; β0) of constant maps to L is nothing but s−1(0) ' Rn
b .

Of course, U can be identified with Rn
a × Rn

b which can be regarded as T∗L ×
T∗L, and E is a trivial vector bundle over U with fiber Rn ∼= T∗L. Applying the
argument in §44.1 to Mmain

3 (L; β0), the orientation in this case is given by the
orientation of L after identifying it with the target L via ev0. We must provide
the orientation on U and the fiberwise orientation on E respectively so that the
orientation of Mmain

3 (L; β0) is consistent with the orientation of (s; E → U) in
the sense of Kuranishi structure. From now on, we give U an orientation through
identification with T∗L× T∗L and the fiber orientation of E through identification
with Rn ∼= T∗L and (s; E → U) gives a Kuranishi structure on Mmain

3 (L; β0).
Note that the evaluation map (ev1, ev2) : U → L× L, which is given by

(ev1, ev2)(ua,b) = (a+ b, b),

is an orientation preserving map. We have an orientation preserving identification

E∗ × T∗Mmain
3 (L; β0) = T∗U = T∗L× T∗L.

Secondly, we describe the Kuranishi structure on P1 × P2. Let Ui ⊂ L be a
tubular neighborhood of Pi in L (i = 1, 2). Let NPi

be the normal bundle of Pi in
L and si : Ui → NPi

the canonical section. Then (si;NPi
→ Ui) gives a Kuranishi

structure on Pi. Namely Pi = s−1
i (0) and the orientation is given by

NPi
|xi

× Txi
s−1

i (0) = Txi
Ui

∼= Txi
L

for xi ∈ Pi. Thus Pi = s−1
i (0) as an oriented space. The product of the Kuranishi

structures (s1 ⊕ s2;NP1
⊕NP2

→ U1 × U2) gives a Kuranishi structure on P1 × P2.
Then by Convention 45.1.(4), the relation between the orientation defined by the
Kuranishi structure and the product orientation on P1 × P2 is as following :

P1 × P2 = (−1)p1(n−p2)(s1 ⊕ s2)
−1(0),

because we have

NP1x1
×NP2x2

× T (s1 ⊕ s2)
−1(0)(x1,x2)

= Tx1
U1 × Tx2

U2

= (NP1x1
× Tx1

P1) × (NP2x2
× Tx2

P2)

= (−1)p1(n−p2)NP1x1
×NP2x2

× Tx1
P1 × Tx2

P2.

(See Convention 45.1 (4).)
Now, for two submersions;

(ev1, ev2) : U → U1 × U2, id = identity : U1 × U2 → U1 × U2,
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we consider the fiber product of Kuranishi structures

(s⊕ s1 ⊕ s2; E ⊕NP1
⊕NP2

→ U (ev1,ev2) ×id (U1 × U2)),

which gives a Kuranishi structure on Mmain
3 (L; β0)(ev1,ev2) ×f1×f2

(P1 ×P2). As for
the orientation, we have from Convention 45.1 (4),

(49.5)

Mmain
3 (L; 0)(ev1,ev2) ×f1×f2

(P1 × P2)

= (−1)rank(NP1
⊕NP2

)(dimMmain
3 (L;0)−dim U1×U2)

× (−1)p1(n−p2)(s⊕ s1 ⊕ s2)
−1(0)

= (−1)n(p1+p2)+p1(n−p2)(s⊕ s1 ⊕ s2)
−1(0).

Now we are going to compare the orientation on (s ⊕ s1 ⊕ s2)
−1(0) with that on

P1 ∩ P2. The orientation on (s⊕ s1 ⊕ s2)
−1(0) is defined by

E∗ ×NP1∗ ×NP2∗ × T∗(s⊕ s1 ⊕ s2)
−1(0) = T∗(U (ev1,ev2) ×identity (U1 × U2)).

Then we will show

Lemma 49.6. The isomorphism

ev0 : (s⊕ s1 ⊕ s2)
−1(0) → P1 ∩ P2

is orientation preserving.

Proof of Lemma 49.6: The orientations of P1 ∩ P2 and (s⊕ s1 ⊕ s2)
−1(0) are given

by the following exact sequences respectively:

0 → T∗(P1 ∩ P2) → T∗L→ NP1
⊕NP2

→ 0

and

0 → T∗(s⊕ s1 ⊕ s2)−1(0) → T∗
(
Uev1,ev2

×id (U1 ×U2)
)
→ E ⊕π∗

1NP1
⊕π∗

2NP2
→ 0.

We consider the following commutative diagram, which relates two exact sequences
above.

E∗ id−→
⊕

0 −→ T∗(P1 ∩ P2) −→ T∗L −→
I ↑ Φ ↑

0 −→ T∗(s⊕ s1 ⊕ s2)
−1(0) −→ T∗

(
Uev1,ev2

×id (U1 × U2)
)

−→
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id−→ E∗
⊕

−→ NP1
⊕NP2

−→ 0
Ψ ↑

−→ E ⊕ π∗
1NP1

⊕ π∗
2NP2

−→ 0

where vertical isomorphisms are given as follows: I is the restriction to T∗(s⊕ s1 ⊕
s2)

−1(0) of the differential of the evaluation map from the Kuranishi neighborhood,

i.e., ev0 :
(
Uev1,ev2

×id (U1 × U2)
)
→ L. In other words,

I = T∗ev0 : T∗(s⊕ s1 ⊕ s2)
−1(0) → T∗(P1 ∩ P2)

and can be explicitly written as

I((0, v), v, v) = v.

The maps Φ and Ψ are defined as

Φ((a, b), v1, v2) = (a, pr1(v1) + pr2(v2) + pr3(b)) with v1 = a+ b, v2 = b,

and
Ψ(u, v1, v2) = (u, v1, v2).

Here pri is the i-th factor projection of T∗L = NP1
⊕ NP2

⊕ (P1 ∩ P2). Because
the isomorphisms Φ and Ψ preserve their orientations, it follows from the diagram
chasing argument that the isomorphism I also preserves orientations. This finishes
the proof. �

Therefore, combining (49.5) and Lemma 49.6, we complete the proof of Proposition
49.3.

§50. Orientation of the moduli space of connecting orbits.

In §44.3, we described the orientation on the moduli space of connecting orbits.
In this section, we will give orientations on the moduli spaces of marked pseudo-
holomorphic strips and their fiber products with smooth singular simplexes on L(i).
They are used to define the filtered A∞ bimodule structure.

Suppose that a pair (L(0), L(1)) of Lagrangian submanifolds of (M,ω) is relatively
spin and intersect transversally. (See Definition 44.2 for the relative spin structure
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for the pair (L(0), L(1)).) Choose and fix the path λp of oriented Lagrangian linear

subspaces and a trivialization of the bundle λ̃p for p ∈ L(0) ∩ L(1). (See §44.3.)
From now on, we abbreviate these data in the notation of the moduli spaces.

Now let [`p, w], [`q, w
′] ∈ Cr(L(1), L(0)). (See §3.2 for the definition of Cr(L(1), L(0)).)

We denote by M̃reg([`q, w
′], [`p, w]) = M̃reg(L(1), L(0); [`q, w

′], [`p, w]) the space of
pseudo-holomorphic maps u from the infinite cylinder R× [0, 1] ⊂ C to M such that

u(−∞, t) = p, u(+∞, t) = q, u(R × {i}) ⊂ L(i) (i = 0, 1) and w#u ∼ w.′

Note that this notation is different from one in §12 in Chapter 3, where the above

moduli space is denoted by M̃reg([`p, w], [`q, w
′]). Recall that we adopt different

notation only for the orientation business. See the top of §44.3. (For simplicity of

notations, we often omit L(0) and L(1) in M̃(L(1), L(0); [`q, w
′], [`p, w]) etc.) From

now on, we identify the infinite cylinder R × [0, 1] with D2 \ {±1} ⊂ C so that the
ends {+∞} × [0, 1] and {−∞} × [0, 1] correspond to z0 = 1 and z1 = −1 respec-
tively. Then the relative spin structure of (L(0), L(1)) determines the orientation on

M̃reg([`q, w
′], [`p, w]) by Theorem 44.14 in §44.

We put

∂1D
2 = {z ∈ ∂D2 | Im z > 0}, ∂0D

2 = {z ∈ ∂D2 | Im z < 0}.

We denote by M̃reg
`,m([`q, w

′], [`p, w]) the space of connecting orbits

u : (D2 \ {±1}; ∂1D
2, ∂0D

2) → (M ;L(1), L(0))

with ` marked points on ∂1D
2 and m marked points are on ∂0D

2 such that the
following holds. u(−1) = p and u(1) = q. The marked points are distinct. 2nd, 3rd,
. . . ,(`+ 1)-th marked points z2, · · · , z`+1 are on ∂1D

2 and `+ 2-th, . . . ,`+m+ 1-
th marked points z`+2, . . . ,z`+m+1 are on L(0). If we put z0 = 1, z1 = −1, then
the order of the marked points z0, z2, · · · , z`+1, z1, z`+2, . . . , z`+m+1 respects the
counter clockwise orientation of ∂D2. (See Remark 22.23 (2) and Figure 12.2.)

The space M̃reg
`,m([`q, w

′], [`p, w]) is an open subset of M̃reg([`q, w
′], [`p, w]) ×

(∂D2)`+m. So, under this convention, the orientation on M̃reg
`,m([`q, w

′], [`p, w]) is
given by

M̃reg
`,m([`q, w

′], [`p, w]) ⊂ M̃reg([`q, w
′], [`p, w]) × (∂D2

2 × · · · × ∂D2
`+m+1),

where ∂D2
i is a parameter space of the marked points zi (i = 2, . . . , `+m+ 1).

We denote by M`,m([`q, w
′], [`p, w]) the quotient space of M̃`,m([`q, w

′], [`p, w])
by the biholomorphic automorphism group R of D2 fixing the two marked points
z0 = +1 and z1 = −1. (See Definition 5.1.)
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The orientation on M`,m([`q, w
′], [`p, w]) is defined as the quotient orientation

defined in §45. As in §46, we simply write as

M̃reg
`,m([`q, w

′], [`p, w]) = Mreg
`,m([`q, w

′], [`p, w]) × R.

Let P
(1)
1 , . . . , P

(1)
` ∈ C(L(1); Q), P

(0)
1 , . . . , P

(0)
m ∈ C(L(0); Q) be smooth singular

simplexes on L(i), i = 0, 1.

We define

Definition 50.1.

Mreg
`,m(L(1), L(0); [`q, w

′], [`p, w] : P
(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P (0)

m )

= Mreg
`,m([`q, w

′], [`p, w] : P
(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P (0)

m )

:= (−1)εMreg
`,m([`q, w

′], [`p, w])(ev2,... ,ev`+1,ev`+2,... ,ev`+m+1)×(∏̀

k=1

P
(1)
k ×

m∏

k=1

P
(0)
k

)
,

where we define ε as follows. Let µ([`p, w]) be the Maslov-Morse index in Definition
3.12. (We omit λ0 from the notation µ([`p, w];λ0), since the parity of µ([`p, w];λ0)
is independent of λ0. It is independent of w also.) We put :

if m = 0,

ε =(n+ 1)
`−1∑

k=1

k∑

j=1

degP
(1)
j + `(n+ 1)µ([`p, w])

+ µ([`q, w
′]) + (µ([`p, w]) + 1)

∑̀

k=1

(
degP

(1)
k + 1

)
,

and if m > 1,

ε =(n+ 1)


∑̀

k=1

k∑

j=1

degP
(1)
j +

m−1∑

k=1



(∑̀

h=1

degP
(1)
h

)
+

k∑

j′=1

degP
(0)
j′






+ µ([`q, w
′]) + (µ([`p, w]) + 1)

∑̀

k=1

(
degP

(1)
k + 1

)
+ (`+m)(n+ 1)µ([`p, w]).
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Remark 50.2. (1) When we regard the space of connecting orbits as a space of
pseudo-holomorphic maps from the unit disc, this sign is nothing but one determined
by the rule in Definition 47.1. Note that the way we treat the first two marked points
z0, z1 is different from the way we treat the other marked points. This is because

we need to do so when we define the orientation on the space M̃([`q, w
′], [`p, w]).

