Chapter 9. Orientation.!

In this chapter, we give orientations to various moduli spaces in our construction
of the filtered A, algebra, the filtered A,, bimodules, the filtered A,, homomor-
phisms, etc. We use the notion of Kuranishi structure, hence we give orientations of
the tangent bundles of the spaces with Kuranishi structures, see Definition A1.17.
In our situation, the fiber products are taken with respect to weakly submersive
strongly smooth maps in the sense of Kuranishi structures, see Definition A1.13. In
this chapter, the symbol C denotes an open inclusion, which respects orientations
or covered by a canonical identification of orientation bundles.

§44. Orientation on the moduli space of
unmarked pseudo-holomorphic discs.

44.1. The case of holomorphic discs.

Let (M,w) be a symplectic manifold and L a Lagrangian submanifold. We pick
an almost complex structure J compatible with w. Then L is a totally real sub-
manifold, namely J(T'L) N TL is the zero section of TM|r. In this section, we
consider the orientation problem on the moduli space of pseudo-holomorphic discs,
w : (D% 8D?%) — (M, L) with totally real boundary condition. First of all, we
should note that the moduli space of pseudo-holomorphic discs is not always ori-
entable. This is also observed by de Silva [Sil97] independently. In the case of the
moduli space of pseudo-holomorphic curves without boundary, it is well known that
it has a canonical orientation. In this chapter, we put an assumption on the second
Stiefel-Whitney class wo(T'L) in order to consider the orientation problem. Our
main result in this section is the following:

Theorem 44.1. The moduli space of pseudo-holomorphic discs is orientable, if
L C (M,w) is a relatively spin Lagrangian submanifold. Furthermore the choice of
relative spin structure on L determines an orientation on M(L;(3) canonically for

all B € mo(M, L).

The definition of the notion of relative spin structure is in order. Let L C M be a
relatively spin Lagrangian submanifold and st € H?(M;Zz) such that st|;, = wa(L).
We first fix a triangulation of M such that L is a subcomplex. We choose an oriented
real vector bundle V' on the 3 skeleton M3 of M such that w(V') = st. Then since

wQ(TL|L[2] D V|L[z]) = 07
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it follows that T'L|L,, © VL, has a spin structure.

Definition 44.2. The choice of an orientation of L, a cohomology class st &€
H?(M;Zs) and a spin structure o on TL & VL, is called a relative spin struc-
ture of the Lagrangian submanifold L C M.

A pair of Lagrangian submanifolds (L(®), L()) is called relatively spin, if there
exists a class st satisfying st|; ) = wo(TL®) (i = 0,1) simultaneously. A relative
spin structure of the pair (L(O), L(l)) is the choice of orientations of L(9), a coho-

mology class st € H?(M;Zsy) and spin structures on (TL(®) & V)|, . Here Lg is
[2]

the two skeleton of L%,

Remark 44.3. (1) In case L is spin, we can associate a relative spin structure to
each of the spin structures of L as follows. We take st = 0, V is trivial bundle and
take the spin structure of TL & V = T'L induced by one on L.

(2) Definition 44.2 depends on the choice of V' and the triangulation of M. Later
in Proposition 44.6 we define stable conjugacy on the set of relative spin structures
so that the set of stable conjugacy classes of relative spin structures is independent
of such a choice.

Let D : V — W be a Fredholm operator. We say that the index of D is oriented,
if the determinant line det D = det(Coker D)* ® det Ker D is oriented. We use the
following fact frequently.

Pick a finite dimensional subspace E of W such that W = Im D+ FE. Then det D
is canonically isomorphic to det E* @ det D~!(FE). Thus, if F is oriented, e.g., as
a complex vector space, then the orientation of D~!(F) determines the orientation
of det D. Note also that the orientation of E induces an orientation of E*. Thus
we sometimes consider an orientation of F instead of an orientation of E*.

Firstly, we study the orientation in the linearized problem.

Proposition 44.4. Let E be a complex vector bundle over the 2-disc D? and F
a totally real subbundle of E|gp> over OD?. We denote by O(g,r) the Dolbeault
operator on D? with coefficient (E, F),

5(E,F) : Wl’p(D27aD2;E7F) - Lp(DZ;E®A071(D2))'

_ Then a trivialization of F over 0D? determines an orientation of the index of
d(E,F), i-e., an orientation of det(Coker 0(g r))* ® det Ker O(g py in a canonical
way.

Proof. By choosing a Hermitian connection appropriately, we may assume that the
totally real subbundle F' is parallel (especially, trivially flat) and the connection is
“product” in a collar neighborhood of dD?. Let C be a concentric circle in the
collar neighborhood of 8D?2. If we pinch C' to a point, we have the union of a 2-disc
D? and a 2-sphere CP! with the center O € D? and S € CP! identified. By the
parallel translation along radials, the trivial vector bundle F' extends up to C' and
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its complexification gives a trivialization of F|c. Thus the bundle E descends to

D? UCP!'. We denote this vector bundle by E’ and the totally real subbundle of
E'\gp2 by F'.

Figure 44.1.

We compare the indices of the following two operators:
Om,r) : WHP(D?,0D* E, F) — LP(D* E @ A>*(D?))
and

dpeucpr : {(6o, &) € WHP(D?,0D% ' F') @ WHE(CP', E') | £(0) = &1(5)}
— LP(D?* E' @ A“Y(D?)) @ LP(CP', E' @ A% (CP))
using the sum formula for indices. (See for example Appendix A [McSa94].)

Before doing so, we take a finite dimensional subspace € of LP(CP!, E‘@ A% (CP?!))
as follows. Since the real vector bundle F' is trivialized, we may identify

(D* 0D%* E',F’) = (D* 0D* C",R").
Hence the Dolbeault operator
E(E’,F’) : WLp(DQ? aDZ; El? F/) - Lp(DQ, E/ ® Ao’l(DZ))

is surjective. Therefore, (using the unique continuation theorem), we can choose a
finite dimensional complex linear subspace

£ Cc LP(CP', E' @ A®'(CPY))
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consisting of smooth sections whose support do not contain S, such that
Im(Op2ucpr) + (0@ &) = LP(D? E' ® A} (D?)) @ LP(CP, E' @ A% (CPY)).

(We note that & will turn out to be the obstruction bundle of the Kuranishi struc-
ture.)

Now let us choose small coordinate neighborhoods D2(0) and D%(S) of O and
S. Here D? is the disc of radius §. Fix a positive real number r. We glue D? and
CP! around O and S by identifying z € D?(0) and w € D%(S) whenever zw = 1/r.
We denote the resulting bordered Riemann surface by X,., which is biholomorphic
to the unit disc. We also obtain the vector bundle on X, from E’ and denote it by
E,.. The totally real subbundle F’ over dD? induces a totally real subbundle F, on
0X,.

We may identify £ = 0 & £ and also denote by the same symbol £ the subspace
of LP(X,; E, @ AY1(X,))

We claim that

Im(0(p, r.)) + & = LP(X; B, @ A% (X)),
and that there is a canonical isomorphism
(@p2uce) (€)= (I(m,, k) (€)

for large r: In fact, let x,- be a sequence of solutions 5( E,,F)Xr =0 mod & on X.
Then we may choose a subsequence of x, which converges to a section (£p,&;) on
D?UCP! such that dp2 cp1(£o,€1) =0 mod &. Note that if the LP-norm of ¥, is
1 independent of r, then (&g, &1) # (0,0). (Because the LP-norm on the neck region
D%(0)u D%(S) C X, is uniformly dominated by the LP-norm on D2(0) — D§/2(O)
and D3(S) — D3 /2(8), it is impossible that the LP-norm concentrates in the neck
region around C'.)

Conversely, we glue solutions (£, &1) of dp2ucpr (€0,€1) =0 mod € to a solution
X of E(ET,FT)XT =0 mod & for a sufficiently large r.

Thus we have an isomorphism (canonical up to homotopy) of the indices. If
necessary, we extend € to a larger complex subspace of LP(CP!, E' © A%'(CP?))

such that the evaluation map evg : 561131715(5) — Eg at the south pole S € CP! is
surjective.

Since the real vector bundle F" is trivialized, (0p2ucp1) ' (€) is the kernel of the
surjective homomorphism:

Ev: (§,&1) € Hol(D?, 0D C",R") x (Ocp1) () = &0(0) — &1(S) € C" =~ Eg.

Since £ is a complex linear subspace and Ocp: is complex linear, it follows that
(Ocp1)~H(€) is a complex linear subspace and hence is oriented. On the other
hand, the linear space

Hol(D?,0D?;C",R™) = R"
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is identified with the tangent space of L at one point and hence is oriented.
Therefore Ker Fv — & has an orientation. See (4) in Convention 45.1 for our way
to orient it. This proves Proposition 44.4. [J

Proof of Theorem 44.1. We will apply Proposition 44.4 to the case that £ = w*T'M
and F' = (*TL. Since L is oriented, ¢*TL is a trivial bundle. However, its trivial-
ization is not unique and the choice of a relative spin structure provides a (stable)
trivialization unique up to homotopy.

Before going into the proof, we give its outline. Using Proposition 44.4, we
give an orientation of det D,,0 for each holomorphic disc w. Then we show that
this orientation depends only on the relative spin structure. We proceed as fol-
lows. Firstly, we pick a holomorphic disc wg in each homotopy class of maps from
(D%,0D?) — (M, L) and define an orientation of det D,,,0. The orientation de-
pends on the choice of the relative spin structure. We remark that, if we change
the homotopy class of a stable trivialization of ¢*T'L, then the orientation on the
index bundles in the proof of Proposition 44.4 changes. If {w;}o<t<1 is a homotopy
from wy to w = wy, the determinant line bundle det Dwtg is trivial, since the base
space [0, 1] is contractible. Thus we obtain an orientation of det D,,0, which may
depend on the homotopy {w;}o<¢<i. The remaining task is to prove that the in-
duced orientation does not depend on the choice of a homotopy. Here we need the
condition that L is relatively spin, i.e., there is a relative spin structure of L C M.
(The second step, showing the orientability of a certain determinant line bundle
over S!, only requires existence of a relative spin structure but does not depend on
a specific choice.)

Step 1. Assigning an orientation to det D,,0.
Denote by

D0 : WYP(D? 0D?; w*TM,(*TL) —
WO?(D? w*TM @ A% (D?)) = LP(D*;w*TM ® A%'(D?))

the linearized operator of the pseudo-holomorphic curve equation, which is the first
order elliptic differential operator with the same symbol as the Dolbeault operator.
Here / is the restriction of w to the boundary 9D? and we take p as p > 2. To prove
Theorem 44.1, it suffices to show that the index of the linearized operator D,,0 is
oriented.

Note that D,,0+ A is always Fredholm for any zero-th order operator A and the
space Fp, 5 of such operators is contractible. The index of the family D,0+Ac¢€
Fp,a is a virtual vector bundle over the contractible space. In particular, the
determinant line bundle of the family is trivial. Since the zero-th order term does
not affect the index problem, we may consider Dolbeault operator

Owrmerrry : WHP(D?,0D*w*TM, (*TL) — LP(D* w*TM ® A*'(D?)),
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instead of D,,0.

By the simplicial approximation theorem, any w : (D?,8D?) — (M, L) can be
deformed to some wy : (D?,8D?) — (M, Li1y). (Pick such wg for each connected
component of the space of maps (D? 0D?) — (M, L).) Then the relative spin
structure determines the (stable) homotopy class of trivializations of ¢§(T'L & V).
By Proposition 44.4, we can specify an orientation of

det(Coker g(ngM,EgTL))* ® det Ker 5(w3TM,Z3TL)~

For any given element w in the path component of the space of maps (D?,D?) —
(M, L) containing wg, we consider a path of maps w; : (D% 0D?) — (M, L) pa-
rameterized by ¢ € [0, 1] starting from wy and ending at w. (Note that the linear
operator D,,0 does make sense for any smooth map (D2?,dD?) — (M, L), once we
pick a complex linear connection on T'M.) By Proposition 44.4 and since [0,1] is
contractible, we can provide a family of orientations of

det(Coker E(w;TMvg;«TL))* ® det Ker g(w;TM,E;TL)a

which depends continuously on ¢t € [0, 1], by taking a trivialization of ¢;TL over
St x [0, 1] where £; = w;|gpz. This will define an orientation for w.

Step 2. Independence of the choice of a path {w;}.

We prove that this assignment of the orientation is independent of the choice
of path {w;}¢cjo,1]- Here we need existence of the relative spin structure. Let st
and V are as in Definition 44.2. Then the relative spin structure determines a spin
structure o of TL ®V on Mg N L.

We show that any two paths wgl), wf) from wp to w induce the same orientation
of the index. The concatenation of the path wgl) and the reversed path of w?)
gives a family of maps (D?,0D?) — (M, L) parameterized by S!. More generally,
let wy : (D?,0D?) — (M, L) be at € S parameterized family of maps (D?,dD?) —
(M, L). We define the map

d:D*x St = M; B(z,t) = w(2).

(In particular, we can apply the following argument to S! parameterized families
of pseudo-holomorphic discs.)

By the simplicial approximation theorem, ® can be homotoped to a map @’
such that ®'(D? x S') is in the 3-skeleton Mz of M and that ®'(0D? x S') C
M) N L = L. Note that the family of Dolbeault type operators parameterized
by S' corresponding to ®’ is homotoped to the one corresponding to ® in the space
of Fredholm operators. Hence it is enough to discuss the one for ®’ as far as the
index, especially, the orientation issue is concerned. Hereafter we put ®' = ®.