Namely, we glue half discs at these marked points and after gluing these marked
points disappear.

(2) We discuss the case when L(0) and L(1) intersect cleanly, in §51.

The space M`,m([`q, w
′], [`p, w] : P

(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P

(0)
m ) is the stable map

compactification of Mreg
`,m([`q, w

′], [`p, w]) : P
(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P

(0)
m ) and is a

space with Kuranishi structure with corners. Note that the orientation bundle of the
Kuranishi structure naturally extends to the stable map compactification. Hence

M`,m([`q, w
′], [`p, w]) : P

(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P

(0)
m ) is also canonically oriented.

Using these oriented moduli spaces of dimension 0, we define n`,m by

〈n`,m(P
(1)
1 ⊗ · · · ⊗ P

(1)
` ⊗ [`p, w] ⊗ P

(0)
1 ⊗ · · · ⊗ P (0)

m ), [`q, w
′]〉

:=#M`,m([`q, w
′], [`p, w]) : P

(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P (0)

m )

as in Definition 12.41. Then we can show

Proposition 50.3. The operators n`,m satisfy the A∞ bimodule formulae.

Proof: We have three kinds of ends of the moduli space

(50.4) M`,m([`q, w
′], [`p, w] : P

(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P (0)

m ).

The ends corresponding to bubbling off of holomorphic discs are treated in a similar
way to the proof of Proposition 48.1 (1). (These contributions cancel with the A∞
algebra operations on L(i), i = 0, 1.) We see that other boundary contributions
cancel one another.

We find that

(50.5)
(−1)ε1M`,m([`q, w

′], [`p, w] : P
(1)
1 , . . . , ∂P

(1)
j , . . . , P

(1)
` ;P

(0)
1 , . . . , P (0)

m )

⊂∂M`,m([`q, w
′], [`p, w] : P

(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P (0)

m ),

where ε1 = µ([`q, w
′]) + n+ 1 +

∑j−1
i=1 (degP

(1)
i + 1).

(50.6)
(−1)ε2M`,m([`q, w

′], [`p, w] : P
(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , ∂P

(0)
j , . . . , P (0)

m )

⊂∂M`,m([`q, w
′], [`p, w] : P

(1)
1 , . . . , P

(1)
` ;P

(0)
1 , . . . , P (0)

m ),

where

ε2 = µ([`q, w
′]) + n+ 1 +

∑̀

i=1

(degP
(1)
i + 1) + (µ([`p, w]) + 1) +

j−1∑

i=1

(degP
(0)
i + 1).
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For the proof of (50.5) and (50.6), see (51.12.2) and (51.12.3) and the proof of
Theorem 51.10 (2) in the next section, where we will prove more general statement,
combined with Definitions 51.8 and 51.11.

Other ends of the moduli space (50.4) correspond to the splitting of a connecting
orbit into the sum of two connecting orbits. As for the orientation given in §44.3
and Convention 49.1, we can show that the gluing map

M̃([`q, w
′], [`r, w

′′]) × M̃([`r, w
′′], [`p, w]) → M̃([`q, w

′], [`p, w
′′])

respects their orientations. Note that the orientations we use are ones in §44.3.
These orientations are modified in Definition 50.1.

Now we consider the R-action defined as the translation in τ -variable. By our
convention in §45, we have the following analog of Lemma 46.5.

(−1)ε3M([`q, w
′], [`r, w

′′]) ×M([`r, w
′′], [`p, w]) ⊂ ∂M([`q, w

′], [`p, w]),

where ε3 = µ([`q, w
′]) − µ([`r, w

′′]) − 1. We will find a more general claim in the
proof of Theorem 51.10 (3). Using this fact, we find that

(−1)ε4M`1,m1
([`q, w

′], [`r, w
′′] : P

(1)
1 , . . . , P

(1)
`1

;P
(0)
1 , . . . , P (0)

m1
)

×M`2,m2
([`r, w

′′].[`p, w] : P
(1)′
1 , . . . , P

(1)′
`2

;P
(0)′
1 , . . . , P (0)′

m2
)

⊂∂M`.m([`q, w
′], [`p, w] : P

(1)
1 , . . . , P

(1)
`1
, P

(1)′
1 , . . . , P

(1)′
`2

;P
(0)′
1 , . . . , P (0)′

m2
, P

(0)
1 , . . . , P (0)

m1
),

where ε4 = µ([`q, w
′]) + 1 +

∑`1
i=1(degP

(1)
i + 1), cf. (51.12.4).

The rest of the argument is now standard. �

§51. The Bott-Morse case.

We discuss the orientation problem for the space of connecting orbits in general
Bott-Morse setting. First of all, we review some notations in §12. Let L(0) and
L(1) be two Lagrangian submanifolds which intersect cleanly. We denote by Rh a
connected component of L(0) ∩ L(1). We define

Vh =
(TL(0) + TL(1))

(TL(0) + TL(1))⊥ω

∣∣∣∣
Rh

.

Vh is a vector bundle on Rh. We regard Vh as a subbundle of TM |Rh
.
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For each point p in Rh, we denote by PRh
(TpL

(0), TpL
(1)) the space of all paths

in the oriented Lagrangian Grassmannian of TpM such that it is of the form t 7→
λ(t) ⊕ TpRh and satisfies λ(0) ⊕ TpRh = TpL

(0), λ(1) ⊕ TpRh = TpL
(1). Here λ(t)

is a path of Lagrangian subspaces in Vh|p. In Chapter 3, we consider the case that

λ(t) ⊕ TpRh = λw,λ0 .

We like to remark that Rh itself may not be orientable. We write

PRh
(TL(0), TL(1)) =

⋃

p∈Rh

PRh
(TpL

(0), TpL
(1)).

Denote by λ̃p the Lagrangian subbundle in [0, 1] × TpM corresponding to the
path λ⊕ TpRh.

In this section we consider a connecting orbit as a holomorphic map u : D2 →M
such that u(∂0D

2) ⊂ L(0), u(∂1D
2) ⊂ L(1), u(1) = q ∈ Rh′ and u(−1) = p ∈ Rh,

where ∂0D
2 is the arc with negative imaginary part and ∂1D

2 is the arc with positive
imaginary part. We denote by

M(Rh′, Rh)

the moduli space of such maps u. We remark that the order of Rh′ , Rh in the
notation above is opposite to the convention in §12. (See the top of §44.3.) Namely

M(Rh′, Rh) =
⋃

w′

M0,0([h,w], [h′, w′])

where the right hand side is as in Proposition 12.55. (Note we fix w and take a sum
over w′ in the right hand side.)

We recall

Z− = (D2 ∩ {Rez ≤ 0}) ∪ ([0,∞)× [0, 1])

Z+ = ((−∞, 0] × [0, 1]) ∪ (D2 ∩ {Rez ≥ 0}).

The Dolbeault operators

∂λ⊕TRh,Z±
: W 1,p

λ⊕TRh
(Z±;T0M) → Lp(Z±;TpM ⊕ Λ0,1(Z±))

are defined in §12.5. (See right before Definition 12.62.)
{∂λ⊕TRh,Z±

}λ⊕TRh∈PRh
(TL(0),TL(1)) is a family of elliptic operators parameter-

ized by PRh
(TL(0), TL(1)). We will show that there exists a fiber bundle Ĩ(Rh) →

PRh
(TL(0), TL(1)) such that the pull-back of the determinant line bundle descends

to Rh.
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We note that Remark 44.15 (1) is generalized to our situation in the following way.
Using the notations there, and putting λp(t) = λ(t) ⊕ TRh, we have isomorphisms

Index(∂up;λp,λp
) ∼= Index(∂λp,Z+

) ⊕ TpRh ⊕ Index(∂λp,Z−
)

and
Index(∂up;λp,λp

) ∼= TpL
(0).

Therefore the orientation of TpRh ⊕ Index(∂λ⊕TRh,Z−
) determines the orientation

on Index(∂λ⊕TRh,Z+
).

Pick and fix λp ∈ PRh
(TpL

(0), T
(1)
p ). Gluing the operator ∂λp,Z+

and a family

of operators ∂λ′
p,Z−

parameterized by λ′p ∈ PRh
(TpL

(0), T
(1)
p ), we obtain a family

of Dolbeault operators on D2 with totally real boundary condition parameterized

by PRh
(TpL

(0), T
(1)
p ). In a similar way as in Remark 44.15 (3), we find that the

determinant line bundle of this family is non-trivial on each connected component

of PRh
(TpL

(0), T
(1)
p ). Since TpL

(0) is oriented and the operator ∂λp,Z+
does not

depend on λ′p, the determinant line bundle of the family ∂λ′
p,Z−

is non-trivial.

Now we introduce a family version of I(p) and Ĩ(p) in §44.3. Denote by I(Rh)

the space of paths λp and trivializations σ : [0, 1] × Rn → λ̃p. For σ, we consider

ιi : (Spin(n) × Spin(Vp)) /{±} → Pspin(L(i), V )|p, which is a lift of σt=i∗, i = 0, 1.

We define Ĩ(Rh) as the space of quadruples (λp, σ, ι0, ι1). Note that there is a
sequence of natural projections

Π : Ĩ(Rh) → I(Rh) → PRh
(TL(0), TL(1)) → Rh.

Denote by D(Rh)− the pull-back of the family {∂λ′
p,Z−

} of operators to Ĩ(Rh).
Then we can show the following:

Proposition 51.1. The determinant line bundle of the index bundle of the family

D(Rh)− descends to a real line bundle on Rh.

Proof. Note that Π−1(p) ⊂ Ĩ(Rh) is not connected. (This is because

PRh
(TpL

(0), TpL
(1)) ⊂ PRh

(TL(0), TL(1)), p ∈ Rh

is not connected.) Thus we firstly present the way to compare the determinant lines
of the indices for λ and λ′ in different connected components.

Let λ⊕TpRh ∈ PRh
(TpL

(0), TpL
(1)). We can twist the trivial pair Z−× TpM by

gluing a complex vector bundle E of rank n on CP 1 as follows. Pick an isomorphism
from TpM to the fiber ES at the south pole S ∈ CP 1 and identify the fiber of
Z− × TpM at O ∈ Z− and ES to obtain a vector bundle (Z− × TpM) ∨E over the
one-point union Z− ∨ CP 1. We denote by

cont : Z− → Z− ∨ CP 1
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the mapping obtained by collapsing a small circle around O ∈ Z− and write

(Z− × TpM,λ⊕ TpRh)#(CP 1, E) = cont∗((Z− × TpM,λ⊕ TpRh) ∨E).

For each λ⊕TpRh, λ
′⊕TpRh ∈ PRh

(TpL
(0), TpL

(1)), there exists a complex vector
bundle E on CP 1 such that

(Z− × TpM,λ′ ⊕ TpRh) ∼= (Z− × TpM,λ⊕ TpRh)#(CP 1, E).