We pull back V by ® to a vector bundle over D? x S, and denote it by ®*V .
The spin structure chosen on (T'L & V)|, gives its stable trivialization on Ly
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which induces a (stable) trivialization on ®*(T'L & V)|gp2xs1. On the other hand,
®*V is defined on D? x S' ~ S! and is also oriented. Since the base space is
D? x S, the orientation of ®*V guarantees the existence of a trivialization of ®*V
on D? x S' hence a trivialization of its restriction to D? x S1. We like to mention
that this trivialization restricted to dD? x {t} is independent of the choice of the
spin structure on ('L & V)| ;-

Combining these, we have a family of stable trivializations of (®[yp2, ()" T'L
which is continuous over ¢t € S'. In particular, we find that the homotopy class of
trivializations of /*T'L & V is independent of the choice of a path w,gl), 1=1,2. In
sum, for any w, the spin structure on (T'L & V)|, induces a unique (homotopy
class of) trivialization of ¢*(T'L & V') where ¢ = w|sp2 and the existence of the
oriented bundle V' on M3 induces a unique (homotopy class of) trivialization of
¢*V. Namely, ¢*TL is stably trivialized for each ¢ = w|gpz. Moreover the stable
trivialization can be taken in a continuous way with respect to /.

We put Ve =V ® C. Then we find that

E(W*(TMEBV(c),E*(TLEBV)) : Wl’p(’w*(TM © V((j),f*(TL ©® V)) — Lp(w*(TM D V(C))
is the direct sum of
O rarerry : WHP (w*TM, 0*TL) — LP(w*T M)

and

Dw-vesevy : WHP(w* Ve, £*V) — LP(w* (V).

By Proposition 44.4, the orientation of ¢*(T'L @ V') induces a canonical orienta-
tion of the index of g(w*(TMEBVc),Z* (rLev))- The trivialization of £*V, which ex-
tends to w*V, induces a canonical orientation of g(w*vc’g*v). Hence the index of
g(w*T M,e~7r) 18 also canonically oriented. This implies that M(L; j3) is oriented.
From the above argument, the choice of orientation on L, st € H*(M,Zs) and
the vector bundle V' on M|3) and the spin structure (T'L & V)| a1z canonically de-

termine the orientations on M(L; () for all 3. This completes the proof of Theorem
44.1. O

In our later argument, it is important that the orientation provided in Step 1 of
the proof of Theorem 44.1 is compatible with the gluing procedure of holomorphic
discs.

Let us next clarify how the notion of relative spin structure depends on the choice
of V' and triangulation. First of all, we recall the following basic fact. Let E be
an oriented vector bundle on X with we(FE) = 0. A spin structure is equivalent to
a fiberwise double covering space of the associated principal SO-bundle Pg, which
are classified by homomorphisms 71 (Pg) — Zsy such that its restriction to the fiber
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m1(SO) — Zs is non-trivial. Thus the set of spin structures on F on X is a principal
homogeneous space of H!(X;Zs). A spin structure on E induces a spin structure
on its stabilization E @ R* by a trivialized vector bundle R, namely, the one
induced by the spin structure on F and the trivialization of R¥. If we consider R¥
as a trivial bundle without specific trivialization, then we get a coarse equivalence
relation among (stabilized) spin structures, which are parameterized by the quotient
of H'(X;Zs) by the gauge transformations of R*¥. (Cf. the description of spin
structures above.) Now we introduce an analogous coarse equivalence relation on
relative spin structure.

In the next definition we still fix a triangulation of M such that L is its subcom-
plex (a triangulation of M compatible with L).

Definition 44.5. Let (st;,V;,0;) (i = 1,2) be relative spin structures of L. We
say that they are stably conjugate to each other if there exist integers k; and an
orientation preserving bundle isomorphism 7 : V; @ R¥1 — V, @ R*2 such that by
1 T|L[2] : (TL @ V1)L[2] ORM — (TL @ VQ)L[Z] @ R¥2 the spin structure o; @ 1
induces the spin structure oo @ 1.

We remark that if (st1,Vi,01) is stably conjugate to (sto, Vs, 02), then they
determine the same orientation on M (/). (This fact is obvious from the definition
of the orientation given during the proof of Theorem 44.1.)

For a given triangulation ¥ of M (such that L is a subcomplex), we denote by
Spin(M, L; T) the set of all the stably conjugacy classes of relative spin structures
on L with respect to the triangulation ¥.

Proposition 44.6. (1) There exists a simply transitive action of H*(M, L; Zs) on
Spin(M, L; ).

(2) For two triangulation ¥ and T’ of M compatible with L, there exists a canon-
ical isomorphism Spin(M, L; T) = Spin(M, L; T') compatible with the above action.

In particular if a spin structure of L is given there is a canonical isomorphism
Spin(M, L; %) = H?(M, L; Zs).

Proof. Let [(st,V,0)] € Spin(M, L; %) and ¢ € H?(M, L;Z3). We regard the class
r € H3(M, L; 7o) = HQ(M[g], Lig); Z). Since M3/ L9 is a 3-dimensional cell com-
plex, (wl, wg) : KO(M[3]/L[2]) — Hl(M[g], L[Q]; Zg) ©® HQ(M[P,], L[Q]; Zg) is an iso-
morphism. Thus, ¢ € H?(M, L;Zs) determines a unique stable class of orientable
vector bundle E, with ws(E,) = r. Pick and fix an orientation on F,. We remark
that the right hand side is independent of the orientation of E, we take, since there
exists an orientation reversing involution on E, @ R, i.e., the multiplication by —1
on the second factor R. We pull back E, by Ms) — M3/ L2 to get a vector bundle
Vi. Note that the restriction Vi|L, to L is endowed with the trivialization as the
pull-back of the frame at the collapsed point, thus the spin structure o, on V| Ly
Now we put

L [(Stv V7 J)] = [(St-l—f,V@ ‘/2670-@ 0';)],
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where T is the image of t by H?(M, L; Zs) — H?*(M; Zs).

Conversely, for two relative spin structures [(st, V, o)] and [(st’, V', ¢")], we define
their difference as follows. Pick an oriented vector bundle E on Ly such that
TL ® FE is trivial and fix an isomorphism I : TL ® E = Ly X RN, For V', we
pick an oriented vector bundle W’ on Mg such that V' @ W' is trivial and fix an
isomorphism Iy y : V' © W' = Mg x RN, Note that the spin structure o’ and
the isomorphisms I, Iy w induce a spin structure on E @ W', which we denote
by &’. Then the vector bundle V' & W’ is a vector bundle equipped with a stable
trivialization on L) as follows.

(V ® W/)|L[z] @ RY = (V b W/)|L[z] b (TL ® E) = (TL 52 V|L[z]) ® (E ® W/|L[z])7

which is stably trivialized in a compatible way with the spin structure o @ &'.
Denote this trivialization by J, ,». Then we use this trivialization to get an element
[V o W', ja"o'/] c KO(M[P,]/L[Q})

Fix a relative spin structure (st,V,o). Then it is straightforward to see that
the above construction gives a one-to-one correspondence between stable conju-
gate classes of relative spin structures and KO(Mjs}, Ljz)). Hence, the action of
H?(M, L;Zs) on Spin(M, L; %) is simply transitive.

To prove (2) we first remark that, by taking common subdivision, it suffices to
consider the case when ¥’ is a subdivision of ¥. In this case, the restriction defines
a map Spin(M, L;T") — Spin(M, L;¥). By construction, this map is compatible
with the action defined in (1). Hence it is an isomorphism. O

Proposition 44.6 states that the difference of relative spin structures is measured
by an element r in H?(M, L;Z/2). When we change the relative spin structure by
t, then the orientation of the index for D,,d changes by (—1)"l. (For spin case,
the example given in the next subsection illustrates this phenomenon.)

44.2. Examples of non-orientable family index.

In this subsection, we will show that the index bundle appearing in the proof of
Proposition 44.4 can actually be unoriented, if we do not assume F' to be trivial.

We can find such a pair (E, F) as follows. Take the trivial bundle £ = (D? x
[0,1]) x C™ and F = R" x (9D? x [0,1]) x C". Identifying D? x {0} and D? x {1},
we get D? x S. We lift this identification to the vector bundle E such that its
restriction to dD? x {i} (i = 0,1) preserves the real part F and identify them
by homotopically non-trivial loop v : 8D? — SO(n). Such identification exists,
because the image of the loop by SO(n) — U(n) is null-homotopic and extends to a
continuous map D? — U(n). Let (E, F) be the pair obtained by this identification.
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Proposition 44.7 below implies that the index bundle is not orientable for such
(E, F). This means that the change of a stable trivialization by v reverses the
orientation on the moduli space of holomorphic discs.

Let us consider the case n = 2. Another description of the resulting vector
bundle pair (E,F) over D? x S! is the following. Take a trivial vector bundle
(D? x [0,1]) x H, where H is the quaternions considered as a left C-module. Identify
the fibers over D? x {0} and D? x {1} by multiplication of i € H*, that is, (2,0, (i) ~
(2,1,¢) for z € D? and ¢ € H to get E. For (2,t) € 0D? x [0, 1], the subspace

F., = (R1&Rj) {t(z";z + Z;Z_Zj) +(1—t)k}

gives a totally real subspace in H, hence we have a totally real subbundle of (D? x
[0,1]) x H over 0D? x [0, 1] which descends to a totally real subbundle F of E over
0D? x St

Proposition 44.7. The family index of Dolbeault operators twisted by (E, F) is a
non-orientable virtual vector bundle over S*.

Proof. By using the Fourier expansion, we calculate the kernels and cokernels of
Dolbeault operators explicitly. We take a basis (1+k, 1 —k) of the left C-module H.
By regarding H as C & Cj, we write the basis as column vectors <<1) , <_12) >
Let f be a holomorphic map from D? to C?> = H. Then we have the Fourier
expansion of f such that

=3 o (1) 45 ( L)

for z € D? and a,,, 3, € C. Now suppose that the image of f|gp2 is in the totally

real subspace
(R1 & Rj) {t (Z;Z + Z;izj) +(1 —t)k}

of H. This condition is equivalent to

(448)  f(2) {t (2” - Z__zj) —qa —t)k} ERIGR] for || = 1.

2 27

When we describe the multiplication from the right by ¢(25% — 225j) — (1 — t)k as
a 2 x 2 complex matrix acting on column vectors of H = C & Cj from the left, we
find that the multiplication can be described by

S0 ) 0 (t )
() D ()
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It follows that we have

s (557 -550) - a- o)
im0 0) e (G ) () -em0m (30) ()
St ) D)0 (L)

o0
Note that z = z7! for |z| = 1. So we can put it as Z 2"d, with @, € C® Cj. In

n=—1

this expression, we have

o 1
a’—lztﬁO(_i)7
1

do = —(1— 1) ( ) -l—{(l—t)ao-i—tﬁl}( 1@.),

G = {tan 1 — (1—1)8n} (1) H{(1— t)an_—i— Bps1} (_12) for n > 1.

Since R1 @ Rj is a totally real subspace in H, the condition (44.8) implies that
a, = d_, for any n. These conditions yield that

(44.9.1) @ =a
(44.9.2) @ € R?
(44.9.3) a, =0 forn>2.

Now let us consider the case t # 0,1. From (44.9.3) we have o, =0 (n > 1) and
Bn =0 (n > 2). The condition (44.9.2) is equivalent to the equality —(1 —t)3y =
(1 —t)apg + tf1. Combining it with (44.9.1), we easily find that «y and [ are
determined by (3y. Explicitly we have

2t—-1 — 11—t —

Qo = mﬁo, B =———(6o +a0).

t
Hence our f is determined by only 3y € C. Therefore we find that the real dimension
of the kernel of the Dolbeault operator for ¢ # 0, 1 is equal to 2. On the other hand,
we can see that the Fredholm index of the operator is 2. So we can find that the
operator is surjective.

Next, we describe the kernels for the cases t = 0,1. In both cases, we can see
that o, = 0 (n > 1) and 5, = 0 (n > 2) by using (44.9.3). Moreover, by using
(44.9.2), we find that 8; = 0 in both cases and

{ —Bo for t =0,
oy = —
0o for t = 1.
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Thus [y determines the kernels of the operators in both cases.

With these explicit descriptions of the kernels understood, we can show the
non-orientability of our index bundle. For ¢ € [0, 1], the kernel is isomorphic to
{Bo € C}. So we have the (complex) orientation. What we want to show is that
the identification map between the kernels on ¢ = 0 and t = 1 is an orientation
reversing map. When ¢ = 0, the kernel V}, is given by

o= {-% (1) v (L) mec)

When ¢ = 1, the kernel V; is given by

i={m () rm( L) sec)

Recall that we identify Vi with V; by the right multiplication of i. As before, this
multiplication can be written by a 2 x 2 complex matrix acting on C @ Cj from the

left as

i 0

0 —i)°
Thus Vj is identified with

vi={m(o %) ()m(s %) (5)]
~wm (D ()| mech

We find that this identification map is an orientation reversing map. Because when
we put By = 1 and 7, we have bases

() (5)) ((5) (%)

of the real vector spaces Vjy and V; -1 respectively. Clearly, the orientations on these
spaces are opposite. Therefore we have finished the proof of Proposition 44.7. [

Note that the totally real subbundle F' above is orientable, but not spin.