Therefore, by the index sum formula, we have

Index(∂λ′⊕TRh,Z−
) ∼= Index(∂E) ⊕ Index(∂λ⊕TRh,Z−

).

Note that the index of the Dolbeault operator ∂E has a canonical orientation as a
complex virtual vector bundle. Hence the orientation of Index(∂λ′⊕TRh,Z−

) deter-

mines the orientation of Index(∂λ⊕TRh,Z−
) in the way independent of the choice of

E.
Next we prove that the determinant line bundle of D(Rh) restricted to each

connected component of Π−1(p) is trivial. Combining the above argument, the
determinant line bundle descends to Rh. (Since the determinant line bundle is a real
line bundle, its structure group can be reduced to {±1}.) Pick and fix (λp, σ, ι0, ι1) ∈
Π−1(p). Consider the family Dp = {∂λ′

p,Z−
} parameterized by (λ′p, σ

′, ι′0, ι
′
1) ∈

Π−1(p) through PRh
(TpL

(0), TpL
(1)). Glue Dp with ∂λp,Z+

to obtain a family of

Dolbeault operators on D2. Since (λp, σ, ι0, ι1) and (λ′p, σ
′, ι′0, ι

′
1) determine the

spin structure on the family of totally real subbundles in a consistent way, the
determinant line bundle of the family of Dolbeault operators is trivial on Π−1(p).
Hence also the determinant line bundle of Dp. Proposition 51.1 follows. �

Definition 51.2. We denote by Θ±
Rh

the local system on Rh, which is obtained by

Proposition 51.1 from the determinant of the index bundle of ∂λ⊕TRh,Z±
.

In the situation of finite dimensional Bott-Morse theory, the local systems Θ+
Rh

and Θ−
Rh

correspond to the orientation bundles of the positive definite part (stable
direction) and the negative definite part (unstable direction) of the restriction of
the Hessian to the normal bundle, respectively.

Note that Rh is not necessarily orientable and the space of connecting orbits may
not be orientable. Hence, we must deal with fiber product over a non-orientable
space. In order to treat them, we introduce the notion of the orientation bundle of
a space with Kuranishi structure and present its fundamental properties.

Definition 51.3. For a local chart (s;E → U) of a Kuranishi structure with tan-
gent bundle, we call detE ⊗ detTU the orientation bundle.
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The orientation bundles of local charts (Kuranishi neighborhoods) are naturally
glued to a line bundle over the space with Kuranishi structure, if the Kuranishi
structure has a tangent bundle. (Definition A1.14.) We call it the orientation

bundle of the space with Kuranishi structure.
Next we give our convention on the identification of orientation bundles of fiber

products.

Convention 51.4. Let OX , OY denote the orientation bundles of the spaces X,Y
with Kuranishi structure with tangent bundle. Let f : X → B and g : Y → B
be weakly submersive strongly continuous maps to a manifold B. Let OB be the
orientation bundle of B.

We identify the orientation bundle OXf×gY of the fiber product Xf ×g Y with

pr∗X(OX ⊗ f∗OB) ⊗ π∗OB ⊗ pr∗Y (g∗OB ⊗ OY ).

The above real line bundle is naturally identified also with

pr∗XOX ⊗ π∗OB ⊗ pr∗Y OY

where prX and prY are projections to X and Y respectively and π is the projection
to B.

We emphasize that the order of factors in the above tensor products is essential.
For instance, in the case when X and Y are manifolds, the identification above

corresponds to the isomorphism : OX ⊗ OY → OX×Y such that s⊗ t 7→ s ∧ t.
We can prove the following properties in the same way as Lemma 45.3.

Lemma 51.5. We have the following identifications.

(1) O∂(X×BY )|∂X×BY
∼= O∂X×BY , O∂(X×BY )|X×B∂Y

∼= (−1)x+yOX×B∂Y .

(2) O(X1×B1
X2)×B2

X2
∼= OX1×B1

(X2×B2
X3).

(3) OX1×B1×B2
(X2×X3)

∼= (−1)b2(b1+x2)O(X1×B1
X2)×B2

X3
. More generally, we

have

OX1×B1×···×Bl
(X2×···Xl+1)

∼= (−1)
Pl

k=2 bk

Pk
j=2(bj−1+xj)O(···(X1×B1

X2)··· )×Bl
Xl+1

.

We use Lemma 51.5 to study orientation bundle of the moduli space M(Rh′ , Rh)
introduced at the beginning of this section.

Proposition 51.6. A relative spin structure for the pair (L(0), L(1)) induces an

isomorphism

OfM(Rh′ ,Rh)
∼= ev∗0Θ+

Rh′
⊗ ev∗1Θ−

Rh

in a canonical way. We also have a canonical isomorphism

OM(Rh′ ,Rh)
∼= ev∗0Θ+

Rh′
⊗ ev∗1Θ−

Rh
⊗ OR.
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Proof. We may assume that the evaluation maps ev0, ev1 : M(Rh′, Rh) → L are
weakly submersive. (This follows from a Bott-Morse analog of Proposition 29.1).

Let u ∈ M(Rh′ , Rh). The linearization Du∂ of the Cauchy-Riemann operator
is a Fredholm operator. (See §29.2 Lemma 29.10 where Du∂ is defined in the case
Rh = Rh′ = L. It is straightforward to generalize it to the general Bott-Morse
situation.) We have a homomorphism from the domain of Du∂ to TpRh⊕TqRh′ , by

identifying TpRh, (resp. TqRh′) with the zero eigenspace of J d
dt at z1, (resp. z0).

Let p′ = u(+∞, t) ∈ Rh′ , p = u(−∞, t) ∈ Rh and let λp⊕Rh ∈ PRh
(TpL

(0), TpL
(1)),

λp′⊕Rh′ ∈ PRh′ (Tp′L(0), Tp′L(1)). We trivialize u∗TM and define a path λ(λp′ , u, λp)
of Lagrangian linear subspaces of the fiber of this trivial bundle by gluing τ 7→
Tu(τ,i)L

(i), λp ⊕ Rh, λp′ ⊕ Rh′ in an obvious way.
Then, by a family version of the index sum formula, we have the following iso-

morphism of the fiber product of the indices. (See Convention 45.1 (4) for the
convention of the orientation of the fiber product and (46.9) for the definition of
fiber product of index bundles.)

Index(∂λ(λp′ ,u,λp)) ∼= (Index ∂λp′⊕TRh′ ,Z+
⊕ TqRh′)

×TqRh′ Index Du∂ ×TpRh
(TpRh ⊕ Index ∂λp⊕TRh,Z−

).

In the same way as the proof of Theorem 44.1 (and of Theorem 44.14) we can prove
that Index(∂λ(λp′ ,u,λp)) has a canonical orientation.

Therefore the orientation of Index Du∂ is determined by the orientations of
Index ∂λp′⊕TqRh′ ,Z+

⊕ TqRh′ , TqRh′ , TpRh and TpRh ⊕ Index ∂λp⊕TRh,Z−
. Since

each of TpRh and TqRh′ appears twice, the orientations of Index Du∂ is independent
of the orientation of TqRh′ , TpRh. Hence we obtain the first half of Proposition 51.6.
The second half follows immediately from the first half and Convention 45.1 (2). �

Recall that we are working with cohomological convention. We adopt the follow-
ing convention. The orientation on the standard simplex is the usual one. Let (∆, σ)
be a singular simplex in a manifold X, which is not necessarily orientable, with a
coefficient in the orientation bundle OX = det TX. For example, an embedded
submanifold with an oriented normal bundle represents an ordinary cochain.

Now, we explain how to work with chains with local coefficients in our con-
struction. Let S be a singular simplex in Rh with coefficient in ORh

⊗ Θ−
Rh

=

detTRh ⊗ Θ−
Rh

, which is canonically isomorphic to Θ+
Rh

. Recall that a connecting

orbit (that is an element of M(Rh′ , Rh)) is a pseudo-holomorphic map u : D2 →M
such that u(∂0D

2) ⊂ L(0), u(∂1D
2) ⊂ L(1), u(1) ∈ Rh′ and u(−1) ∈ Rh, where

∂0D
2 is the arc with negative imaginary part and ∂1D

2 is the arc with positive
imaginary part.

Proposition 51.7. Let S be a singular simplex with coefficients in ORh
⊗ Θ−

Rh
.

Then

(M(Rh′, Rh) ×Rh
S, ev0)
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is a chain with coefficients in ORh′ ⊗ Θ−
Rh′

.

Proof. It is enough to consider the case that S is a singular simplex with coefficient
in ORh

⊗Θ−
Rh

. Write S = (φ, s), where φ : ∆k → Rh and s is a non-zero flat section

of φ∗(ORh
⊗ Θ−

Rh
). Note that s gives an orientation of TpRh ⊕ Index ∂λp⊕TRh,Z−

.

Now we take the fiber product of M(Rh′ , Rh) and S over Rh. Note that S is
equipped with a non-zero flat section of the local system ORh

⊗ Θ−
Rh

. Based on
Convention 51.4 and Proposition 51.6, we find

OfM(Rh′ ,Rh)×Rh
S
∼= (Θ+

Rh′
⊗ Θ−

Rh
) ⊗ ORh

⊗ (ORh
⊗ Θ−

Rh
) ⊗ O∆k

∼= Θ+
Rh′

⊗ O∆k .

Note that O∆k is trivialized by the standard orientation. Since ORh
⊗ Θ−

Rh
is

trivialized by s, we have

OfM(Rh′ ,Rh)×Rh
S
∼= Θ+

Rh′

∼= ORh′ ⊗ Θ−
Rh′

.

Finally, we find that

OM(Rh′ ,Rh)×Rh
S
∼= Θ+

Rh′
⊗ OR

∼= ORh′ ⊗ Θ−
Rh′

⊗ OR.

A choice of orientation on M(Rh′, Rh)×Rh
S at a point z (in the sense of Kuranishi

structure) determines a non-zero element of the fiber of ev∗0Θ+
Rh′

∼= ev∗0(ORh′⊗Θ−
Rh′

)

at z. If we reverse the choice of the orientation, the element of ev∗0(ORh′ ⊗ Θ−
Rh′

)|z
is multiplied by −1. Note also that we have a canonical orientation on OR. Hence
we obtain, from the space M(Rh′ , Rh)×Rh

S with Kuranishi structure, a chain with
coefficients in ev∗0(ORh′ ⊗ Θ−

Rh′
). �

Taking Proposition 51.7 into account, we can forget the effects of local coefficients
and pretend as if we can work with ordinary oriented chains from now on. We will
further modify the orientation to define the filtered A∞ bimodule operation (see
Definition 51.11).

Hereafter P1, . . . , Pk stand for smooth singular simplexes in either L(0) or L(1).
Here the order of the marked points on the boundary of the infinite cylinder R×[0, 1]
is arbitrary and may not respect the standard ordering. Namely we require no
particular rule on the order of the marked points on R × {0, 1}. Moreover whether
Pi ⊂ L(0) or Pi ⊂ L(1) has no relation to the order i. We denote this moduli space
by

(*) Mk+2((Rh′, w′), (Rh, w)) ×Rh×L×···×L (S × P1 × · · · × Pk).