44.3. The case of connecting orbits in the Floer theory.

Let (L(O), L(l)) be a relative spin pair of Lagrangian submanifolds, (see Definition
44.2), intersecting transversely. A connecting orbit in the Floer complex for L(®),
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LM is a pseudo-holomorphic map  : R x [0,1] — M, which maps R x {i} to L(®),
u(—o0,*) = p~ and u(+oo,*) =pT.

In this chapter, we adopt a different notation from §4 in Chapter 2. Namely, we
denote by M™&(pT p~) instead of M ™8(p~,p*). In other words, u(—o0,*) = p~,
u(4o00,%) = pT, for an element u € M*8(pt p~). This is because the former
is more suitable in the orientation business under our convention and makes it
consistent with the orientation of the moduli spaces for defining the filtered A,
algebra in §47.

Consider the pull back of the tangent bundle TM by the projection M x [0, 1] —
M. For p € LO N LM, we take a path of oriented Lagrangian subspaces Ap
[0,1] — A°"(T, M) so that

Ap(0) = TpL(O)v Ap(1) = TpL(l)

and a trivialization (relative to the fixed trivialization at end points) of the bundle

M=t x A0 —[0,1].

t€[0,1]
(See §3.2.) Then we have a Lagrangian subbundle
£ — K(L©, 1) = (1O x {0}) U ((© 0 D) x [0, 1) U (LD x {1})

of the pull back of T M.
Let st € H?(M;Zs) such that wo(TL®) = st|;«), for i = 0,1. As in Definition
44.2 we choose an oriented vector bundle V' on the 3-skeleton of M with ws (V') = st.

Denote by Papin (L), V) the principal spin bundle of (TL(®") & V)|, @, which is a
(2]

fiberwise double cover of its oriented frame bundle Pso (L™, V). We may assume
that L(® N L™ is contained in the 3-skeleton of M. In order to specify the spin
structure on (£ @ pr*V) |K(L(0>,L(1))[2]7 where K(L(O),L(l))[g} is the 2-skeleton of
K(L© LMY and pr is the projection to M x [0,1] — M, we need additional
information. Let o : [0, 1] x R™ & Xp be a trivialization. Since A, (i) = T,LY, ol
induces a framing of T, L(¥), hence, we obtain embeddings o;—;. : SO(n) x SO(V,,) —
Pso (LW V)], for i = 0,1. Let ¢; : (Spin(n) x Spin(V,)) /{£1} — Pepin(LD, V)],
which covers oy—;.. (Here 1 acts on Spin(n) x Spin(V,) diagonally.) Now we
consider the triple (o, tg, ¢t1). For the trivialization o, we pick a bundle isomorphism
g :[0,1] x Spin(n + k) = Ppin(L ® V)|pyx[0,1], Which covers o,. (There are two
choices of 5.) Gluing Pspin (LBV)|(p3x[0,1] With Pepin (LW, V), i = 0,1, by ¢;0(5) ",
we obtain a spin structure of £L® V on K (L), L(l))[g]. It is easy to see that the
resulting spin structure does not depend on the choice of a lift & of o,.
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Let I, be the space of trivializations o of Xp, which respect the orientation,
and I, the space of triples (o,.0,1) as above. It is clear that I is homotopy
equivalent to SO(n) and I, is homotopy equivalent to

{(90,91) € Spin(n) x Spin(n) | w(go) = m(g1)}/{£1},

where 7 : Spin(n) — SO(n) is the canonical projection and +1 acts on Spin(n) x
Spin(n) diagonally. Then we find that Iy, — I is a trivial double covering space,

i.e., I, is the union of two copies of I, .
Now we consider the space P,(T L TLM) of all paths in A" (T, M) from
T,L© to T,LM"). Define

I(p) = U I,
ApEP,(TLO , TLM)

and _ ~
I(p) = U I,

ApEP,(TLO) TLM)

As we saw in §44.2, there is an oriented non-spin Lagrangian subbundle in (S! x
S1) x C™. Hence Z(p) — Z(p) is a non-trivial double covering space.
For each p, we pick A\, € Pp(TL(O), TL(U) and consider the elliptic operators

Onyozs : WP (Za; TyM) — LP(Zs; T,M @ A% (Z2)).
on the capped half infinite cylinders

Z_={2€C||z/<1}U{z € C|Rez >0, |Imz| <1}
Zy ={2€C|Rez<0,|[Imz|] <1}U{ze€C||z| <1}.

as in §12.5. (See right before Definition 12.62.)
We define the Maslov-Morse index p(p, A,) of the intersection point p € LOnLM
with a path A, of Lagrangian subspaces in T),M by

(44.11) 1(p, Ap) = Index(dx, 7).
For R > 0, we define the space
Z_#rRx [0, 1])#rZ,

as follows. We consider

Z_p={2€Z_|Rez <R}
Zyr={2z€Z_|Rez > —R}.



CHAPTER 9. ORIENTATION 15

We glue 3 spaces Z_ g, [-R, R] x [0,1], Z; g, by identifying (R,t) € Z_ r with
(—R,t) € [-R,R] x [0,1] and (R,t) € [-R, R] x [0,1] with (—R,t) € Z g, respec-
tively.

Figure 44.2

We consider operators 5>\p7Z:|: on Z4+ and D,0 on R x [0,1]. (Here D,d is the
linearization of the Cauchy-Riemann equation at u.) We can use appropriate par-
tition of unity to glue these 3 operators and obtain an operator gu; A 4oh,— ON
Z_#r(R x [0,1])#rZ+. Now index sum formula implies

(44.12) Index(9y,,z_) + Index(D,0) + Index(9y, z, ) = Index(gu;Aer’)\p_ ).

We define @ : Z_#pr(R x [0,1])#rZ, — M by gluing u with constant maps to p*,
by appropriate partition of unity. We trivialize the bundle

WTM = (Z_#r(R x [0,1))#rZy) x C™.
We then obtain a path
A O(Z-#rR % [0,1])#rZ+) — A(C")
in Lagrangian Grassmannian by
/\(e”\/__l(l/Qﬂ)) = A\ (t), where e™VTIO2E) ¢ 97,
A7,4) = Tyrp LD i =0,1.

It is easy to see

(44.13) Index(Ousx 2, ) = Index(dcn )

p—
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where the right hand side is as in Proposition 44.4. Pick (o,t0,t1) € TAP, then
the spin structure of £ @ V induces an orientation of the virtual vector space
Index(dcn y) in the same way as the proof of Theorem 44.1.

Therefore, once we choose an orientation on Irlde><5>\][)J”ZjE and IndeXEAW,ZjE

as well as (oF,15,1F) € TApi, an orientation of Index D, 0 is induced by (44.12),
(44.13). Thus (using Remark 44.15 (1) also) we have proved the following:

Theorem 44.14. Suppose that a pair of Lagrangian submanifolds (L9, L)) is
relatively spin. Then for any p* € L N LMY | the moduli space M(pt,p~) of con-
necting orbits in Lagrangian intersection Floer cohomology is orientable. Further-
more, orientations on Index Expiiz_, (0,t0,t1) € TAP and relative spin structures

for the pair (L(O), L(l)) canonically determine the orientation on M(p™,p~).

Remark 44.15. (1) We consider u, (where u,(7,t) = p) and glue 05, 7 , D,,0
and 0y,,z, as above to obtain an operator dy,.x,»,- The index of 9, .x,x, is
canonically isomorphic to T, pL(O) and hence is oriented. The index of Dupg is
trivial and is also oriented. Therefore by (44.12), an orientation of Index(dx,,z_),
determines an orientation of Index 0y, z, . Hence in Theorem 44.14, it is enough to
choose an orientation on Index 8(5%’27) for each p = p*.

(2) The orientation determined by the relative spin structure (Theorems 44.1
and 44.14) automatically satisfies the coherence condition [FIH093], i.e., the com-
patibility under gluing process. See Proposition 46.3 and Lemma 46.5 below for
compatibility of orientation on moduli spaces of holomorphic discs. The compat-
ibility for the moduli space of connecting orbits is also proven based on Lemma
46.5, see the proof of Proposition 50.3. For the procedure of giving orientation in
Theorem 44.14, we follow the argument from §21 [FuOn991II]. (See also [F1H093] for
argument on the coherent orientation problem.)

We remark that coherent system of orientations in the sense of [F1H093] is not
unique. In fact, there are coherent orientation systems, which derive non-isomorphic
cohomologies. In finite dimensional case, if the manifold is not simply connected,
one can twist the Morse complex by local systems to obtain the cohomology with
coefficients in local systems. We then obtain a twisted cohomology which are not
isomorphic to the untwisted cohomology, in general. The holonomy of a local system
contributes to signs in “counting connecting orbits”. In Floer theory for Lagrangian
submanifolds, Cho found spin structures, which derives non-isomorphic Floer coho-
mologies [Cho04].

In other words, to define Floer cohomology, it is not enough to prove existence
of orientation satisfying the coherence condition, but we need to specify the way to
orient the moduli spaces satisfying the coherence condition.

(3) The determinant line bundle of Index d. z_ over each connected component

of P,(T L, TLM) is non-orientable , but its pull-back to Z(p) is orientable. To see
this, we use the argument in (1). Pick and fix (A, 0, t0,¢1) € Z(p). Glue the family
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5.7 z_ with 5>\p7 7, to obtain a family of Dolbeault type operators with totally real
boundary condition. Then the example in §44.2 implies that the determinant line
bundle of the family index is not orientable. Since 5>\p7 z, does not depend on the
elements in P, (T L), TL(M), the index bundle of 0. z_ is not orientable. It is easy
to see that the pull-back by Z(p) — P,(TL® T LM) is also non-orientable on each
connected component, since the totally real boundary condition does not depend
on the elements in I . Note that 7 (p) — Z(p) is the unique double covering space,
which is non-trivial over each connected component of Z(p). Therefore the pull-back
of the index bundle should be orientable, hence the claim. (We can also directly
find the second claim, since 7 (p) provides a consistent family of spin structures on
the totally real subbundles.)

Hence, we can rephrase “a choice of an orientation on Indexdy , 7 as well
p

as (Ji,b(jf,bf)” by the orientation of the determinant line bundle of the family

Indexd. z_ on 7 (p). This interpretation is more canonical and can be adopted to
other cases, e.g., Bott-Morse case, see Proposition 51.1.

(4) In [Oh9T7II], the second named author previously studied the orientation
problem for the Floer homology of Lagrangian intersection for the case where L(?) =
$(on) and L) = oy on M = T*N (or more generally L(®) = v*S the conormal
bundle of S C N). He proved that in this case there exists a coherent orientation
on the Floer complex for any compact manifold N irrespective of orientability of
N. In this case, the condition on ws is automatically satisfied and there are no
holomorphic discs with boundary on L(® nor L),

§45. Conventions and Preliminaries.

In this section, we will fix some basic conventions and prepare some formulae
concerning orientation. At the beginning, we assume that spaces are smooth (so
manifolds), and mappings are submersions. Later we incorporate Kuranishi struc-
ture and deal with the space with Kuranishi structure and the fiber product of
weakly submersive strongly smooth maps in the sense of Kuranishi structure. In
this section, we denote dimensions of spaces X or Y by corresponding small letters
x or y respectively. We will denote by * a generic point without specifying it from
now on.

Convention 45.1.
(1) Let X be an oriented smooth manifold with boundary 0X. Then we define
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an orientation on 90X so that
(45.1.1) T.X ~ Rout X T*(aX)

is an isomorphism of oriented vector spaces. Here R,y is R oriented by an outer
normal vector.

In order to discuss the case of spaces with Kuranishi structure, we prepare some
notations. A Kuranishi neighborhood around p € X is a quintuple (V,, E,, T'p, ¥p, Sp)
as in Definition Al.1. We denote the quotient V,,/I', by U,. By definition of the
orientation of the Kuranishi structure (see Definition A1.17 and [FuOn99II] Def-
inition 5.8), we have an orientation on det E, ® det T, V,, and the finite group I',
acts on FEj, and V), preserving orientation of det E; ® detT'V,,. Then we find that
the group action does not effect on orientation problem. So we may assume here
the action is trivial in the argument below. Namely, we consider the case that I,
is trivial and identify V,, with U,. In this chapter we denote by an (oriented) Ku-
ranishi neighborhood (local chart of a space with oriented Kuranishi structure) by
(s; E — U), where E — U be a vector bundle and s is a section of it. Here s is
a section of a vector bundle F over U. When s fails to be transversal to the zero
section, we use multi-valued perturbations to get the virtual fundamental chain.
Our task here is to assign a canonical orientation to each zero locus. So we assume,
after perturbations, that s is transversal to the zero section. Then we have the
exact sequence

(45.2) 0— Tos H0) — T.U 22 B, — 0

where D, s : T,U — FE, is the covariant derivative of s : U — E at x with respect to
a connection. Note that this derivative does not depend on the choice of connection
as long as * € s71(0). We arrange the basis of T,U so that the basis of E. comes
first and then that of T.s~1(0) next. We then define the orientation on s~1(0) by

E, x T,s7'(0) = T.U.

(Note that since an orientation on det F, ® det T,.U in given, the above equality
determines the orientation on T,s~1(0).)

Let (s; E — U) be a local chart of a space with oriented Kuranishi structure
with boundary. Recall that the orientation of (s; E — U) is the orientation of
det F ®@det TU. If necessary, we choose U smaller so that we may assume that U is
an oriented manifold with boundary and F is an oriented vector bundle on it. We
define the orientation of the boundary of (s; E — U) by

O(s; E — U) = (—=1)™*E (s o0; E| oy — OU).

Here OU is oriented as the boundary of U.
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(2) Let G be a Lie group given an orientation. When G acts from the right on
an oriented manifold X smoothly and freely, then we define an orientation of the
quotient space X/G so that

(45.1.2) T.X ~T,(X/G) x Lie G

is an isomorphism of oriented vector spaces. Here Lie G is the Lie algebra of G.

If G acts on the space X with oriented Kuranishi structure such that the isotropy
subgroup at any point is finite, the quotient space inherits a structure of oriented
Kuranishi structure. Namely, for a G-equivariant Kuranishi neighborhood (s; £ —
U), the quotient space U/G is oriented as above. The bundle E and its section s
descend to an (orbi)bundle £/G — U/G and its section s. Then (s; E/G — U/G)

is oriented, since

det £, @ det T, U
= det Ejy) @ det T}, (U/G) @ Lie G)
= det E[x] ® det Tia (U/G) @ det Lie G,

where x € U and [z] is the equivalence class in U/G.

(3) (Fiber product orientation). Let X; (i = 1,2) and Y be oriented smooth
manifolds and f; : X; — Y two submersions. We denote the fiber product by
X1, X, Xo or Xy xy Xo. Take a point ¢ € f1(X1) N fo(X2). Let (ug,---,uy) be
an oriented basis of T,Y. By transversality, we have (vx, 1, -+ ,vx,y) € Tp, X; for
pi € f; *(q) such that (dfi),, (vx, x) = ug for k =1,--- ,y. We can choose a basis
(Mxi1s " > NXs,20—y) 10 Ker(df;)p, so that

<77X1,17 Xy -y VX1, 7'UX1,y> € Tp1X1 = Ker(df1>p1 X Im(df1>p1

is a basis compatible with the given orientation of 7}, X; and

<UX2,17 oy UXa,yy N1X, 1, 0 777X2,$2—y> S Tp2X2 = Im<df2)p2 X Ker(de)pz

is a basis compatible with the given orientation of T}, X> respectively. Then we
define an orientation on the fiber product X; xy X5 so that

<77X1,17 oy NX e —yy ULy s Uy, T)X 15 777X2,$2—y>

is an oriented basis at T, ,,](X1 Xy X2). Here we identify T,Y with T, ,,1((s1 x
s2)Y'), where s; is a local section of f; : X; — Y.

In other words, we identify Tf,, ,,,1(X1 Xy X2) and Ker(df1),, x T,Y x Ker(dfz)p,,
as vector spaces and define an orientation on T[phpz] (X7 Xy X2) so that
x T,Y x Ker(dfz),,

1

T[;D1,p2](X1 Xy XQ) ~ Ker(dfl)p



20 FUKAYA, OH, OHTA, ONO

is an isomorphism of oriented vector spaces. Here we define the orientation on
Ker(df;)p, such that

(45.1.3) Ty, X1 ~ Ker(df1)p, x Im(df1)p,
(45.1.4) Ty, Xo >~ Im(dfs),, x Ker(df)p,

are isomorphisms as oriented vector spaces respectively. Here Im(df;),, is isomor-
phic to T,Y as oriented vector spaces. (When (df;),, (i = 1,2) is bijective, we define
the orientation on the one-point set Ker(df;),, by €;, where ¢; = +1 if (df;),, is an
orientation preserving isomorphism, and €; = —1 if (df;),, is an orientation reserv-
ing isomorphism.) In this sense, when we consider orientations of fiber products,
we will hereafter write oriented isomorphisms (45.1.3)-(45.1.4) such as

(45.1.5) X, =X xY
(4516) XQ =Y x OXQ.

Then we will write the fiber product X; xy X5 as X7 x Y x °X5. (Of course, these
equalities make sense as equalities at tangent space level.)

(4) (Fiber product of Kuranishi structure.) Let (s1; E1 — Uj) and (s2; By — Us)
be Kuranishi neighborhoods of X; and X5. Then we can take the product (s; @
So; Fh @ Ey — Uy x Us), which gives a Kuranishi structure on the product X; x Xs.
Note that the orientation on (s1@®s2)71(0) defined by (s;®so; By D Ey — Uy xUs) is
different from the product orientation on X1 x X5 = s7(0) x 551 (0). The difference
is given by

Xl X X2 — (_1)rankE2 dim X4 (51 @ 82>_1(0>

— (_1)rankE2(dim Ul—rankEl)(Sl ® 82)_1<0).

As for the general case of fiber products, we define the orientation on the fiber
product with Kuranishi structures as follows. Here we assume that the maps to
define the fiber product are weakly submersive (see §A1). Let f; : Uy — B and
f2 : Uy — B be submersions. Take the fiber product of them, i.e., Uy xg Us =
Uiy, ¢, Us. We have the orientation on U; x g Uy defined by Convention 45.1 (3).
We restrict the bundle £ @ E5 on Uy x Uy to Uy x g Us. The orientation on Ey P Eo
is also induced. The Kuranishi neighborhood (s1 @ sq; F1 @ Ea — Uy X g Uy) defines
an orientation on (s; @ s2)~1(0) by

(E1® E2)s x Ti(s1 @ s2)~(0) = To.(Uy x5 Ua).
Then we define the fiber product X; xp X5 by

X1 xp Xo = (_1)rankE2(dimX1—dimB) (51 ) 82)_1(0)

_ (_1)1rankE2(dimUl—rankEl—dimB)(S1 D 82)_1(0>.
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Note that this convention is independent of the choice of Kuranishi neighborhoods
(84, By — U;).

As consequences of these conventions, we have the following fundamental for-
mulae which will be used later. Hereafter (—1)-oriented isomorphism (resp. (41)-
oriented isomorphism ) stands for orientation reversing (resp. preserving) isomor-
phism.

Lemma 45.3. (1) Assume X1 and X2 have boundaries and the boundary of Y is
empty. For X1 —Y and X9 — Y, we have

O(X1 xy X3) = 0X1 xy Xa| |(=1)" (X xy 0X).
(2) (Associativity.) For X1 — Y7, Xo — Y1 x Yy and X35 — Y3, we have
(X7 Xy, X2) Xy, X3 = X7 Xy, (X2 Xy, X3).
(3) (Iteration formula.) For X1 — Y7 X Yo, Xo — Y7 and X35 — Ys, we have
X1 Xyyxv, (X2 x X3) = (=1)v201+22) (X} xy. X5) xy, X3.

(4) Let f; + X; — X! (1 = 1,2) be an e(f;)-oriented isomorphism and g : Y — Y’
an €(g)-oriented isomorphism. Then for X; — Y and X! — Y', the induced map

f1 ngg X1 Xy Xo —>X{ Xy Xé

is an €(f1)e( f2)e(g)-oriented isomorphism.

Proof: All claims are trivial except signs. So we only check signs. Firstly we consider
the case that all maps are submersions between manifolds.

(1) We put X; = X7 xY and Xo =Y x °X5 as in (45.1.5)-(45.1.6). Moreover
we put 0X; = (0X1)° x Y and 0X2 =Y X °(0X32). From the convention of the
boundary orientation (45.1.1), we have

Rx, x (0X1)°xY =X xY
Rx, x (Y x°(0X2)) =Y x °Xo,

where Ry, is oriented by the outward normal vector. Thus we have

RX X (8X1)° = Xf

1

(—1)Y(Rx, x °(0X3)) = ° Xo.
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Hence we have

Rx, xyx, X 0(X1 Xy Xo) = X7 Xy Xo=X7 XY x°X,
= RXl X (8X1>O XY X OXQ
| | X7 x ¥V x (-1)!(Rx, x °(0X2))
=Rx, x (0X1 xy Xo)| [(-1)""¥Rx, x (X1 xy 0X2)),

which proves (1).

(2) Put
XlzXfol
X2:Y1XOX2:X§XY2:Y1XOXSXYQ
X3:Y2><OX3.

Then we have ° X5 = ° X5 X Yy and X5 =Y; x °XJ. Since
X1 xYngzXfol onngfol XOXSXYQ,

we have
(Xl Xv; XQ) XY, X3 = Xf X Y1 X OXQO X YQ X OX3.

On the other hand, since
Xo Xy, Xsg=X3 xYe x°X3=Y] x °X5 x Yy x °Xg,
the right hand side in (2) can be written as
X1 Xy, (X2 Xy, X3) = X7 x Y] x°X5 x Yy x ° X3,

which implies the associativity.
(3) We put

X1 :Xf XY1 XYQ, X2:Y1 XOXQ, X3:Y2 XOX3.

Then since we have Xo x X3 = (—1)3‘/2(“_91)}/1 X Yy x °X5 x °X3, the left hand
side is written as

(45.4) X1 Xy, xv, (Xo x X3) = (=1)¥2279) X2 % ¥} x Y5 x ° X5 x °X3.
On the other hand, since we have

X1 Xv; XQ = (_1)y1szf X YQ X Y1 X OXQ
—(—1)1¥2 (—1)¥272 XD X ¥} x ° X, X Yo,
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the right hand side is written as

(X1 Xy; XQ) XY, X3
=(—1)%2FT2) X2 V] x ° Xy x Yo x ° X3
(45.5) —(—1)¥2(nte2)(_1)92(@2711) X© V] x Y5 x ° Xy X ° X,

Comparing (45.4) and (45.5), we get the formula.
(4) We put X; = X7 xY and Xy =Y x °Xs. Then we can write as

X1 XyXQZXfXYXOXQ.

Similarly we have X{ Xy X§ = X1°xY’'x°X). Since Y/ = €(g)Y and X! = e(f;) X,
we have X1° = e(f1)e(g) Xy and ° X} = e(f2)e(g)° Xo. Thus we get (4).

The same conclusions hold for spaces with Kuranishi structures. In fact, Con-
vention 45.1 (1) and (4) are designed so that the above argument works with the
following modification. If dim X < dim Y, we regard X as the space with Kuranishi
structure (s; £ — U). When X is a submanifold of Y, X° plays the role of the
obstruction bundle F on U =Y.

In general, the statements (1), (2), (3) and (4) in the case of spaces of Kuranishi
structure are proved as follows.

(1) Let X; = (s;; By — U;). By Convention 45.1 (1) and (4), we have

(X1 xy Xp) = (-1)* ((51 ® s2)|o, xyv2); (B1 D E2)low, xy ) — (U1 Xy Uz)):

where §; = rankE; + rankFEs + rankFs(dim X7 — dimY).
Similarly, we have

0X) Xy Xy = (—1)% ((81 ® 52)|ov, xy Usi (E1 B E2)|ov, xy U, — OUL Xy U2>7

where Jo = rankE5(dim X; — 1 — dimY') 4 rankEy, and

X) xy 0Xy = (—1)% ((81 D 52) |ty xyous; (E1 @ E2)|u,xyou, — Ut Xy 3U2>7

where d3 = rankEy + rankEs(dim X7 — dimY).
Note that, for oriented manifolds Uy, Us, we have

AUy xy Us) = 0Uy xy Uz | |(=1)% U1 xy 0Us,
where 04 = dimU; +dim Y.

Then we find §; = do and 61 + 03 + 04 = dim X7 + dim Y modulo 2. Here we
used the equality dim U; — rankF; = dim X;, which is the virtual dimension of
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X1 = (s1; E1 — Uy) as the space with Kuranishi structure. (See Definition A1.5.)
Hence we obtain

6(X1 Xy XQ) = aXl Xy XQ |_|(_1)dirnX1+dimYX1 Xy 8X2
(2) By Convention 45.1 (4), we have

(X1 Xy, X2) Xy, X3 =(—=1)%(s1 @ s9; F1 ® Ey — Uy Xy, Us) Xy, X3
= (—1)%+% (81 @ s9 @ s3; B1 @ Es @ B3 — (Uy Xy, Usa) Xy, U3>,

where
05 = rank Fy(dim X; — dim Y7)

and
d¢ = rank F3(dim X7 + dim X5 — dimY; — dim Y53).

Similarly, we have
X1 %y, (X2 Xy, X3) = (=1)7 X3 Xy, (82 @ s3; F2 @ E3 — Uz Xy, Us)
(—1)57+58 (81 D s2 D S83; E,® E;® Ey — Uy Xy, (UQ Xy, U3)>,

where
97 = rank Fs3(dim X5 — dim Y5)

and
ds = (rank Fy + rank E3)(dim X; — dim Y7).