See Figure 51.1. We remark that in case

(P1, . . . , Pk) = (P
(1)
1 , . . . , P

(1)
k1
, P

(0)
1 , . . . , P

(0)
k0

)
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with P
(i)
j being a smooth singular simplex of L(i), the moduli space (∗) contains (as

an open susbset) the moduli space

Mk1,k0,(+∞)(L
(1), L(0); [h′, w′], [h,w]; ~P (1), S, ~P (0)),

which is defined in §12.5 right after Remark 12.58 and is used to define filtered A∞
bimodule structure in Definition 12.71. (We like to remark again the the order of
[h,w], [h′w′] is reversed.) We are going to define an orientation on the moduli space
(*).

Figure 51.1

Let S be a singular simplex in Rh. We define its degree by

(51.8) degS = µ([h,w]) + dimRh − dimS.

(See just before Definition 12.52.) We remark that

µ([h,w]) ≡ Index(∂λ⊕TRh,Z−
)) mod 2

for any λ ⊕ TRh ∈ PRh
(TpL

(0), TpL
(1)). (This is the consequence of the indepen-

dence (modulo 2) of the right hand side and the definition of µ([h,w]), Definition
12.62.)

For computation, we introduce a temporary convention as follows. The final
orientation convention will be given in Definition 51.11. We put

M1((Rh′ , w′), (Rh, w);S, P1, . . . , Pk)

= (−1)εMk+2((Rh′ , w′), (Rh, w)) ×Rh×L×···×L (S × P1 × · · · × Pk),

where

ε = k(n+ 1)µ([h,w]) + µ([h′, w′]) + k(n+ 1) degS + (n+ 1)
k−1∑

j=1

j∑

i=1

degPi.
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Remark 51.9. When we exchange the marked points zi, zi+1 with i > 1 (note
that z1 = −∞) and Pi−1, Pi at the same time, we have an isomorphism

M1((Rh′, w′), (Rh, w);S, P1, . . . , Pi−1, Pi, . . . , Pk)

→ M1((Rh′, w′), (Rh, w);S, P1, . . . , Pi, Pi−1, . . . , Pk),

which is a (−1)(deg Pi−1+1)(deg Pi+1)-oriented isomorphism. The proof of this fact is
similar to the proof of Lemma 47.3.

From now on, we abbreviate the data w, w′, etc., and simply write

M1(Rh′ , Rh;S, P1, . . . , Pk) = M1((Rh′ , w′), (Rh, w);S, P1, . . . , Pk).

We also write µ(Rh) in place of µ([h,w]) mod 2.
There are four types of boundaries of the moduli space M1(Rh′ , Rh;S, P1, . . . , Pk).

The first type appears when S is replaced by ∂S. The second type appears when
Pi is replaced by ∂Pi. The third type appears when connecting orbits split and
become broken connecting orbits. The third type is described by

M1(Rh′ , Rh′′ ;M1(Rh′′ , Rh;S, P1, . . . , Pk1
), Pk1+1, . . . , Pk1+k2

),

after interchanging the marked points and Pi’s. In (3) of the next theorem we put
k = k1, ` = k2, Qi = Pk1+i, and write the above moduli space

M1(Rh′ , Rh′′ ;M1(Rh′′ , Rh;S, P1, . . . , Pk), Q1, . . . , Q`).

The fourth type appears in case of the bubbling-off of holomorphic discs.

Theorem 51.10. Let Rh1
, Rh2

, Rh3
be connecting components of L(0)∩L(1). Write

ri = dimRhi
and µi ≡ µ(Rhi

) mod 2. Then we have the following :

(1)

(−1)ε1M1(Rh2
, Rh1

; ∂S, P1, . . . , Pk) ⊂ ∂M1(Rh2
, Rh1

;S, P1, . . . , Pk),

where ε1 = (µ2 + r2) + (µ1 + r1) + 1.
(2)

(−1)ε2M1(Rh2
, Rh1

;S, P1, . . . , ∂Pi, . . . , Pk) ⊂ ∂M1(Rh2
, Rh1

;S, P1, . . . , Pi, . . . , Pk),

where ε2 = (µ2 + r2) + n+ (degS + 1) +
∑i−1

j=1(degPj + 1) + 1.

(3)

(−1)ε3M1(Rh3
, Rh2

;M1(Rh2
, Rh1

;S, P1, . . . , Pk), Q1, . . . , Q`)

⊂∂M1(Rh3
, Rh1

;S, P1, . . . , Pk, Q1, . . . , Q`),
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where ε3 = (µ3 + r3) + 1.
(4)

(−1)ε4M1(Rh2
, Rh1

;S,Mk+1(β;P1, . . . , Pk), Q1, . . . , Q`)

⊂∂M1(Rh2
, Rh1

;S, P1, . . . , Pk, Q1, . . . , Q`),

where ε4 = (µ2 + r2) + degS.

Proof. First of all, we note that dimM(R2, R1) = µ2 − µ1 + r2 − 1.
(1) By (51.8), we have

M1(Rh2
, Rh1

; ∂S, P1, . . . , Pk) = (−1)a1Mk+2(Rh2
, Rh1

)×Rh1
×L×···×L

(
∂S ×

k∏

i=1

Pi

)
,

where

a1 = kµ1(n+ 1) + µ2 + k(n+ 1) deg ∂S + (n+ 1)
k−1∑

j=1

j∑

i=1

degPi.

We also have

M1(Rh2
, Rh1

;S, P1, . . . , Pk) = (−1)a2Mk+2(Rh2
, Rh1

)×Rh1
×L×···×L

(
S ×

k∏

i=1

Pi

)
,

where

a2 = kµ1(n+ 1) + µ2 + k(n+ 1) degS + (n+ 1)

k−1∑

j=1

j∑

i=1

degPi.

By Lemma 45.3 (1), we have

(−1)a3Mk+2(Rh2
, Rh1

) ×Rh1
×L×···×L

(
∂S ×

k∏

i=1

Pi

)

⊂∂Mk+2(Rh2
, Rh1

) ×Rh1
×L×···×L

(
S ×

k∏

i=1

Pi

)
,

where
a3 = (r2 + µ2) − µ1 + k − 1 + r1 + kn.

Hence we have ε1 ≡ a1 + a2 + a3 ≡ (r2 + µ2) + (r1 + µ1) + 1.
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(2) Similarly, we have

M1(Rh2
, Rh1

;S, P1, . . . ∂Pi, . . . , Pk)

= (−1)b1Mk+2(Rh2
, Rh1

) ×Rh1
×L×···×L


S ×

k∏

j=1

P ′
j


 ,

where P ′
j = Pj , j 6= i, P ′

i = ∂Pi,

b1 = kµ1(n+ 1) + µ2 + k(n+ 1) degS + (n+ 1)

k−1∑

j=1

j∑

h=1

degP ′
h.

Note that (−1)cS ×∏k
j=1 P

′
j ⊂ ∂(S ×∏k

j=1 Pj), with c = dimS +
∑i−1

j=1 dimPj .

By Lemma 45.3 (1), we have

(−1)b3Mk+2(Rh2
, Rh1

) ×Rh1
×L×···×L


S ×

k∏

j=1

P ′
j




⊂∂Mk+2(Rh2
, Rh1

) ×Rh1
×L×···×L


S ×

k∏

j=1

Pj


 ,

where

b3 = a3 + c = (r2 + µ2) − µ1 + k − 1 + r1 + kn+ dimS +

i−1∑

j=1

dimPj .

Hence we have ε2 ≡ b1 +a2 +b3 ≡ (r2 +µ2)+n+(deg S+1)+
∑i−1

j=1(degPj +1)+1.

(3) Based on our orientation convention for the index of the linearized operator
of connecting orbits and Convention 45.1 (4), we can see that

M̃(Rh3
, Rh1

) = M̃(Rh3
, Rh2

) ×Rh2
M̃(Rh2

, Rh1
).

Then, an analogue of Proposition 46.3 holds, i.e., if we put the ` marked points
before the k marked points as in §46, we have

(−1)d0Mk+2(Rh3
, Rh2

) ×Rh2
M`+2(Rh2

, Rh1
) ⊂ ∂Mk+`+2(Rh3

, Rh1
),

where d0 = k`+ k(µ2 − µ1) + (µ3 − µ2) + k − 1 + r3.
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By the definition, we have

M1(Rh3
, Rh2

;M1(Rh2
, Rh1

;S, P1, . . . , P`), Q1, . . . , Qk)

=(−1)d1Mk+2(Rh3
, Rh2

) ×Rh2
×L×···×L

(
M1(Rh2

, Rh1
;S, P1, . . . , P`) ×

k∏

i=1

Qi

)
,

where

d1 =k(n+ 1)µ2 + µ3 + k(n+ 1){degM1(Rh2
, Rh1

;S, P1, . . . , P`)}

+ (n+ 1)

k−1∑

i=1

i∑

j=1

degQj .

Note that

degM1(Rh2
, Rh1

;S, P1, . . . , P`)

= r2 + µ2 −
(
r2 + µ2 − µ1 + `− 1 − (deg S − µ1) −

∑
degPi

)

= −`+ 1 + deg S +
∑

degPi.

We also have, by the definition,

M1(Rh2
, Rh1

;S, P1, . . . , P`) = (−1)d2M`+2(Rh2
, Rh1

) ×Rh1
×L×···×L (S ×

∏̀

i=1

Pi),

where d2 = `(n+ 1)µ1 + µ2 + `(n+ 1) degS + (n+ 1)
∑`−1

j=1

∑j
i=1 degPi.

Using Lemma 45.3 (3) several times, we find that

Mk+2(Rh3
, Rh2

)×Rh2
×L×···×L
(
M`+2(Rh2

, Rh1
) ×Rh1

×L×···×L

(
S ×

∏̀

i=1

Pi

))
×

k∏

j=1

Qj

=(−1)d3Mk+2(Rh3
, Rh2

) ×Rh2
M`+2(Rh2

, Rh1
) ×Rh1

×L×···×L


S ×

∏̀

i=1

Pi ×
k∏

j=1

Qj


 ,

where d3 = kn(µ2 − µ1 + `− 1).

M1(Rh3
, Rh1

;S, P1, . . . , P`, Q1, . . . , Qk)

=(−1)d4Mk+`+2(Rh3
, Rh1

) ×Rh1
×L×···×L


S ×

∏̀

i=1

Pi ×
k∏

j=1

Qj


 ,
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where

d4 =(k + `)(n+ 1)µ1 + µ3 + (k + `)(n+ 1) degS + (n+ 1)

`−1∑

j=1

j∑

i=1

degPi

+ k(n+ 1)
∑̀

i=1

degPi + (n+ 1)
k−1∑

j=1

j∑

i=1

degQi.

Combining these contributions, we find that ε3 = d0+d1+d2+d3+d4 = (µ3+r3)+1.
The last statement (4) can be proved in a similar way to Proposition 48.1 (1). �

In order to define the filtered A∞ bimodule structures, we consider the case where
the marked points respect the standard ordering, i.e., z0 = +∞, z1, . . . , zk1

are on
R × {1} such that Rez1 > · · · > Rezk1

, zk1+1 = −∞, and zk1+2, . . . , zk1+k2+1 are
on R × {0} such that Rezk1+2 < · · · < Rezk1+k2+1. See Remark 12.23 (2). Taking
Remark 51.9 and Theorem 51.10 into account, we adopt the following:

Definition 51.11. (1) Let P
(1)
1 , . . . , P

(1)
k1

be smooth singular simplexes in L(1)

and P
(0)
1 , . . . , P

(0)
k0

smooth singular simplexes in L(0). We define the orientation of

the moduli space Mk1,k0,(+∞)(L
(1), L(0); [h,w], [h′, w′]; ~P (1), S, ~P (0)) which is used

in §12.5 by the following formula.