For oriented manifolds Uy, Us, Us, we showed that (U; Xy, Us) Xy, Us = Uy Xy,
(Uy Xy, Us). Since d5 + dg = d7 + ds, we obtain

(Xl Xy, XQ) = X1 Xy, <X2 XY, Xg)
(3) By Convention 45.1 (4), we have

X1 Xy;xy, (X2 x X3) = (—1)59X1 Xy, xY, (82 @ s3; By @ F3 — Us x Us)
(—1)%Fo0 (S1 ® 52 @ s3; E1 @ B ® B3 — Uy Xy, xy, (Uz X Ug)),

where
09 = rank Fs3 - dim Xo

and
910 = (rank Fs + rank E3)(dim X; — dimY; — dim Y3).
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On the other hand, we have
(X1 Xy, X3) Xy, X5 = (=1)%1(s1 @ s9; F1 & Ey — Uy Xy, Us) Xy, X3
= (~1)"192 (51 @ 55, @ 3, By @ By ® By — (U1 %, Us) Xy, Us),
where
911 = rank Fo(dim X7 — dim Y7)

and
(512 = rank Eg(dlle + dlng - dlel — dle2>

Recall that, for oriented manifolds Uy, Us, Uz, we showed
Ui Xy, xv, (U2 x Us) = (=1)°3(U; xy, Us) Xy, Us,

where

(513 = dim Y2<d1mY1 + dim UQ)
Since dg + 010 + 911 + 012 + 13 = dim Y3 (dim Y7 + dim X5) modulo 2, we obtain

Xl XYy %Yy (XQ % X3> — (_1)dimYg(dimY1+dimX2)(X1 Xy, XQ) Xy, XS-

(4) By Convention 45.1 (4), we defined the orientation of the fiber product X; xy
X5 of spaces with Kuranishi structure depends only on the orientations of X;, X5
in the sense of Kuranishi structure and the orientation of Y. (In other words, it

does not depend on the choice of local charts with orientation.) Thus (4) clearly
holds. O

Remark 45.6. By using our expression of a fiber product, we can write the fiber
product in a simple manner as follows. Let fr : X — Y, and gr : X — Y
(k=1,...,¢). For k=1,... ¢, we put

¢
X = X°x [] ¥ X =Y} x °X}.
k=1
Then the orientation on the fiber product is given by

y4 L
(457) X(fh---,fz) X gy XX ge (H Xk) = X° x H(Yk X OXk).
k=1 k=1

To prove (45.7), we put



26 FUKAYA, OH, OHTA, ONO

Then by definition of the orientation on the fiber product, we have

¢ ¢ ¢
X(flﬁ'“afl) Xg1X-xge (HXk) = X° x (H Yk) X ° (H Xk:) .
k=1 k=1 k=1

On the other hand, it is easy to see that

’ ) k—1
o (H Xk) _ (_1)51 H OXk, where §; = Zyk Z - y])
k=1

k=1 k=2 j=1

Thus we have

oo (f ) s (0 ()

k=1

= (—1)%1H92 x° x H(Yk x °Xp).
k=1

But it is clear that §; = d2, so we find the formula (45.7).

§46. Orientation on the moduli space of marked pseudo-holomorphic
discs and on the singular strata of the moduli space.

In this section, we firstly give an orientation on the moduli space of marked
pseudo-holomorphic discs and, then, we describe the orientation on the moduli space
of pseudo-holomorphic maps from the union of 2 discs glued at one point, by re-
garding it as the boundary of the moduli space of (irreducible) pseudo-holomorphic
discs.

First of all, we fix the orientation on PSL(2;R) as follows.

Convention 46.1. Recall that we adopt our orientation convention for 0D? by
the counter-clock-wise orientation. We pick three distinct marked points zg, 21 and
2o on 0D?, whose order respects the counter-clock-wise orientation of the boundary.
We embed PSL(2;R) in 0D? x 9D? x 9D? by g +— (g - 20,9 21.g - 22) and orient
PSL(2;R) as an open subset of 0D? x 0D? x 9D?. If we fix the first two marked
points zg and z1, the common stabilizer of zy and z; is R, whose orientation is given
as follows. The orbit ¢t +— t - p, where p # zg, 21, converges to zg as t tends to +o0o
and converges to 21 as t tends to —oo. To make the PSL(2;R)-action on dD? into
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the right action, we set z - g := g~ '2. Thus we adopt the opposite orientation on

PSL(2;R) and R.

Let Mvreg(ﬁ) = Mres (L; B) be the space of pseudo-holomorphic maps from the
unit disc representing the homotopy class 5 € mo(M, L). (For simplicity of nota-
tions, we will often omit L.) In §46 and §47, we deal with all the components of
Meee (6). In §48, we restrict ourselves to the main component and give signs in the
filtered A..-operations. Recall that relative spin structure determine an orientation
on M™8(3) by Theorem 44.1. We write

ME(8) = (ME#(8) x (9D*)"*1) /PSL(2; R).

We assign the point +1 € 0D? to the 0-th marked point zy and —1 to the first one
z1 and set

—

M (B) = M(B) x (9D*)™ 1,

which can be regarded as the space of pseudo-holomorphic maps from the unit disc
representing the homotopy class § with m + 1 marked points (zg,- - , z,,) on the
boundary of the disc, such that zg = 1, z; = —1 are fixed.

—

Strictly speaking, we require all the marked points are distinct. So M8 () is

not Mres (B) x (0D?)™~1 itself but is its open subset. However when we consider

—.

the orientation problem, we often write it as M5 (8) = Me8(B) x (9D2)™ for
simplicity.

Then M8 (/) is identified with /T/l\;iil (8)/ Aut(D?; 29, 21). Here Aut(D?; 29, 21)
is the biholomorphic automorphisms group of D? fixing zg and z;.

Since PSL(2;R)/ Aut(D?; 29, 21) is even dimensional, the orientation of M % | (5)
as the quotient by PSL(2;R) coincides with one as the quotient by Aut(D?; 29, 21),
cf. (45.1.2). We denote by Rg the automorphism group Aut(D?;zp = +1, 21 = —1)
acting on M\;i’ﬁ_l(ﬁ). (Under our definition of the orientation on PSL(2;R), which
acts on D? from the right, orbits of this R-action converge to —1 (resp. +1), as
t € R tends to +0o (resp. —o0). ) Note that dim /\7;231(5) =n+ p(B)+m—1.

Orientation on these spaces are defined as the product of oriented spaces and the
quotient by the automorphism group (see Convention (45.1.2) in §45). So when we

consider orientations, we shall simply write as

—

(46.2) M5 (B) = M5 (B) x Rg,

and dim M2 (8) = n + pu(B) + m —2 = n+m (mod 2). Recall the Maslov index
is even since we assume that Lagrangian submanifolds are oriented.
We denote by ev? the evaluation map : M *% () — L at the marked point z;

(j=0,...,m).
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Proposition 46.3. We have an isomorphism

aMﬁiﬂﬁ/ +4")
= () DmaD R m)AIS(3)xr MISE L (8)

where n = dim L, as oriented spaces with Kuranishi structures. Here the union is
taken over 3= 06"+ 3" and m = my +mqy — 1.

Remark 46.4. Here the order of marked points on the boundary of the unit disc is
specified as follows. After gluing holomorphic discs, the first marked point z; g/ of
the 3'-disc is glued with the 0-th marked point zo g~ of the §”-disc and the marked
points disappear after smoothing. After gluing, the 0-th marked point 2y g of the
B’'-disc becomes the 0-th marked point zg g 4g~ of the (8’ 4+ (”)-disc. The rest of
the marked points of 3”-disc are numbered from 1 to mo and then the rest of the
marked points of 3’-disc are numbered from msy + 1 to m = mq + mo — 1. Namely,
25,8/ +B" = Zj,p" (j = 1,... ,mg) and Emo+j,B8/+p" = Zj+1,8' (] = 1, e, My — 1).
We write this convention as

6Dg’5/+5// X - X aD?n”B/_’_ﬁ// = aDg’B// X -+ X 8D’l%rlz,ﬁ” X aDg’B/ X -+ X 8D?n1’5/,

or simply
(aDQ)m—l — (aDQ)mg—l % (aDQ)ml—I.

Figure 46.1

Proof of Proposition 46.3: Firstly we state the following.



CHAPTER 9. ORIENTATION 29
Lemma 46.5. The gluing map
Mreg(ﬂ/>evﬁ' X o ]\/lvreg(ﬁ//) N ]\/lvreg(ﬁ/ + B//)
1 0

s orientation preserving in the sense of Kuranishi structure.

We will simply write
Mvreg(ﬁ/ + ﬁ”> _ Mreg(ﬂ/)wﬁ’ X g Mvreg(ﬂ//),
1 0

when we consider the orientation problem.
The proof of Lemma 46.5 is given at the end of this section. Using this lemma,
the proof of Proposition 46.3 goes as follows.

MiEL (B +8") = M5(5' + 5") x (9D
=(MB(), o0 X o MIE(B)) x (D)™
=(=1)m DO (MIE() x (D)™ ), o X o (MEE(B") x (9D?)™71)
(=D=M (8) X R, o0 X ,0m (Mo (B7) x Rgr) by (46.2)
(—1)(ma=Dme—L)+(ndma) (R g, o Mregmlﬂ(g'))evf, X " (M8 1 (B") x Rgn)
(-1)
(-1)

1) =D me IR gy ¢ (M () 00 X 07 Mins11(8) X Ry
1 (ml—l)(m2—1)+(n+m1)Rout X (Mr’n’c;f—kl(ﬁ/)evlﬁ/ X@fug” M;z§+1(ﬁll)> X Rﬁ/‘Fﬁ”'

Here we explain the proof of some of the equalities above. To prove the equality in
the third line, we put

MEE(5') = MES(5')° x L, M™8(8") = L x "M™5(g").
Then since
MEE(') x (OD?)™ = (=)= mAMEE(8)° x (9D%)™ ! x L,
we have
MIE(B') x (DD*)™ 1) o X o (MIE(B") x (9D?)™71)
1) =D ArE(87)° x (9D?)™ L x L x *M™8(B") x (9D?)™> !

(
(=
( 1)(m1 )n+(mi1—1)(n+mo— 1)Mreg(ﬁ) w I % Oﬂreg(ﬁll) > (aDQ)mg—l > (8D2)m1_1
(1) MIE(E) r x  MIE(B)) x (0D
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In the last equality, R,,; and Rg g are anti-diagonal and diagonal oriented sub-
manifolds in Rz x Rgr, i.e., Ry, is generated by (1, —1) € Ry x Rgr and Rgr g7
is generated by (1,1). So the orientation on Rg x Rgr coincides with that on
Rout x Rgrypr. The factor Ry, can be regarded as the space of the gluing pa-
rameter of holomorphic discs and the Rg g+ can be regarded as an R-action on

MUE (B + (7). (See Figure 46.2.) From our definition of orientations on the

boundary and the quotient, we get Proposition 46.3. [

Rout, ghung Rﬁ/+ﬁ//
Figure 46.2

Proof of Lemma 46.5: Let u € M*™5(3) and v € M™8(3") be holomorphic
discs with u(—1) = v(1). For a fixed sufficiently large R > 0, we glue u and v
in 1/R-neighborhoods of —1 and 1, respectively, using a partition of unity and
implicit function theorem. (See §29.3.) Denote by u#grv € Mreg(ﬁ’ + (") the
glued holomorphic disc. A relative spin structure on L gives a stable trivialization
of (u|gp2)*TL, (ulpp2)*T'L and ((u#grv|sp2)*TL, which are compatible under the
gluing. Hence Lemma 46.5 reduces to the linearized problem. Namely Lemma 46.5
follows from Lemma 46.10 below. [J

To state Lemma 46.10 we need some notations. Let (Eq, F1) and (Fs, Fy) be com-
plex vector bundles over the unit disc with totally real subbundles on the boundary.
(Namely it is a complex bundle pair in the sense of Definition 2.9.) We have Dol-
beault operators :

O, p, : WHP(D? 0D? Ey, F;) — LP(D?; E)
(i = 1,2) which are Fredholm maps. For p > 2 and z € 9D? we define evaluation

maps
ev, : WHP(D? 0D?* E;, F;) — Fj|,
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by
ev:(¢) = ((2).

Suppose we have an identification Fy|_; = F|;. We can use it to glue bundle pairs
(E1, F1), (E2, F») to obtain a complex bundle pair (E, F) on (D?,dD?). (Here D?
is obtained by gluing two copies D?, D3 of D? at —1 € D? and +1 € D3.

We define the fiber product

Index(0g, .7, )ev_, Xev, Index(9g, r,)
of indices as follows. We take finite dimensional complex linear subspaces &; C
LP(D?; E;) with the following properties.
(46.6) Im(9g, r,) + & = LP(D* E;) (i=1,2).
(46.7.1)  evy :5;11’1;1 (€1) — Fil1 is surjective.
(46.7.2)  ev_q: EEJ’FQ(&) — F3|_1 is surjective.

Definition 46.8. We put

—=-1 —=-1
aEl,Fl (51) evy Xev_q aEz,FQ (52)

= {(v1,v2) € WYP(D?,0D? E,, F|) ® W'P(D? 0D? E,, Fy)
| gEi,Fi (Ul) € Si? (Z = 172)a 61}1(’01) = 6’1)_1(1]2)},

and define

Index(gEl JF >€’U—1 Xevy Index(5E2 o )

(46.9) — _
= aEl,Fl (51) €ev1 XEU*l (aEQ,Fg)(SQ) - 51 - 52'

Here (46.9) is an equality of oriented virtual vector spaces. It is easy to see that
the right hand side of (46.9) is independent of the choice &;.

Lemma 46.10. There exists an isomorphism of oriented virtual vector spaces

Index(gEyp) = Index(gEl,Fl)eu_l Xev; IndeX(EEz,Fz)-

Proof. First of all, we consider the case when (E4, F7) and (Esq, F3) are both trivial,
that is the case when F; and F5 extend to totally real subbundles of F; and Fs
over the disc, respectively. In this case, Index(0g r) can be identified with the fiber
F|, of F at x € dD?. Moreover, we may take & = 0 and then (46.7.1) and (46.7.2)
are orientation preserving isomorphisms. Thus Lemma 46.10 holds in this case.

In the general case , we use the (stable) trivialization of the totally real subbundle
over the boundary to push down the bundle to the one-point union of the disc and
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the Riemann sphere in the same way as the proof of Proposition 44.4. Note that the
points which are identified are interior points of the disc and the Riemann sphere.
Therefore the fiber product is taken over a fiber of a complex vector bundle, which
has complex orientation.(See Figure 46.3.)

Figure 46.3

In order to check that orientations on 5(_5713)(51 @ &) and 5;11’& (E1) evy Xev_,

5}_3; r,(E2) are compatible, it is enough to show that the following linear gluing
problem : The real index of the Dolbeault operator on the genus 0 bordered Riemann
surface with two interior double points (i.e., two copies of CP! are attached at two
interior points on the disc), is isomorphic to the real index of the Dolbeault operator
on the glued Riemann sphere with the glued vector bundle.

Since they carry natural orientations coming from the complex structure, it is
obvious that they are compatible. [J

§47. The orientation on M, 1(0; P1,..., Pp).

§47.1. Definition of the orientation on My1(5; Py,..., P).

Let L be a relatively spin Lagrangian submanifold of (M,w). Theorem 44.1

reg

shows that the moduli space M, % (3) of pseudo-holomorphic maps from the unit
disc representing the homotopy class 8 € mo(M, L) with (¢+1)-marked points on the
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boundary is oriented in a canonical way. When we consider the orientation problem,
it is convenient to fix two marked points. Because the group of biholomorphic
automorphisms of the disc fixing two points is R, it can be interpreted as the
gluing parameter of two holomorphic discs. (See §46.) In general, we can choose
the fixed marked points arbitrarily. For example, if we choose any z; and z;, as
those marked points we fix, then we can define an orientation on Mz(igl (B) by
the following equalities (*). In order to define A., operations, it is enough to
give a canonical orientation on the top dimensional stratum M;° o (ﬁ, Py, ..., P)
of Myy1(8; P1,...,FP). Thus, from now on, we simply denote by M11(B) and
M1 (B; P, ... ,Pg) their top dimensional strata.

) {M\g+1(ﬁ) ::M;(ﬂ) x OD2 x -+ x OD? x ---xab? X -+ x dD2,
Miy1(B) = M1 (B)/R.

If we change the order of marked points by an element o of (¢ + 1)-th symmetric
group Gyyq, then it exchanges connected components of the moduli space. This
diffeomorphism is orientation preserving if and only if o is even permutation. (See
Proposition 2.22.) Hereafter we chose the 0-th marked point zy and the first marked
point z1, as the marked points we fix. This convention is the same as in §46. Note
in the case we choose any other z;, z;, the orientation we obtain on M,11(5) by
this choice can be compared to the case we choose zy, 21, by using the action of
Sy+1 mentioned above.

We note that, when we consider the moduli space M () with only one marked
point, we add another second marked point arbitrarily and we follow the convention
explained above to define an orientation on Mo (3). After that, we consider the map
Ms(B) — M;(B) of forgetting the second marked point. Since the fiber of this
map is homeomorphic to an interval which has a canonical orientation determined
by dD?, we have an orientation on M;(3).

Now let [Py, fx] be a smooth singular simplex in L with dim Py = px. We put
deg P, = n — pg, which is the degree as a cochain. By Proposition 29.1, ev :
Myi1(B) — L1 is weakly submersive. Therefore the fiber product in Definition
47.1 below is “transversal” in the sense of Convention 45.1 (4). We define a space
Mi1(B; Py, ..., Pp) with Kuranishi structure as the following;

Definition 47.1.

Y4
MZ—FI(B; P17 s 7P£) = (_1)61/\/{[4—1(6)(61)1,...,eve) X 1% fo <H Pk) )
k=1

where

~

—1

k
€= ZdegP

15=1

>
Il
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Remark 47.2. (1) Using the iteration formula in Lemma 45.3 (3) or the formula
(45.7) in Remark 45.6, we can rewrite the right hand side as

Mﬂ+1(ﬁ;P17"' ,P[)

£—1

k )
:(_1) k=1 Zvj=1 deg P < .. ((Mu—l(ﬁ)evl Xf1 Pl)evz ><f2 PQ) X ---)ew Xfe Pg.

(2). If all P, are bounding chains B(L; 8x) with 8y € mo(M, L) (see §5.6), then we
have deg B(L; B;) = 1 (mod 2). In this case, ¢; is given by

(n+1)0(¢ —1)
. .

When we change the ordering of marked points, we can find the difference of
orientations by the following key lemma, which plays a fundamental role in our
argument later.

Lemma 47.3. Let o be the transposition element (i,i + 1) in the (-th symmetric
group &y. (i =1,...,0=1). Then the action of c on Myi1(B; P1,..., P, Piy1,..., Pp)
by changing the order of marked points is described by the following.

oM (B Pry. .., Py Piga, ..., Pr))
:(_]‘)(deg Pi+1)(degpi+1+1)M€+1(B; P17 o 7Pi—|—17Pi7 CIEI 7P£>'

Proof: By definition we have

Mg_H(ﬁ; Pl, e 7Pi,Pi—|—1, e ,Pg)

(47.4.1) . ‘
= (_1) 1M€+1(ﬁ>(6’01,...,C’U»L',E’UiJrl,...,EU,e) Xfy X fs X fig1X fe H Pk ’
k=1

and

Mg+1(ﬁ; Pl, e ,Pi_|_1, Pz e ,Pg)
- (_1)62M€+1(5)(601,...,evi,evi_,_l,...,ew)Xf1><"~fi+1><fi"'><f£

(47.4.2) i—1 J4
(HkaPiH xPix ] Pk>,

k=1 k=i+2
where €; is the same as in Definition 47.1 and €5 is given by

€9 = €1 — (’I’L + 1)(deg Pz — deg Pi_|_1>.



CHAPTER 9. ORIENTATION 35

To compute the difference between the fiber product orientations on the right hand
sides above, we recall Lemma 45.3 (4). The element ¢ acts on Myy1(3) by chang-
ing the order of marked points. Thus ¢ induces a (—1)-oriented isomorphism on
Mi1(B). Clearly we have

i—1

J4
H — pzpz+1HPk><PH_1><P>< H P.

k=1 =i+2

Here p; = dim P; and p;.1 = dim P;;;. Moreover, as for the orientation of base
spaces of the fiber products, we have

4
IIze=(- HkaLhleLx HLk
k=1 k=142

Here Ly is a copy of L. Therefore by Lemma 45.3 (4), we can find that
(47.5)
y4
M@—i—l(ﬁ)(evl,... SV, €V 41 ,... €V ) Xfl><"'fi><fi+1"'><f£ (H Pk)
k=1

— (_1)1+pipi+1+nM£+1(5)

1—1
(evi,... ,ev;,€v;41,... ,€0y) Xfrx-fir1 X fi--X (H Pk X PZ+1 X P X H Pk)
= k=i+2

By combining (47.4) and (47.5), we can see that
€e1+e+1+pipit1+n=(degP;+1)(deg Piy1 +1) (mod 2),

which proves Lemma 47.3. [

§47.2. Anti-symplectic involution and orientation.

In this subsection we will prove Proposition 38.7 and Lemma 38.17 in Chapter
8. We briefly recall the situation in §38. Let 7 : (M,w) — (M,w) be an anti-
symplectic involution on a compact symplectic manifold (M,w). Assume that L =
Fix 7 is nonempty. We denote by J the set of all T-anti-invariant compatible almost
complex structures. Pick J € J7. For a J holomorphic curve w : (D?,0D?) —

(M, L), we define w by
@(2) = (row)(2).
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Moreover for [(D?,w)] € M™&(J; B), [((D?, 7, 2"), w)] € M}, ,.(J; 3) we define

n((D%w)) = [(D%@)],  7((D*Z75),w)]) = [(D*Z3),a)],
where L
52(207"'72k>7 Z :(Zg—v'”"z;?:)

Then by Lemma 38.6 7 induces the maps
Tt MIE(T; B) = MIS(J;8), 7 ML (3 8) = MOE L, (3 )

for p € II(L) = mo(M, L)/ ~. Then Proposition 38.7 is stated as follows.

Proposition 38.7. Let J € JJ. The map 7. : M™8(J; 3) — M*8(J; 3) induces
an involution of the space with Kuranishi structure. It is orientation preserving if
ur(B) =0 mod 4 and is orientation reversing if pr(6) =2 mod 4.

Proof. Let [D?,w] € M(J;3). We consider the deformation complex

(47.6.1) D0 :T(D* dD* : w*TM,w|}p.TL) — T(D?* A% @ w*TM),
and
(47.6.2) Dg0d :T(D* 0D? : w*TM,w|} . TL) — T(D?* A% @ w*TM).

(Here and hereafter, A' = AL0 @ A%! is the decomposition of the complexified
cotangent bundle of the domain (that is D? or S?).)
We have the commutative diagram of bundle pairs

(w'TM, wl}p.TL) =5 (@ TM, @[5, TL)
| |
(D?,0D?) — (D?,0D?)

Diagram 47.1.
where ¢(z) = Z and we denote by T'7 the differential of 7. It induces a bundle map
(47.7) Homg (T D?, w*TM) — Homg (T D?, w*TM),

which covers z — Z. The map (47.7) is anti-complex linear. Therefore it preserves
the decomposition

(47.8) Homg(TD?, w*TM) @ C = (AM° @ w*TM) & (A% @ w*TM),
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since (47.8) is the decomposition to the complex and anti-complex linear parts.
Hence we obtain a map

(47.9) TwaTs : T(D* A% @ w*TM) — T(D?* A% @ w*TM)

which is anti-complex linear. In the similar way, we obtain an anti-complex linear
map :

(47.10) Ty 07« : T(D?,0D? : w*T M, w|}2TL) — T'(D? 0D* : w*TM, w|}p.TL).

Since 7 is an isometry, it commutes with the covariant derivative. This gives rise
to the following commutative diagram.

T(D2,0D% : w*TM, wl . TL) —22 T(D2; A% @ w*T M)

Tw,OT*J( Tw,lT*J/

D~0
T(D2,0D? : &*TM, @5, TL) —“— T(D2%; A% @ ¢*TM)

Diagram 47.2.

To define a Kuranishi chart in a neighborhood of [D?, w] we need to take a finite
dimensional subspace E[pz . of I'(D? A% @ w*T M) such that

Im D,,0 + E|pz ,,) = T(D* A*! @ w*TM).
We choose E[pz ,,) so that it is invariant under Ty, 17, i.e.,
(47.11) E[Dz’@] = Tw,lT*(E[D2,w]>-

Let w' : (D?,0D?) — (M, L) be a map C? close to w. By definition it is easy to
see that

(47.12) 9’ = (T om.)(@0).
We may take an isomorphism

Lpw : T(D? 0D? : w*TM,w|}y:TL) 2 T(D?,0D? : (w')*TM,w'|5pTL)
so that it is complex linear and satisfies

(4713) Tw’,OT* o Iw,w’ = Iiﬁ,ﬁ’ O Law,0Tx-
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Now a Kuranishi neighborhood V|pz ) was defined in §29 so that it is the set of
solutions of the equation

(47.14) ow' =0 mod Ly w (E[p2u))-
Hence by (47.13) w’ — w’ defines a diffeomorphism
T : ViD2,w) = ViD2,3)-

Moreover the Kuranishi map w’ ~— s(w’) = 0w’ commutes with 7,. Hence 7,
induces an involution of the Kuranishi structure. .

We next study the orientation. Let w € M(J;8) and w € M(J;[3) be the
corresponding element. We consider commutative Diagram 47.1. A trivialization

@ : (wTM,w|;pTL) — (D?,0D?* C", A)
naturally induces a trivialization
& : (*TM,w|}p2TL) — (D? D% C", A),

where A : St ~ 9D? — A(C") is a loop of Lagrangian subspaces given by A(z) :=
Tw(z)L in the trivialization and A is defined by
A(2) = A®Z).

With respect to these trivializations, we have the commutative diagram

(D2,0D%C,A) TP (D2, 9p2Cn, )

! !
(D2,0D?) < (D2,0D?)

Diagram 47.3.
and the elliptic complex (47.6). Note that the map

7. = ®oTTo® !(2,): (C",A(2) — (C", A(2))

defines an involution with the Lagrangian subspace A(z) fixed. Now we deform
the metric on D? and the trivialization ® so that A(z) = R™ as in the proof of
Proposition 44.4 in this chapter. Recall that we assume L is orientable and so the
bundle wl},,TL — S' is trivial. After deforming further the Cauchy-Riemann
operator on (D?,0D?;C", A), we are reduced to considering the case

C : Hol (D?,0D*: C",R") x Hol (CP' : E)
— Hol (D? 0D? : C",R™) x Hol (CP*: E)
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where E is a holomorphic vector bundle whose topology is determined by A (see the
proof of Proposition 44.4) and C' is the natural map induced from the conjugation
on C™ and E. In particular, we have dim¢ Hol (CP! : E) = u(A). The first factor
is invariant under the conjugation because Hol (D?,dD? : C*,R") ~ R"™. For the
second factor, we have Hol (CP! : F) ~ Cz+#M) with C is reduced to the standard

conjugation on Cz#() | Therefore it boils down to considering the conjugation
O : Q30 osnd)
It is easy to see that this map is orientation preserving if and only if % wA) =0

mod 2, i.e., u(A) =0 mod 4. This finishes the proof. [

We next prove Lemma 38.17. By considering the assignment given in (38.13)

(w7 (217227 e 7Zk—172k720)> — ('&57 (zkagk—lv e 72272172()))7

an anti-symplectic involution 7 induces
main . main main
T . k+1 ( 76)_>Mk—|—1 ( 7ﬁ>

which is an involution of the space with Kuranishi structure. See Lemma 38.14. Let
Py, ---, P, be smooth singular simplexes on L. Then 7*" induces the involution

(47.15) T MR (T By Py P) — MR 35 Pay -+ Pr).
See (38.16). We put

e=ur(B)/2+k+1+ Z deg’ P; deg’ P;.