Mk1,k0,(+∞)(L
(1), L(0); [h,w], [h′, w′]; ~P (1), S, ~P (0))

= (−1)δM1(Rh′ , Rh;S, P1, . . . , Pk),

where

δ = (degS + 1)

k1∑

i=1

(degP
(1)
i + 1)

and
(P1, . . . , Pk) = (P

(1)
1 , . . . , P

(1)
k1
, P

(0)
1 , . . . , P

(0)
k0

).

The moduli space in the right hand side is used to define nk1,k0
in Definition 12.71.

(2) For the classical contribution n0,0 to n0,0, we define

n0,0 = (−1)dim Rh+µ(Rh)∂

for chains in Rh, where ∂ is the usual boundary operator for chains in Rh.

In this new convention (Definition 51.11), Theorem 51.10 then implies the fol-
lowing.

(−1)δ1Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, ∂S, P

(0)
1 , . . . , P

(0)
k0

)

(51.12.1)

⊂∂Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

),
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where

δ1 = (µ2 + r2) + (µ1 + r1) +

k1∑

j=1

(degP
(1)
j + 1) + 1.

(−1)δ2Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , ∂P

(1)
i , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

)

(51.12.2)

⊂∂Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

),

where

δ2 = (µ2 + r2) + n+
i−1∑

j=1

(degP
(1)
j + 1) + 1.

(−1)δ3Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , ∂P

(0)
j , . . . , P

(0)
k0

)

(51.12.3)

⊂∂Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

),

where

δ3 = (µ2 + r2) + n+

k1∑

j=1

(degP
(1)
j ) + (degS + 1) +

i−1∑

j=1

(degP
(0)
j + 1) + 1.

(−1)δ4Mi−1,k0−`,(+∞)(Rh3
, Rh2

;P
(1)
1 , . . . , P

(1)
i−1,(51.12.4)

Mk1−i+1,`,(+∞)(Rh2
, Rh1

;P
(1)
i , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
` ),P

(0)
`+1, . . . , P

(0)
k0

)

⊂ ∂Mk1,k0,(+∞)(Rh3
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

),

where

δ4 = (µ3 + r3) +
i−1∑

j=1

(degP
(1)
j + 1) + 1.

(−1)δ5Mk1−`+i,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
i−1,M`−i+2(β;P

(1)
i , . . . , P

(1)
` ), P

(1)
`+1, . . . ,

P
(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

)(51.12.5)

⊂ ∂Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

),
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where

δ5 = (µ2 + r2) +

i−1∑

j=1

(degP
(1)
j + 1) + 1.

and

(−1)δ6Mk1,k0−`+i,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
i−1,

M`−i+2(β;P
(0)
i , . . . , P

(0)
` ), P

(0)
`+1, . . . , P

(0)
k0

)(51.12.6)

⊂ ∂Mk1,k0,(+∞)(Rh2
, Rh1

;P
(1)
1 , . . . , P

(1)
k1
, S, P

(0)
1 , . . . , P

(0)
k0

),

where

δ6 = (µ2 + r2) +

k1∑

j=1

(degP
(1)
j + 1) + (degS + 1) +

i−1∑

j=1

(degP
(0)
j + 1) + 1.

Hence nk,` satisfies (12.2) including sign. �

§52. Orientation of Mmain
k+1 (M ′, L′, {Jρ}ρ : β; top(ρ)).

In §19 Proposition 19.1, we used the moduli space Mmain
k+1 (M ′, L′, {Jρ}ρ : β; top(ρ))

to the define the filtered A∞ homomorphism. We can reduce the general case to the
case that the symplectic diffeomorphism ϕ is the identity and {Jρ}ρ is an arbitrary
family of almost complex structures compatible with ω. (However, we used (M,L)
and (M ′, L′) in order to clarify the domain and the target.) The goal of this section
is to give a canonical orientation of

Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk) := Mmain

k+1 (M ′, L′, {Jρ}ρ : β; top(ρ);P1, . . . , Pk)

so that the resulting f is a filtered A∞ homomorphism. We first recall an element
of Mmain

k+1 (M ′, L′, {Jρ}ρ : β; top(ρ)). Let ((Σ, ~z), (uα), (ρα)) be a system satisfying
the following properties

(19.7.1) uα : (Σα, ∂Σα) → (M,L) is a Jρα
holomorphic map.

(19.7.2) ρα ∈ [0, 1]. If α1 ≤ α2, then ρα1
≤ ρα2

(19.7.3) ((Σ, ~z), (uα)) is stable in the sense of Definition 2.24.
(19.7.4) The homology class of uα is β(α) and

∑
α β(α) = β.

(19.7.5) If z ∈ Σα ∩ Σα′ , then uα(z) = uα′(z).
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We denote by Mmain
k+1 (β;P1, . . . , Pk; Jρ) the moduli space of objects in (10.1)

with respect to the almost complex structure Jρ. One of top dimensional strata
of Mmain

k+1 (M ′, L′, {Jρ}ρ : β; top(ρ)) is the stratum consisting of objects in (19.7)
with the domain being irreducible. When the domain is irreducible, we define the
orientation by

(52.1) (−1)n+1
⋃

0≤ρ≤1

{ρ} ×Mmain,reg
k+1 (β;P1, . . . , Pk; Jρ),

which we denote by

Mmain,reg
k+1 ({Jρ}ρ; β; top(ρ);P1, . . . , Pk) ⊂ Mmain

k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk).

Recall that, for each fixed Jρ,

Mmain,reg
k+1 (β;P1, . . . , Pk; Jρ)

= (−1)ε1Mmain,reg
k+1 (L; β; Jρ)(ev1,... ,evk) ×f1×···×fk

(
k∏

i=1

Pi

)

where

ε1 = (n+ 1)

k−1∑

j=1

j∑

i=1

degPi.

See Definition 47.1. Note that Pi appearing in Mmain,reg
k+1 (β;P1, . . . , Pk; Jρ) are

regarded as singular simplexes in L by Pi → L. Then Proposition 48.1 (1) implies
that

(−1)ε′2+1
⋃

0≤ρ≤1

{ρ}×Mmain,reg
k−`+2 (β′;P1, . . . , Pi−1,Mmain,reg

`+1 (β′′;Pi, . . . , Pi+`−1; Jρ),

Pi+`, . . . , Pk; Jρ)

⊂ ∂Mmain,reg
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk)

where

ε′2 = ε2 − (n+ 1) =
i−1∑

j=1

(degPj + 1), and β = β′ + β′′.

On the other hand, Proposition 48.1 (2) implies that
⋃

0≤ρ≤1

{ρ} ×Mmain, reg
k−`+2 (β′;P1, . . . , Pi−1,

Mmain,reg
`+1 (β′′;Pi, . . . , Pi+`−1; Jρ), Pi+`, . . . , Pk; Jρ)

⊂Mmain,reg
k−`+2 ({Jρ}ρ : β; top(ρ);P1, . . . , Pi−1, ∂Q

ρ
i,`(β

′′), Pi+`, . . . , Pk)

⊂(−1)ε3+1∂Mmain
k−`+2({Jρ}ρ : β; top(ρ);P1, . . . , Pi−1, Q

ρ
i,`(β

′′), Pi+`, . . . , Pk),
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where

ε3 = 1 +

i−1∑

j=1

(degPj + 1)

and

(52.2) Qρ
i,`(β

′′) := (−1)n+1
⋃

0≤σ≤ρ

{σ} ×Mmain,reg
`+1 (β′′;Pi, . . . , Pi+`−1; Jσ).

Hence the orientation of

(52.3)

⋃

0≤ρ≤1

{ρ} ×Mmain,reg
k−`+2 (β′;P1, . . . , Pi−1,

Mmain,reg
`+1 (β′′;Pi, . . . , Pi+`−1; Jρ), Pi+`, . . . , Pk; Jρ)

as the boundary of

Mmain,reg
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk)

and its orientation as the boundary of

Mmain
k−`+2({Jρ}ρ : β; top(ρ);P1, . . . , Pi−1, Q

ρ
i,`(β

′′), Pi+`, . . . , Pk)

are opposite. Thus the orientation on

Mmain,reg
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk)

and the one on

Mmain
k−`+2({Jρ}ρ : β; top(ρ);P1, . . . , Pi−1, Q

ρ
i,`(β

′′), Pi+`, . . . , Pk)

match on the codimension 1 stratum (52.3).
More generally, for the moduli space of objects in Definition 19.8, we define

the orientation on Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk) by the induction on the

number of singular points, in other words, the number of irreducible components.
For c ∈ [0, 1] and (β, k) 6= (β0, 1), we denote by

Mmain,≤c
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk)

the moduli space of objects as in (19.7) such that all ρα ∈ [0, c].

Suppose that the orientation on Mmain,≤c
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk) is deter-

mined for all elements with the domain consisting of at most d irreducible compo-
nents and all c ∈ [0, 1]. Let u be as in (19.7) with d + 1 irreducible components.
Then u belongs to

{σ} ×Mmain, reg
`+1 (β′;Q1, . . . , Q`; Jσ),
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where each Qj is either (a) one of Pi’s or (b) an element in

Mmain,≤σ
kij

+1 ({Jρ}ρ : βi; top(ρ);Pij−1+1, . . . , Pij
).

By the assumption, there must be at least one Qj of type (b). Note also that the
number of irreducible components appearing in the element of Qj of type (b) is
bounded by d. Thus all Qj are oriented by the hypothesis of the induction. Then
we adopt (52.1) for the orientation on

⋃

0≤ρ≤c

{ρ} ×Mmain, reg
`+1 (β′;Q1, . . . , Q`; Jρ),

which determines the orientation on Mmain,≤c
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk) at u.

In a similar way to the above discussion (the case that d = 2), we find that the
orientations above match on codimension 1 strata and give a compatible orientation
on the moduli space Mmain

k+1 (M ′, L′, {Jρ}ρ : β; top(ρ);P1, . . . , Pk).

Next we discuss the sign problem for the map f̂ in Theorem 19.1 and Proposition
19.14. We state the following

Proposition 52.4. Suppose that (β, k) 6= (β0, 1). The boundary of the moduli

space Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk) is the closure of the strata as follows.

Let kα + 1 be the number of special points (i.e., marked points or singular points)
on Σα.

Case (1) ρα0
= 1 and (β′, `) 6= (β0, 1).

(−1)n+1Mmain
`+1 (β′;Q1, . . . , Q`; J

′) ⊂ ∂Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk),

where Qj is either one of Pi’s (then we write β(j) = β0) or

Qj = Mmain
kj+1({Jρ}ρ : β(j); top(ρ);Pij−1+1, . . . , Pj)

with β(j) 6= β0 and β = β′ +
∑

j β
(j).

Case (2). Some of ρα = 0.

(−1)n+1+ε3Mmain
k−`+2({Jρ}ρ : β′; top(ρ);P1, . . . , Pi−1,

Mmain
`+1 (β′′;Pi, . . . , Pi+`−1), Pi+`, . . . , Pk)

⊂ ∂Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk),

where

β′′ =
∑

α′≤α

β(α′)
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and

ε3 = 1 +

i−1∑

j=1

(degPj + 1).

Case (3). Pi is replaced by its boundary ∂Pi.

(−1)1+ε3Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pi−1, ∂Pi, Pi+1, . . . , Pk)

⊂∂Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk).

Case (4). ρα0
= 0.