1<i<j<k

Here deg’ is the shifted degree. Then by using Lemma 47.3 in the previous subsec-
tion, we can show the following.

Lemma 38.17. The involution (47.15) preserves orientation if € is even, and re-
verses orientation if € is odd.

Proof. By Proposition 38.7, 7, : M*™8(J; 3) — M*&(J; 3) is orientation preserving
if and only if pz(5)/2 is even. By the involution 7., each boundary marked point
z; is mapped to z;. Denote by M;crigl( ; #) the moduli space with the boundary
marked points (2o, 21, ..., 2x) respect the clock-wise orientation. Since z — Z re-
verses the orientation on the boundary, 7, : /\/lrkefl(J i 0) — Mgigl(J ; ) respects
the orientation if and only if p(5)/2 + k + 1 is even. Thus we have

MEL(B: Pry o P) = (Z1)e OB (B Py P).
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Combining Lemma 47.3, we obtain Lemma 38.17. [

§47.3. Cyclic symmetry and orientation.

In this subsection, we describe the behavior of the orientation under the cyclic
symmetry and complete the proof of Proposition 37.27. First of all, we introduce a
version of the intersection pairing (,) used in (37.26).

Definition 47.16.  For a pair Pi, P, of smooth singular simplexes, which are
transversal and of complementary dimension, we define

<P1,p2> = #(Pl X, PQ)

Remark 47.17. (1) Let N; be the normal bundle of P; in L. Extend N; to a
tubular neighborhood of P;, ¢ = 1,2. Then P; is written as the zero locus of the
tautological section s; of E; on the tubular neighborhood. Then by Convention 45.1
(4), we find that
P1 X, P2 = (Sl;Nl — L) X, (SQ;NQ — L)
— (_1)degP2-degP1 (81 D 82>_1(0).

Taking Convention 49.1 into account, we obtain
(P, Py) = (—1)desPrrdea Pai (P O ).

Regard Pp, P5 as currents T'(P;), T(P,), respectively. Since we assumed that P;
and P, intersects transversally, the product T'(P;) A T'(P,) is defined. Then the
above observation is rephrased as

(P, Po) = (-1ytesriest

T(P)AT(P,) = / T(Py) AT(P,).

L

(2) In order to define the pairing on C'*(L), we take the intersection number after
perturbation in a similar way to the A, -structure.

Proposition 37.27 is a direct consequence of the following

Proposition 37.27°.

(Po,my g(Pr,..., B)) = (—1)de8" Puldeg" Potbdeg’ Peoa) p iy o(Py. L Pr_y)).

As in Lemma 47.3, we use the moduli space of bordered stable maps, which is
not the main component, i.e., the marked points do not respect the canonical cyclic
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ordering on the boundary. Here we apply the permutation of the zero-th and first
marked points. Let M} _ () be the moduli space with (21, 20, 22, . . ., 21) respects
the counter clockwise orientation and write

/7

k105 Po, Pay oo, Pr) = (1) M1 (B) XLx.xr (Po X Pa % ... Py),

where
k-1 j

€ = (n+1)(<k_1)degP0+ZZdeng>’

j=2 i=2
see Definition 47.1.
Lemma 47.18.

Poxp Myi1(B; Pr, Ps, ..., Py) = (—1)ldee ForDides Pitl) py X Myp1(B; Po, Pa, ..., Py).

Proof. Denote by L; the target of the evaluation map corresponding to P; and write
Mii1(B) = Lo X °Myi1(8)° x Ly X La- -+ x L,

?H—l(ﬁ):Ll x © ;€+1(ﬁ>OXLOXL2X...Lk.

Note that My 1(8) = =M ,(8), since the first two marked points are exchanged
and

"Mig1(B)° = (=1)7° M1 (B)°,

where v = (dim L)? + 1 =n+1 mod 2. Taking (45.7) into account, by Definition
47.1, we have

M]H_l(ﬁ; Pl, .. Pk) = (—1)ELO X OM]H_l(ﬁ)O X L1 X OP1 X X Lk X OPk,

where .
k—1 3
e:(n—I—l)Z deg P;
j=1 i=1
and

11(B; Po, Pa, ... Py) = (=1)€ Lyx° M1 (8)° X Lox° Pyx Pyx® Py x- - -x L, x° Py
Then we have

Py xp, My11(B; P, P, ..., Py)
=(—1)(P§ x Lg) x °Mp+1(8)° x (L1 x °P1) x (La X °Pa) X -+ - x (L x °Py,)
(=) (Ly x °P1) X °Myp1(B8)° x (P x L) X (Lg X °Py) X - - x (Lj, X °Py)
(=) (PP % L) X ° M1 (8)° x (Lo x °Po) X (Ly X °Pa) x -+ x (Ly X °Py)
()P M1 (85 Po, Pay ..., By,
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where
d =pop1 + (n+ 1)(po + p1)k, (p; = dim P;).

In the second equality, we note that
dim °Mp1(8)° =n+u(B)+k+1-3—k(n+1)=(n+1)k mod 2.

We used
Lx°P=P=LxP°

in the third equality. Noting that
e+e =(Mn+1)(k+1)(po+p1) mod 2,
we have
et+d+y+e€=Mn+1+po)(n+1+p1)=(degPy+1)(degP; +1) mod 2.

Hence the proof of Lemma 47.18 is complete. [

Proof of Proposition 37.27°. Proposition 37.27” follows from Lemma 47.3 and Lemma
47.18. O

§48. The filtered A, algebra case.

We recall that, when we study the structure of the filtered A, algebra associated
to a Lagrangian submanifold L, we use the main component of the moduli space.
(See §2.2 for the definition of the main component.) So we choose the order of the
marked points on the boundary so that it is consistent with the counter clockwise
orientation of the boundary. Let [P;, fi] € C9(L, Ao nov)-

By Definition 47.1 we have :

k
kit (B Pryeo s Pr) i= (1) T ML B) (eor... evn) X frxx f <H Pi) ,

where

61:(n—|—1)z

=11

deg P;.

k—1 jJ
=1

<
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We will check signs and complete the proof of Theorem 10.11, which states that
(C(L; Ao nov), m) is a filtered Ao algebra. There are two points where we need to

check signs. The first one is in the proof of dod = 0, and the second one is in
the comparison of our orientation on (MT(L, By; Pp, P»), evg) with the geometric
orientation on P;NP,. (Note By = 0.) We will check the first part in this subsection
and the second one in the next subsection. To prove (10.17.1) and (10.17.2), we
need the following Proposition 48.1 (2) and (1), respectively.

Proposition 48.1. (1) For = (1 + (2, we have

pa a(Bis Pry o P, M (Bos Py Pigy—1)s Pigtog s - -+, Pr)
C (_1)626/\/11];1-12}1111(67 Pl?"' 7Pi—17Pi7"' 7Pi+k2—17Pi+l€27"' 7P]€)7

where -
ea=n+1+ Z(deng +1).
j=1
(2) We have
main (3 Py, ... OP;, ... Py) C (=1)SOMPA(B; Pry... , Py ..., Pr),
where
i—1
€3 = 1 —+ Z(deng —+ 1)
j=1

Proof. The proof of (1) is divided into several steps.

Step 1. We note that the main component is not preserved by the change the order
of marked points except by cyclic permutations. However we will use the compo-
nents other than main components at the intermediate stage of the calculation.
From Proposition 10.2, we note that

i+ko—1
deg M5 (Bo; Piy ..., Piyry—1) = Y (degPj+1) (mod 2).
7=t

Then by using Lemma 47.3 repeatedly, we find
pal (B Prye o MEES (B3 Piy ooy Pitky—1)s Pitkeyy -+ 5 Pr)
C (=) Mp—ty 12 (B M2 (Bos Piy o ooy Prgtey—1)s Pry e oo, Picty Pigigs - -+ Pr),

where

= (1473 e 1) (S ).

j=i i=1
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Step 2. Next, we compare the orientation on
Mi— iy 2 (B MRS (B2; Pry - ooy Pigeka—1), Pry o oo, ity Pigggy - P)
with that on
OMp1(B; Py s Piyko1,P1y- oo s Pic1, Pigggy o Pr).
By Definition 47.1, we have

Mis1(B5 Py, oo Pijiko—1, Pry oo s Pic, Piggys oo ., i)
Z—|—k2 1

=(=1)""Mi11(8) eor,... ,evy) X H P; XHP X H P,

Jj=i+ko

where

1—1 Z+k2 1

i+ko—1 J
1= (n+1) ( Z Zdeng—l—Z( > deg Py, +Zdeng>
R "
+ Z ( Z deg Py, +Zdeng—|— Z deg&))

j=i+ko m=1 =i+ ko

Using the iteration formula Lemma 45.3 (3), we have

i+ko—1
Mk-l—l(ﬁ)(evl,...,evk) X H P X HP X H P
] Z—|—k2
i+ko—1
:(_1)72 Mk+1(ﬁ>(evl,...,evk2) X H Pj
Jj=1
(61}k2+17 -7evki) X HP X H P 9
j=i+ka
where

itha 1 itha—1

Y2 = (k — ko)n (kzn-l- Z n—degP)>E(k’—k:2)n Z deg P;.

Jj=1 Jj=t
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When we glue two holomorphic discs together with marked points, our convention
(see Remark 46.4) of the ordering of marked points and of the boundary orientation
(and Proposition 46.3) show that

i+ko—1

0 Mk—kl(ﬁ)(evl,...,evkz) X H Pj (eVrg+1,---,€Vk) X HP X H P

j=i+ko

i+ko—1
D(_1)73 <(Mk_k2+2(ﬁl)evfl Xevg2 Mk?"'l(BQ))(evf,... evk ) H PJ )

j=i
(61}52_’_17 '76U]€ H P X H P )
j=i+ko
where
v3=(k—ko)lka—1)+n+k—ke+1=n+1+kks+ky (mod 2).

By the associativity property Lemma 45.3 (2) and Definition 53.1, we have

10"

i+ko—1
((Mk_k2+2(ﬁl)evf1 Xevg2 Mkz—Fl(BQ))(evﬁ .,evk2) H Pj )
Jj=1

(ev£2+1, evk H P X H P

Jj=i+ko

Z—|—k2 1
:<Mk_k2+2(ﬁl)evfl Xevgz Mk2+1</32)(51) evk ) H Pj )
j=i

(ev£2+1,...,evk HP X H P

j=i+kso

=(—-1)™ (Mk—k2+2(ﬂ1)evf1 X gupz M1 (023 Pis - . 7Pi—|—k2—1)>

- HP <11 n)

Jj=i+ka

where
z—|—k2 2 7

Y4 = ( Z Zdeng
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Again by using the iteration formula, we find that

(Mk—k2+2(51)evf1 X upz My 41 (023 Pis - .. 7pi+k:2—1)>

(ev£2+1,..., HP X H P

Jj=i+ko
=(=1)" My—bo+2(B1) (o1
( ) k k2+1)
(Mk2+1(ﬁz;Pi,--- Pitr,—1) HP X H P )
j=i+kso
=(=1)" "My _pyi2(8; Miy+1(B2; Pis - - s Pigiy—1), Pry oo s Pict, Pigy, - -+, Pio),
where
itky—1 itko—1
v5 = n(k — ko) (2n — Z (degPj + 1)) = n(k — ka) | k2 + Z deg P; | ,
j=i j=i

76 = (n+1) (deg Migy11(B2; Piy - .., Pigky—1)

1—1
+Z<deng2+1 Ba; Py, Pigy—1) Zdeng>
j=1
k—1 i—1
+ > (deg M1 (B Prv o, Prigy ) )+ 3 deg Pt 3 deg&))
j=i+ka m=1 =i+ ko
i+ko—1
(k ks) (k2+ Z deg Py, )+ —i— ko) (ZdegP)
i—1 j — J
P Ydnse Y Y dun,
j=1¢=1 j=itke b=itko

Then an elementary calculation shows that
Ntrtuatrtstrw=n+l (mod?2).
Hence we have found that

Mt 1 (B M2 (Bos Py oy Piegy—1)s Pry ooy Pit, Pigigy oo Py)
C (=1)" oMy (B Py Pigy—1, Pry o, Pty Piyiys o oo, Pr).



CHAPTER 9. ORIENTATION 47

Step 3. On the other hand, by using Lemma 47.3 again, we can see that

Mp1(Bs Py oo s Piggo—1, Pry oo s Pio1, Piggeyy oo, Pr)
= (—1)52/\42?1111(5, Pl?"' 7pi—17Pi7"' 7pi+k2—lypi+k27"' 7pk:)7

where

5y = <i+§51(deg Pj + 1)) <§(degpj + 1)).

j=i j=1
Therefore we have
i—1
+n+1+0d En-l—l—i-Z(deng-i—l) ( mod 2 ),
j=1

which proves Proposition 48.1 (1).
(2) We prove Proposition 48.1 (2). We recall that

k
ARG L P P = (1) I MESR () o ooy X it | [P

<.
Il
—

with
1

k-1 j
(n+1) Zdeng.

j=1/4=1

By Lemma 45.3 (1), we find that

N

k
O(ME(B) s, ey %sixsi | 11

j=1

k
=OMES(B) on.. o) X sixeshe | [] B
j=

k
I_l(_l)n+k+nkM;cnﬁ11n(ﬁ)(evl,...,evk) X f1 XX fr 0 H P] ’
j=1

because dim M (8) = n+ pu(B) — 3+ k+ 1 = n+ k. Moreover by using Lemma
45.3 again, it is easy to see that

k
HP :U—l)zlld‘mpr X OP; x -+ X Py.