(−1)nMmain
k+1 (β;P1, . . . , Pk; J0) ⊂ ∂Mmain

k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk).

In Case (2), we have (β(α), kα) 6= (β0, 1) and (β′, k−`+1) 6= (β0, 1) because of the
stability condition. Cases (3) and (4) may be regarded as the cases that (β(α), kα) =
(β0, 1) and (β′, k−`+1) = (β0, 1), respectively, i.e., the classical boundary operators
∂ = (−1)nm1,0 on L and L′ appear in Case (3) and (4), respectively. In the proof
of this proposition, we only need to note that

(−1)n+1Mmain
k+1 (β;P1, . . . , Pk; J1)

⊂∂Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk),

and

(−1)nMmain
k+1 (β;P1, . . . , Pk; J0)

⊂∂Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk),

see (52.1) and Convention 45.1(1). Then we can show Proposition 52.4 in a similar
way to Proposition 48.1.

We put

fk,β(P1, . . . , Pk) =
(
Mmain

k+1 (M ′, L′, {Jρ}ρ : β; top(ρ);P1, . . . , Pk), ev0

)
,

for (k, β) 6= (1, β0) and

f1,β0
(P ) = P.

It is clear that f1,β0
◦ m1,β0

= m1,β0
◦ f1,β0

.
The strata of Case (1) correspond to

(−1)n+1(m`,β′ ◦ f̂β′′)(P1, . . . , Pk)
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with β = β′ + β′′, (β′, `) 6= (β0, 1). Here, recall that

f̂β′′ =
∑

fi1,β(1) ⊗ · · · ⊗ fi`,β(`)

such that β′′ = β(1) + · · · + β(`), see (7.28). The strata of Case (2) correspond to

(−1)n(fk−`+1,β′ ◦ m̂`,β′′)(P1, . . . , Pk)

with (β′, k − ` + 1) 6= (β0, 1) and (β′′, `) 6= (β0, 1). Here, recall that m̂`,β′′ is the
extension of m`,β′′ as a graded coderivation, see (7.15). The strata of Case (3)
correspond to

(−1)n(fk,β ◦ m̂1,β0
)(P1, . . . , Pk).

The strata of Case (4) correspond to

(−1)n(f1,β0
◦ mk,β)(P1, . . . , Pk).

On the other hand, ∂Mmain
k+1 ({Jρ}ρ : β; top(ρ);P1, . . . , Pk) corresponds to

(−1)n(m1,β0
◦ fk,β)(P1, . . . , Pk).

Hence, taking f1,β0
◦ m1,β0

= m1,β0
◦ f1,β0

into account, we find that

m ◦ f̂ = f ◦ d̂.

Finally, we define orientations on the moduli spaces involving the time-wise-
product, which are used in previous chapters. For the moduli space

Mmain
k+1 (M ′, L′, {J1,s}s : β; twp(s)) =

⋃

s∈(−ε,1+ε)

{s} ×Mmain
k+1 (L′, J1,s), β),

we give the orientation by putting the parameter s ∈ (−ε, 1 + ε) before the moduli
space Mmain

k+1 (L′, J1,s), β). Similarly, for the moduli space

Mmain
k+1 (M ′, L′, {Jρ,s}ρ,s : β; top(ρ), twp(s))

=
⋃

s∈(−ε,1+ε)

{s} ×Mmain
k+1 (M ′, L′, {Jρ,s}ρ : β; top(ρ)),

we give the orientation by putting the parameter s ∈ (−ε, 1 + ε) before the moduli
space Mmain

k+1 (M ′, L′, {Jρ,s}ρ : β; top(ρ)).
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§53. Homotopy unit, operators p, q
and continuous family of perturbations.

53.1. Homotopy unit.

We first discuss the orientation of the moduli space Mmain
k+1 (β; ~P+)× [0, 1]|~a| used

in §31. Recall that we start with P1, · · · , Pk−|a| and insert copies of L at aj-th

positions, where ~a = (a1, . . . , a|~a|), to obtain ~P+. Write ~P+ = (P+
1 , . . . , P

+
k ).

Then we put the orientation to the moduli space in Proposition 31.10, by

(−1)ε[0, 1]|~a| ×Mmain
k+1 (β; ~P+),

where ε =
∑|~a|

j=1

∑aj−1
i=1 (degP+

i + 1). It is straightforward to check that this orien-
tation convention is compatible with the homotopy unit formulae.

53.2. Operators p, q.

In the definition of the operators p, q, etc., we consider the moduli spaces of
holomorphic discs with interior marked points on the domain.

Firstly, we consider the case where the zero-th marked point is a boundary
marked point. We put

M(1,k),`(β) = Mk+1,`(β),

that is a moduli space of pseudo-holomorphic discs of the class β with k+1 bound-
ary marked points and ` interior marked points. We define its orientation by the
following equalities;

M̃(1,k),`(β) := M̃(β) × ∂D2
0 ×D2

1 × · · · ×D2
` × ∂D2

`+1 × · · · × ∂D2
`+k

M(1,k),`(β) := M̃(1,k),`(β)/PSL(2; R).

Definition 53.1. For smooth singular simplexes fi : Pi → L in L and gj : Qj →M
in M , we define

Mmain
(1,k),`(β;Q1, . . . , Q`;P1, . . . , Pk)

:=(−1)εMmain
(1,k),`(L; β)(evint

1 ,... ,evint
`

,ev1,...evk)

×g1×···×g`×f1×···×fk


∏̀

i=1

Qi ×
k∏

j=1

Pj


 ,
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where

ε = (n+ 1)
k−1∑

j=1

j∑

i=1

degPi + ((k + 1)(n+ 1) + 1)
∑̀

i=1

degQi.

Note that when ` = 0, the moduli space M(1,k),0(β) is nothing but Mk+1(β)
and the orientation above is the same as in Definition 47.1. In Definition 53.1, we
only deal with the main component of the moduli spaces. We also adopt the same
orientation convention for other moduli spaces, which will be used in the proof of
Proposition 53.4 below. When the zero-th marked point is an interior marked point,
we define

M̃k,(1,`)(β)

:=M̃(β) ×D2
0 ×D2

1 × · · · ×D2
` × ∂D2

`+1 × · · · × ∂D2
`+k

Mk,(1,`)(β) := M̃k,(1,`)(β)/PSL(2; R).

Definition 53.2. For smooth singular simplexes fi : Pi → L in L and gj : Qj →M
in M , we define

Mmain
k,(1,`)(β;Q1, . . . , Q`;P1, . . . , Pk)

:=(−1)εMmain
k,(1,`)(L; β)(evint

1 ,... ,evint
`

,ev1,...evk) ×g1×···×g`×f1×···×fk
(
∏̀

i=1

Qi ×
k∏

j=1

Pj),

where

ε = (n+ 1)

k−1∑

j=1

j∑

i=1

degPi + ((k + 1)(n+ 1) + 1)
∑̀

i=1

degQi.

When PSL(2; R) is oriented so that the embedding

g ∈ PSL(2; R) 7→ (g · 1, g ·
√
−1, g · (−1)) ∈ ∂D2

0 × ∂D2
1 × ∂D2

2

preserves the orientations, then the embedding g ∈ PSL(2; R) 7→ (g · O, g · z1) ∈
D2

0 × ∂D2
1 preserves the orientations. Here O is the origin of the disc D2

0 and D2
0 is

oriented by the complex structure. Since we take the quotient by the right action,
we adopt the opposite orientation to the one above (see Convention 46.1). This
implies that p1,0 ≡ i! mod Λ0,nov as in (13.10.1).

We may identify
Mmain

(1,k),`(β;Q1, . . . , Q`;P1, . . . , Pk)

and
Mmain

1,(1,0)(β0;Mmain
(1,k),`(β;Q1, . . . , Q`;P1, . . . , Pk)),
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where β0 is the class represented by constant maps from D2 to L. Under this
identification, it is easy to see that

Mmain
(1,k),`(β;Q1, . . . , Q`;P1, . . . , Pk)

⊂(−1)n∂Mmain
k,(1,`)(β;Q1, . . . , Q`;P1, . . . , Pk).

Here we note the following graded symmetry for the operator p. Since each inner
marked point carries 2-dimensional freedom and M is of even dimension, it is clear
that, for i 6= j,

Mmain
k,(1,`)(β;Q1, . . . , Qi, Qi+1, . . . , Q`;P1, . . . , Pk)

=(−1)deg Qi·deg Qi+1Mmain
k,(1,`)(β;Q1, . . . , Qi+1, Qi, . . . , Q`;P1, . . . , Pk),

where deg Q = 2n−dim Q. It is straightforward to see that we can use these orien-
tation conventions to define the operators p, q, etc. such that the cyclic symmetry
condition for Q′

is in Theorem 13.32, etc. holds with sign.
Note that

dimMreg
m1,(1,`1)

(β′) = dimMreg
(1,m1),`1

(β′) + 1 ≡ n+m1 + 1

modulo 2. Taking +1 in the right hand side into account, we can show an analog of
Proposition 46.3 as follows. (This +1 appears in the exponent of (−1) in the right
hand side of the equality in Proposition 53.3.)

Proposition 53.3. We have an isomorphism

∂Mreg
m,(1,`)(β

′ + β′′)

=
⋃

(−1)(m1−1)(m2−1)+(n+m1)+1Mreg
m1,(1,`1)

(β′)
evβ′

1

×
evβ′′

0

Mreg
(1,m2),`2

(β′′)

as oriented spaces with Kuranishi structures. Here the union is taken over β =
β1 + β2, ` = `1 + `2 and m = m1 +m2 − 1.

Proposition 53.4. (1) For β = β1 + β2, we have

Mmain
k−k2+1,(1,`1)

(
β1;Q1, . . . , Q`1 ;P1, . . . , Pi−1,

Mmain
(1,k2),`2

(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1), Pi+k2
, . . . , Pk

)

⊂ (−1)ε1∂Mmain
k,(1,`1+`2)

(β;Q1, . . . , Q`1 , Q`1+1, . . . , Q`1+`2 ;

P1, . . . , Pi−1, Pi, . . . , Pi+k2−1, Pi+k2
, . . . , Pk),

where

ε1 = n+
i−1∑

j=1

(degPj + 1) +

`1∑

j=1

degQj +
i−1∑

j=1

(degPj + 1)(

`1+`2∑

i=`1+1

degQi).
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(2) We have

Mmain
k,(1,`)(β;Q1, . . . , Q`;P1, . . . , ∂Pr, . . . , Pk)

⊂ (−1)ε2∂Mmain
k,(1,`)(β;Q1, . . . , Q`;P1, . . . , Pr, . . . , Pk),

where

ε2 =
r−1∑

j=1

(degPj + 1) +
∑̀

j=1

degQj .

(3) We have

Mmain
k,(1,`)(β;Q1, . . . , ∂Qh, . . . , Q`;P1, . . . , Pk)

⊂ (−1)ε3∂Mmain
k,(1,`)(β;Q1, . . . , Qh, . . . , Q`;P1, . . . , Pk),

where

ε3 = 1 +

h−1∑

j=1

degQj .

Proof. The proof is a modification of the proof of Proposition 48.1. The proof of
(1) is divided into several steps.
Step 1. As in the proof of Proposition 48.1, we will use the components other than
main components at the intermediate stage of the calculation. Note that

degMmain
(1,k2),`2

(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1)

≡
i+k2−1∑

j=i

(degPj + 1) +

`1+`2∑

i=`1+1

degQi (mod 2).