=1
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On the other hand, Definition 47.1 yields that

(3 Py, ..., 0P, ..., Py)

i—1
:(_]—)62 ;Cn—’a—‘in(ﬁ)(evl E’Uk) Xflx ka H P X 6P X H P
j=1

Jj=i+1
with
k—1 7
ea=(n+1) (deg Pg ,
Jj=1/4=1
where
deg Py for £ #£ 1

deg P;) =
(deg Fr) {deng—l—l for ¢ = 1.

Therefore we can see that

i—1 i—1
e +n+k+nk+ Z(n —degPj) + e = Z(deng +1)+1 (mod 2),
j=1 j=1

which proves Proposition 48.1 (2). O

Then Proposition 48.1 (1) and (2) imply (10.17.2) and (10.17.1) respectively.
Therefore we complete proving that

c?oc?:O

n (C(L; Aonov), m).

§49. Orientation on the moduli space of constant maps.

Next, let us assume that P; and P, are oriented submanifolds. Considering the
moduli space of constant maps MT¥ (L, By; Pp, P»), we have MP0 (L, By: Py, Py) =
Py N Py as sets. We have to study the difference of orientations between them. To
do this, we firstly confirm the convention on orientation on P; N Ps.

Convention 49.1. We assume P; and P, are submanifolds in L and intersect
transversally. We denote the dimensions of L, P; and P, by n, p; and ps. Suppose
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that L, P, and P, are oriented. Take x € P; N P,. The orientation on the normal
bundle Np, L of P; (i =1,2) in L is defined by

T,L = N, p,L x T,P;.

Since P; and P, intersect transversally, we may assume that N, p, L. C T, P> and
Ny p, CTyP;. Then we define the orientation on P; N P, by

TyL = Ny p, L X Ny p, L X T, (P1 N Py).
Remark 49.2. The convention defines “cohomology orientation” on P;NFP,. Namely
we have PN Py, = (—1)(”_7’1)(”_7’2)]32 N P;.
Then we can show the following;

Proposition 49.3. We can give an oriented Kuranishi structure on M$3(L; 3;)
so that we have the following oriented isomorphism

evg : M3 (L; B0) (coy,evn) X frxfa (P1 X Py) — (1)1 Prtpalim(n=plp q p),

Note that since we have from Definition 47.1
Ménain<L; Bo; P1, PQ) = (_1)(n+1) degPlMgnain(L; ﬁO)(evl,evz) X f1x fa (pl X PZ)?

we can immediately obtain the following consequence.

Corollary 49.4. Using the oriented Kuranishi structure on M$*5(L; B3y) in Propo-
sition 49.3, we have

(Ménain(L;ﬁO; Pl,PQ),e'UO) — (_1)degP1(degP2+1)P1 NP

Proof of Proposition 49.3. In order to show Proposition 49.3, we are going to explic-
itly describe (weakly submersive) Kuranishi structures on M$3%(L; 3y), Py x P, and
their fiber product. Firstly, we describe the Kuranishi structure on M$P2n(L; 3y).
We like to study orientation on the Kuranishi structure on M$"(L; 3,). Since
MPAn ([ 3y) consists of constant maps, the argument is a local problem. Here we
shall consider the case L = R™ and M = C" with the standard orientations. We
put three marked points zg = 1,2; = v/—1, 2, = —1 on the boundary of the unit
disc D?. The maps ev; and evy on MP¥(L; 3y) are the evaluation maps at z; and
Zo, Tespectively.

Now we put

1 1
U = {ua,b N _D2 — C’I’L ua7b(z> — Qa\/ _12‘1_ b_ Qa\/ _]_27 a7b E R’I’L}

E = {(uap,c) | z€ D* a,b,c€ R"}
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and define a section s : U — & by s(uqp) = (¢ap,a). Then the moduli space
M (L: By) of constant maps to L is nothing but s~!(0) ~ R?.

Of course, U can be identified with R} x R} which can be regarded as T, L X
T.L, and & is a trivial vector bundle over U with fiber R™ = T, L. Applying the
argument in §44.1 to M$Pn(L: 3y), the orientation in this case is given by the
orientation of L after identifying it with the target L via evg. We must provide
the orientation on U and the fiberwise orientation on £ respectively so that the
orientation of MYPAn([; 3y) is consistent with the orientation of (s;& — U) in
the sense of Kuranishi structure. From now on, we give U an orientation through
identification with T, L x T, L and the fiber orientation of £ through identification
with R" 2 T, L and (s;€ — U) gives a Kuranishi structure on M3 (L; 3).

Note that the evaluation map (evy,evy) : U — L X L, which is given by

(ev1, eva)(uqp) = (a+ b,b),
is an orientation preserving map. We have an orientation preserving identification
Ew X TuME*™(L; By) = TLU = T, L x T, L.

Secondly, we describe the Kuranishi structure on P; x P,. Let U; C L be a
tubular neighborhood of P; in L (i = 1,2). Let Np, be the normal bundle of P; in
L and s; : U; — Np, the canonical section. Then (s;; Np, — U;) gives a Kuranishi
structure on P;. Namely P; = s, 1(0) and the orientation is given by

Np,

7

e X T, 871(0) =T, U; 2 T, L

(3

for z; € P;. Thus P; = 5;1(0) as an oriented space. The product of the Kuranishi
structures (s1 @ so; Np, @ Np, — Uy x Us) gives a Kuranishi structure on P; x Ps.
Then by Convention 45.1.(4), the relation between the orientation defined by the
Kuranishi structure and the product orientation on P; x P; is as following :

P x P, = (—1)”1(”_”2)(81 ® 52)71(0),
because we have

Nplxl X NP2$2 X T(Sl @ 32)_1(0>(CE1,$2)
= (]Vpl‘rl X Tx1P1> X (Np2$2 X Tx2P2>
= (-1 PINp X Np,, x Ty, Py x Ty, Po.

=1, Uy xT;,Us

(See Convention 45.1 (4).)
Now, for two submersions;

(evy,eve) : U — Uy x Uy, id = identity : U; x Uy — Uy X Us,
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we consider the fiber product of Kuranishi structures
(5@ 51 ®52;E D Np, © Np, — Ulepy evs) Xia (U1 X Uz)),

which gives a Kuranishi structure on M$ain(L; B0) (evr,eva) X f1x f2 (P1 X P2). As for
the orientation, we have from Convention 45.1 (4),

Mgnain(L;O)(em,evz) X f1x fa (Pl X PQ)
— (_1)rank(Np1€BNp2)(dim Mgnain(L;O)—dim Uy XUQ)

(49.5) « (_1)?1(”‘1’2)(8 D s1 D 32)_1(0)

= (_1)n(p1+p2)+p1(n—pz)(8 @ 51D 52)"1(0).

Now we are going to compare the orientation on (s @ s; @ s2)~1(0) with that on
P; N P,. The orientation on (s ® s1 @ s2)~1(0) is defined by

5* X NPl* X NPQ* X T*<5 D s D 52)_1(0) - T*(U(evl,evg) ><identity (Ul X UZ))

Then we will show

Lemma 49.6. The isomorphism
evg : (s D s1 @ 82)_1(0) — PiNP

18 orientation preserving.

Proof of Lemma 49.6: The orientations of P; N Py and (s @ s1 @ s2)~1(0) are given
by the following exact sequences respectively:

O—>T*(P1QP2) —>T*LHNP1 EB]VP2 — 0
and

0= Tu(s®s1@®s2)"L(0) — T <U wiq (U % U2)> s E@mNp, ®TiNp, — 0.

We consider the following commutative diagram, which relates two exact sequences
above.

g, 14,
D

0 — T.(Py N Py) — T.L —
17 d 1

0 — Tu(s®s @ so) 1(0) — T*(me xid<U1xU2>) —
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_ 8*
S?)

— Npl@sz — 0
w1

— E®7nfNp &@m3Np, — 0

where vertical isomorphisms are given as follows: I is the restriction to Ty (s ® s1 @
s2)71(0) of the differential of the evaluation map from the Kuranishi neighborhood,

ie., evy : (Uevl’ev2 Xiq (Uy X Ug)) — L. In other words,

I="T.evg: Tu(sD sy @ s9) 1(0) = Tu(Pr N Py)
and can be explicitly written as
I((0,v),v,v) = v.
The maps ® and ¥ are defined as
®((a,b),v1,v2) = (a,pri(v1) + pry(ve) + prg(b)) with vy =a+b,v2 =0,

and
\I!(’LL, U1, UQ) - (’LL, 1, UQ)-

Here pr; is the i-th factor projection of T,L = Np, & Np, @& (P1 N Py). Because
the isomorphisms ® and ¥ preserve their orientations, it follows from the diagram
chasing argument that the isomorphism I also preserves orientations. This finishes
the proof. [

Therefore, combining (49.5) and Lemma 49.6, we complete the proof of Proposition
49.3.

§50. Orientation of the moduli space of connecting orbits.

In §44.3, we described the orientation on the moduli space of connecting orbits.
In this section, we will give orientations on the moduli spaces of marked pseudo-
holomorphic strips and their fiber products with smooth singular simplexes on L(®).
They are used to define the filtered A, bimodule structure.

Suppose that a pair (L(®), L(Y)) of Lagrangian submanifolds of (M, w) is relatively
spin and intersect transversally. (See Definition 44.2 for the relative spin structure
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for the pair (L(?), L()).) Choose and fix the path )\, of oriented Lagrangian linear
subspaces and a trivialization of the bundle Xp for p € LO N LW, (See §44.3.)
From now on, we abbreviate these data in the notation of the moduli spaces.

Now let, [£,,, w], [(4,w'] € Cr(LM), L®). (See §3.2 for the definition of Cr(L™1), L))
We denote by M8 ([0y, w'], [£y, w]) = M=&(LWD | LO): [0, w'], [(,,w]) the space of
pseudo-holomorphic maps u from the infinite cylinder R x [0, 1] C C to M such that

u(—00,t) = p, u(+00,t) = ¢, u(R x {i}) ¢ LO (i =0,1) and w#u ~ w.’

Note that this notation is different from one in §12 in Chapter 3, where the above
moduli space is denoted by Mvreg([ﬁp,w], [lg,w']). Recall that we adopt different
notation only for the orientation business. See the top of §44.3. (For simplicity of
notations, we often omit L(® and L®) in M(LM, L), [lg, w'], [£p, w]) etc.) From
now on, we identify the infinite cylinder R x [0, 1] with D? \ {&1} C C so that the
ends {400} x [0,1] and {—o0} X [0, 1] correspond to zg = 1 and z; = —1 respec-
tively. Then the relative spin structure of (L(®), L(1)) determines the orientation on
M8 ([0g, w'], [£p, w]) by Theorem 44.14 in §44.
We put

OD?* ={z€0D?| Imz >0}, 0yD*={z¢€0D?| Imz < 0}.

We denote by M ([,,w'], [, w]) the space of connecting orbits

£,m
w: (D?\ {£1};8,D% 8,D?) — (M; LY, LO)

with ¢ marked points on 9;D? and m marked points are on dyD? such that the
following holds. u(—1) = p and u(1) = ¢q. The marked points are distinct. 2nd, 3rd,
... ,(£+1)-th marked points zs,- -+, zp+1 are on &; D? and £+ 2-th, ... £+ m + 1-
th marked points zs42, ... ,24m+1 are on L. If we put 2y = 1, 21 = —1, then
the order of the marked points zg, 2o, -, 2¢11, 21, 2042, - - - , Ze4m+1 respects the
counter clockwise orientation of 9D?. (See Remark 22.23 (2) and Figure 12.2.)

The space M, ([¢g,w'],[{y,w]) is an open subset of M ([Lg, w'), [y, w]) x
(0D?)**™ . So, under this convention, the orientation on MZ?EI([fq,w'], [0y, w]) is
given by

MZ?E@(MQ?QU/]? [gpv w]) C Mvreg([gqv w/]7 [gpv w]) X (8D§ X X 6Dl%—|—m—|—1>7
where OD? is a parameter space of the marked points 2z; (i = 2,...,f+m +1).

We denote by My, ([€g, w'], [¢p, w]) the quotient space of My, ([lg, w'], [€p, w])
by the biholomorphic automorphism group R of D? fixing the two marked points
20 = +1 and z; = —1. (See Definition 5.1.)
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The orientation on My, ([{q, w'], [¢p, w]) is defined as the quotient orientation
defined in §45. As in §46, we simply write as

Mreg ([£q7w/]a [€p, w]) = Mreg o ([£g w'], [€p, w]) x R.

Let Pl(l), e ,Pz(l) e C(LM;Q), Pl(o), e ,Pr(r?) € C(L9; Q) be smooth singular
simplexes on L), i =0, 1.
We define

Definition 50.1.

ME (LD, LO; [0, w'), [bpow] - PV, PV PO, P
= M ([lgw'], [6pyw] - PV, PV PO PLO)
= (-1 )eMZTEi([fq,w/], [zlﬂw])

(eva,... ,eVe41,8V04 2, €Vt mt1) X
V4 m
(1) (0)
[ =157 )
k=1 k=1

where we define € as follows. Let p([¢,, w]) be the Maslov-Morse index in Definition
3.12. (We omit AY from the notation u([¢,, w]; \Y), since the parity of pu([€,, w]; A%)
is independent of A\°. It is independent of w also.) We put :

if m=0,
/—1 k
—(n+1)> > deg P/ + (n+1)p([ly, w])
k=1j=1
/
+ p