Then by using an analog of Lemma 47.3 repeatedly, we find

Mmain
k−k2+1,(1,`1)

(β1;Q1, . . . , Q`1 ;P1, . . . , Pi−1,

Mmain
(1,k2),`2

(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1), Pi+k2
, . . . , Pk)

⊆(−1)σ1Mk−k2+1,(1,`1)(β1;Q1, . . . , Q`1 ;

Mmain
(1,k2),`2

(β2;Q`1+1 . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1),

P1, . . . , Pi−1, Pi+k2
, . . . , Pk),

where

σ1 =

(
1 +

i+k2−1∑

j=i

(degPj + 1) +

`1+`2∑

i=`1+1

degQi

)(i−1∑

j=1

(degPj + 1)

)
.
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Step 2. Next, we compare the orientation on

Mk−k2+1,(1,`1)(β1;Q1, . . . , Q`1 ;

Mmain
(1,k2),`2

(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1),

P1, . . . , Pi−1, Pi+k2
, . . . , Pk)

with that on

∂Mk,(1,`1+`2)(β;Q1, . . . , Q`1 , Q`1+1, . . . , Q`1+`2 ;

Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk).

By Definition 53.1, we have

Mk,(1,`1+`2)(β;Q1, . . . , Q`1 , Q`1+1, . . . , Q`1+`2 ;

Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk)

=(−1)γ1Mk,(1,`1+`2)(β)(evint
1 ,... ,evint

`
,ev1,... ,evk)×


`1+`2∏

i=1

Qi ×
i+k2−1∏

j=i

Pj ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,

where

γ1 = (n+ 1)

(
i+k2−1∑

j=i

j∑

`=i

degP` +

i−1∑

j=1

(i+k2−1∑

m=i

degPm +

j∑

`=1

degP`

)

+

k−1∑

j=i+k2

(i+k2−1∑

m=i

degPm +

i−1∑

m=1

degPm +

j∑

`=i+k2

degP`

))

+
(
(k + 1)(n+ 1) + 1

) `1+`2∑

i=1

degQi.

Using the iteration formula Lemma 45.3 (3), we have

Mk,(1,`1+`2)(β)(evint
1 ,... ,evint

`1+`2
,ev1,... ,evk) ×




`1+`2∏

i=1

Qi ×
i+k2−1∏

j=i

Pj ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj




=(−1)γ2


Mk,(1,`1+`2)(β)(evint

`1+1,... ,evint
`1+`2

,ev1,... ,evk2
) ×




`1+`2∏

i=`1+1

Qi ×
i+k2−1∏

j=i

Pj






(evint
1 ,... ,evint

`1
,evk2+1,... ,evk) ×




`1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,
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where

γ2 =(k − k2)n
(
k2n+

i+k2−1∑

j=i

(n− degPj) +

`1+`2∑

i=`1+1

(2n− degQi)
)

+

( `1∑

i=1

(2n− degQi)

)(i+k2−1∑

j=i

(n− degPj)

)

+

( `1∑

i=1

(2n− degQi)

)( `1+`2∑

i=`1+1

(2n− degQi)

)
,

which is congruent to

(k − k2)n

i+k2−1∑

j=i

degPj + (k − k2)n

`1+`2∑

i=`1+1

degQi +

( `1∑

i=1

degQi

)(i+k2−1∑

j=i

(n− degPj)

)

+

( `1∑

i=1

degQi

)( `1+`2∑

i=`1+1

degQi

)
(mod 2).

By Proposition 53.3, we find that

∂


Mk,(1,`1+`2)(β)(evint

`1+1,... ,evint
`1+`2

,ev1,... ,evk2
) × (

`1+`2∏

i=`1+1

Qi ×
i+k2−1∏

j=i

Pj)




(evint
1 ,... ,evint

`1
,evk2+1,... ,evk) × (

`1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj)

⊃(−1)γ3

((
Mk−k2+1,(1,`1)(β1)ev

β1
1

×
ev

β2
0

M(1,k2),`2(β2)
)

(evβ,int
`1+1,... ,evβ,int

`1+`2
,evβ

1 ,... ,evβ

k2
) ×

( `1+`2∏

i=`1+1

Qi ×
i+k2−1∏

j=i

Pj

))

(evβ,int
1 ,... ,evβ,int

`1
,evβ

k2+1,... ,evβ

k
) ×




`1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,

where

γ3 = (k − k2)(k2 − 1) + n+ k − k2 ≡ n+ kk2 + k2 (mod 2).



82 FUKAYA, OH, OHTA, ONO

By the associativity property Lemma 45.3 (2) and Definition 53.1, we have

((
Mk−k2+1,(1,`1)(β1)ev

β1
1

×
ev

β2
0

M(1,k2),`2(β2)
)

(evβ,int
`1+1,... ,evβ,int

`1+`2
,evβ

1 ,... ,evβ

k2
)

×
( `1+`2∏

i=`1+1

Qi ×
i+k2−1∏

j=i

Pj

))

(evβ,int
1 ,... ,evβ,int

`1
,evβ

k2+1
,... ,evβ

k
) ×




`1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj




=

(
Mk−k2+1,(1,`1)(β1)ev

β1
1

×
ev

β2
0

(
M(1,k2),`2(β2)(ev

β2,int
1 ,... ,ev

β2,int

`2
,ev

β2
1 ,... ,ev

β2
k2

)

× (

`1+`2∏

i=`1+1

Qi ×
i+k2−1∏

j=i

Pj)

))

(evβ,int
1 ,... ,evβ,int

`1
,evβ

k2+1,... ,evβ

k
) ×




`1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj




=(−1)γ4

(
Mk−k2+1,(1,`1)(β1)ev

β1
1

×
ev

β2
0

M(1,k2),`2(β2;Q`1+1, . . . , Q`1+`2 ;

Pi, . . . , Pi+k2−1)

)

(evβ,int
1 ,... ,evβ,int

`1
,evβ

k2+1,... ,evβ

k
) ×




`1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj


 ,

where

γ4 = (n+ 1)

i+k2−2∑

j=i

j∑

`=i

degP` +

(
(k2 + 1)(n+ 1) + 1

) `1+`2∑

i=`1+1

degQi.
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Again by using the iteration formula and Definition 53.2, we find that

(
Mk−k2+1,(1,`1)(β1)ev

β1
1

×
ev

β2
0

M(1,k2),`2(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1)

)

(evβ,int
1 ,... ,evβ,int

`1
,evβ

k2+1,... ,evβ

k
) ×
( `1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj

)

=(−1)γ5Mk−k2+1,(1,`1)(β1)(ev
β1,int
1 ,... ,ev

β1,int

`1
,ev

β1
1 ,... ,ev

β1
k−k2+1)

×
(
M(1,k2),`2(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1)

× (

`1∏

i=1

Qi ×
i−1∏

j=1

Pj ×
k∏

j=i+k2

Pj)

)

=(−1)γ5+γ6Mk−k2+1,(1,`1)(β;Q1, . . . , Q`1 ;M(1,k2),`2(β2;Q`1+1, . . . , Q`1+`2 ;

Pi, . . . , Pi+k2−1), P1, . . . , Pi−1, Pi+k2
, . . . , Pk),
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where

γ5 = n(k − k2)

(
2n−

i+k2−1∑

j=i

(degPj + 1) −
`1+`2∑

i=`1+1

degQi

)

≡ n(k − k2)

(
k2 +

i+k2−1∑

j=i

degPj −
`1+`2∑

i=`1+1

degQi

)
,

γ6 = (n+ 1)

(
degM(1,k2),`2(β2;Q`1 , . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1)

+
i−1∑

j=1

(
degM(1,k2),`2(β2;Q`1 , . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1) +

j∑

`=1

degP`

)

+
k−1∑

j=i+k2

(
degM(1,k2),`2(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1) +

i−1∑

m=1

degPm

+

j∑

`=i+k2

degP`

))
+

(
(k − k2 + 2)(n+ 1) + 1

) `1∑

i=1

degQi

+

( `1∑

i=1

(2n− degQi)

)(
dimM(1,k2),`2(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1)

)

≡ (n+ 1)

(
(k − k2)

(
k2 +

i+k2−1∑

m=i

degPm +

`1+`2∑

i=`1+1

degQi

)
+ (k − i− k2)

( i−1∑

m=1

degPm

)

+
i−1∑

j=1

j∑

`=1

degP` +
k−1∑

j=i+k2

j∑

`=i+k2

degP`

)
+

(
(k − k2)(n+ 1) + 1

) `1∑

i=1

degQi

+

( `1∑

i=1

degQi

)(
n− (k2 +

i+k2−1∑

m=i

degPm +

`1+`2∑

i=`1+1

degQi)

)
.

Then an elementary calculation shows that

γ1 + γ2 + γ3 + γ4 + γ5 + γ6 ≡ n+

`1∑

i=1

degQi (mod 2) .
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Hence we have found that

Mk−k2+1,(1,`1)(β1;Q1 . . . , Q`1 ;

Mmain
(1,k2),`2

(β2;Q`1+1, . . . , Q`1+`2Qi;Pi, . . . , Pi+k2−1),

P1, . . . , Pi−1, Pi+k2
, . . . , Pk)

⊂(−1)n+
P`1

i=1 deg Qi∂Mk,(1,`1+`2)(β;Q1, . . . , Q`1+`2 ;

Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk).

Step 3. On the other hand, by using Lemma 47.3 again, we can see that

Mk,(1,`1+`2)(β;Q1, . . . , Q`1+`2 ;

Pi, . . . , Pi+k2−1, P1, . . . , Pi−1, Pi+k2
, . . . , Pk)

=(−1)σ2Mmain
k,(1,`1+`2)(β;Q1, . . . , Q`1+`2 ;

P1, . . . , Pi−1, Pi, . . . , Pi+k2−1, Pi+k2
, . . . , Pk),

where

σ2 =

(i+k2−1∑

j=i

(degPj + 1)

)(i−1∑

j=1

(degPj + 1)

)
.

Therefore we have

σ1 + n+

`1∑

i=1

degQi + σ2

≡n+

`1∑

i=1

degQi +
i−1∑

j=1

(degPj + 1) +
i−1∑

j=1

(degPj + 1)(

`1+`2∑

i=`1+1

degQi) (mod 2),

which proves Proposition 53.4 (1).
Next, we prove (2) and (3). We recall that

Mmain
k,(1,`)(β;Q1, . . . , Q`;P1, . . . , Pi, . . . , Pk)

=(−1)δ1Mmain
k+1 (β)(evint

1 ,... ,evint
`

,ev1,... ,evk) ×g1×···g`×f1×···×fk


∏̀

i=1

Qi ×
k∏

j=1

Pj




with

δ1 = (n+ 1)
k−1∑

j=1

j∑

i=1

degPi +
(
(k + 1)(n+ 1) + 1

)∑̀

i=1

degQi.
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By Lemma 45.3 (1), we find that

∂


Mmain

k,(1,`)(β)(evint
1 ,... ,evint

`
,ev1,... ,evk) ×g1×···g`×f1×···×fk


∏̀

i=1

Qi ×
k∏

j=1

Pj






=
(
∂Mmain

k,(1,`)(β)
)

(evint
1 ,... ,evint

`
,ev1,... ,evk) ×g1×···g`×f1×···×fk


∏̀

i=1

Qi ×
k∏

j=1

Pj




⊔
(−1)n+k+1+nkMmain

k,(1,`)(β)(evint
1 ,... ,evint

`
,ev1,... ,evk)×g1×···g`×f1×···×fk

∂


∏̀

i=1

Qi ×
k∏

j=1

Pj


 ,

because dimMmain
k,(1,`)(β) = n+ µ(β) − 3 + k + 2(`+ 1) ≡ n+ k + 1 and M is even

dimensional. Note also that

∂


∏̀

i=1

Qi ×
k∏

j=1

Pj




=
⊔̀

h=1

(−1)
Ph−1

i=1 dim QiQ1 × · · · × ∂Qh × · · ·Q` ×
k∏

j=1

Pj

⊔ k⊔

r=1

(−1)
P`

i=1 dim Qi+
Pr−1

j=1 dim Pj

∏̀

i=1

Qi × P1 × · · · × ∂Pr × · · · × Pk.

On the other hand, Definition 53.2 yields that

Mmain
k,(1,`)(β;Q1, . . . , Q`;P1, . . . , ∂Pr, . . . , Pk)

=(−1)δ2Mmain
k,(1,`)(β)(evint

1 ,... ,evint
`

,ev1,... ,evk)×g1×···×g`×f1×···×fk

(∏̀

i=1

Qi ×
r−1∏

j=1

Pj × ∂Pr ×
k∏

j=r+1

Pj

)

with

δ2 = (n+ 1)

k−1∑

j=1

j∑

`=1

(degP`)
′

+
(
(k + 1)(n+ 1) + 1

)∑̀

j=1

degQj ,

where

(degP`)
′

=

{
degP` for ` 6= r

degP` + 1 for ` = r.
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Therefore we can see that

δ1 + n+ k + 1 + nk +

r−1∑

j=1

(n− degPj) +
∑̀

i=1

(2n− degQi) + δ2

≡
r−1∑

j=1

(degPj + 1) +
∑̀

i=1

degQi (mod 2),

which proves Proposition 53.4 (2).
Recall that

Mmain
k,(1,`)(β;Q1, . . . , ∂Qh, . . . , Q`;P1, . . . , Pk)

=(−1)δ3Mmain
k,(1,`)(β)(evint

1 ,... ,evint
`

,ev1,... ,evk)×g1×···×g`×f1×···×fk

(

h=1∏

i=1

Qi × ∂Qh ×
∏̀

i=h+1

Qi ×
k∏

j=1

Pj)

with

δ3 = (n+ 1)
k−1∑

j=1

j∑

i=1

(degPi) + ((k + 1)(n+ 1) + 1) (
∑̀

i=1

degQi − 1).

Therefore we can see that

δ1 + n+ k + 1 + nk +

h−1∑

i=1

(2n− degQi) + δ3 ≡
h−1∑

i=1

degQi + 1 (mod 2),

which proves Proposition 53.4 (3). �

In a similar way, we find the following:

Proposition 53.5. (1) For β = β1 + β2, we have

Mmain
(1,k−k2+1),`1

(β1;Q1, . . . , Q`1 ;P1, . . . , Pi−1,

Mmain
(1,k2),`2

(β2;Q`1+1, . . . , Q`1+`2 ;Pi, . . . , Pi+k2−1), Pi+k2
, . . . , Pk)

⊂ (−1)ε′1∂Mmain
(1,k),`1+`2

(β;Q1, . . . , Q`1 , Q`1+1, . . . , Q`1+`2 ;

P1, . . . , Pi−1, Pi, . . . , Pi+k2−1, Pi+k2
, . . . , Pk),

where

ε′1 = n+ 1 +
i−1∑

j=1

(degPj + 1) +

`1∑

j=1

degQj +
i−1∑

j=1

(degPj + 1)(

`1+`2∑

i=`1+1

degQi).
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(2) We have

Mmain
(1,k),`(β;Q1, . . . , Q`;P1, . . . , ∂Pr, . . . , Pk)

⊂ (−1)ε′2∂Mmain
(1,k),`(β;Q1, . . . , Q`;P1, . . . , Pr, . . . , Pk),

where

ε′2 =

r−1∑

j=1

(degPj + 1) +
∑̀

j=1

degQj + 1.

(3) We have

Mmain
(1,k),`(β;Q1, . . . , ∂Qh, . . . , Q`;P1, . . . , Pk)

⊂ (−1)ε′3∂Mmain
(1,k),`(β;Q1, . . . , Qh, . . . , Q`;P1, . . . , Pk),

where

ε′3 =

h−1∑

j=1

degQj .

Next, in order to check the sign in (13.10.3), we need to study the orientation

of M0,2(M ; β̃) and M0,(1,0)(L; β), where β̃ ∈ H2(M) and β is the image of β̃ by
i∗ : H2(M) → H2(M,L), see §13.

Proposition 53.6. The fiber product orientation on Mreg
0,2(M ; β̃)ev1

× L coincides

with the orientation as the boundary of Mreg
0,(1,0)(L; β).

Proof. Fixing 0,∞ ∈ CP 1 as the 0-th and first marked points, we write

M̃reg(M ; β̃)/Aut(CP 1; 0,∞) = Mreg(M ; β̃).

Similarly, fix 0, 1 on the closed unit disc as the 0-th interior and first boundary
marked points on D2. Then the moduli space Mreg

1,(1,0)(L; 0), resp. Mreg
1,(1,0)(L; β)

, is identified with the space M̃reg(L; 0), resp. M̃reg(L; β) of pseudo-holomorphic
maps from D2 in the class 0, resp. β.

In a similar way to Lemma 46.5, we find that the gluing map

M̃reg(M ; β̃)evint
∞

×evint
0

M̃reg(L; 0) → M̃reg(β)

is orientation preserving in the sense of Kuranishi structure. Therefore we have the
identification (in the level of tangent spaces)

(
Mreg

0,2(M ; β̃) × Aut(CP 1; 0,∞)
)

evint
∞

×evint
0

Mreg
1,(1,0)(L; 0)

=Mreg
1,(1,0)(β).
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Note that Aut(CP 1; 0,∞) ∼= C× ∼= R>0 × S1. We give an orientation on R>0 so
that the action on CP 1 induces a flow from 0 to ∞. Then, as in the proof of
Lemma 46.5, R>0 corresponds to the outer normal vector field. Note also that
evint

0 : Mreg
1,(1,0)(L; 0) → L is orientation preserving. Hence we have

Rout ×
(
Mreg

0,2(M ; β̃) × S1
)

evint
∞

×L L

=Mreg
1,(1,0)(β).

Note also that, after gluing, the S1-action moves the first boundary marked point
in the counter-clockwise direction. Therefore we obtain

Mreg
0,2(M ; β̃)evint

∞
×L L

⊂∂Mreg
0,(1,0)(β).

�

Finally, we prove the sign in the formula

pk,β(P1, · · · , Pk) = (−1)deg′ Pk×(
Pk−1

i=1 deg′ Pi)pk,β(Pk, P1, · · · , Pk−1)

stated in Lemma 13.25. Here deg′ is the shifted degree.
The following is a straightforward generalization of Lemma 47.3.

Lemma 53.7. Let σ be the transposition element (i, i + 1) in the k-th symmetric

group Sk. (i = 1, . . . , k − 1). Then the action of σ on

Mk,(1,`)(β;Q1, . . . , Q`;P1, . . . , Pi, Pi+1, . . . , Pk)

by changing the order of marked points is described by the following.

σ(Mk,(1,`)(β;Q1, . . . , Q`;P1, . . . , Pi, Pi+1, . . . , Pk))

=(−1)(deg Pi+1)(deg Pi+1+1)Mk,(1,`)(β;Q1, . . . , Q`;P1, . . . , Pi+1, Pi, . . . , Pk).

Proof. Recall Definition 53.2. Then the lemma can be proved in the same way as
that of Lemma 47.3. �

Then Lemma 53.7 for ` = 0 immediately implies the desired sign in Lemma 13.25.

53.3. Continuous family of perturbations.
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We finally discuss orientation of the moduli spaces we used in §33 to define an
AK homomorphism f` : B(RXL) → Ω(L). In §33, we defined the moduli space

U`+1(f, ~P
′) = (L×L`+1 (L× P ′

1 × · · · × P ′
`)) ×N ′

`+1

and used it to define X`( ~P
′), by Formula (33.48) :

(33.48) X`( ~P
′) = {(p, w) ∈ U`+1(f, ~P

′) ×W` | t
~P ′

f,`+1(p, w) = 0}.

Here t
~P ′

f,`+1 is a section of the obstruction bundle on U`+1(f, ~P
′) ×W`. We have a

projection U`+1(f, ~P
′) →W`.

We used a top form ω` on W` and defined

(33.49) f`( ~P
′) = ev!(π

∗
W`

(ω`)) ∈ Ω(L).

Here π : X`( ~P
′) → L is the evaluation map at the 0-th marked point.

The orientation ofW` is given by ω`. We need to find an orientation of U`+1(f, ~P
′)

which induces an orientation of X`( ~P
′) and hence the sign of Formula (33.49) above.

We will reduce this problem to ones on the moduli space used to define filtered A∞
homomorphisms. This later problem is discussed already in §52.

Let d|ω`| be the smooth measure on W` such that

∫

W`

f ω` =

∫

W`

fd|ω`|

for any positive function f . By a standard transversality theorem, we can find a
subset W 0

` of full d|ω`| measure such that for each w ∈W 0
`

π−1
W`

(w) ⊂ X`( ~P
′)

is a smooth submanifold. If we have an orientation on π−1
W`

(w), then

π(π−1
W`

(w)) ⊂ L

defines a current on L. Moreover it is easy to prove that

(53.8) ev!(π
∗
W`

(ω`)) =

∫

w∈W 0
`

π(π−1
W`

(w))d|ω`|(w)

holds as an equality among smooth forms, up to sign. Hence the problem to find
an appropriate sign for (33.49) reduces to the problem to find an appropriate ori-
entation of π−1

W`
(w).
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We next recall that W` is the space parameterizing the family of perturbations

(sections) of the Kuranishi structure on U`+1(f, ~P
′).

The set
π−1

W`
(w) = X`( ~P

′) ∩ (U`+1(f, ~P
′) × {w})

is the zero set of the section

p 7→ t
~P ′

f,`+1,w := t
~P ′

f,`+1(p, w).

If we regard t
~P ′

f,`+1 as a W` parameterized family {t~P ′

f,`+1,w}w∈W`
of sections on

U`+1(f, ~P
′), then π−1

W`
(w) is its zero set.

We consider the space

U`+1(f, ~P
′)+ = (L×L`+1 (P ′

1 × · · · × P ′
` × L)) ×N`+1

with Kuranishi structure. (We remark that there is no prime for the notation N`+1

in the right hand side.)

Note U`+1(f, ~P
′)+ coincides (together with Kuranishi structure) with the space

(53.9) Mmain
`+1 (M,L, {Jρ}ρ : β0; top(ρ)) ⊗L` (P ′

1 × · · · × P ′
`).

We used (53.9) to construct an A∞ homomorphism f : (RXL,m) → (RX ′
L,m

′)
between two A∞ algebras (established by Theorem 9.8) which are obtained by two
different choices of perturbation and two different choices of the sets of singular
simplexes XL, X ′

L. Thus we already defined a coherent orientation of the space

U`+1(f, ~P
′)+ in §52.

On the other hand, by Theorem 33.63, there exists a smooth surjective map

N`+1 → N ′
`+1,

which is a diffeomorphism outside the boundary. Therefore, orientation of U`+1(f, ~P
′)+

induces orientation of U`+1(f, ~P
′). It determines a sign of (33.49). �


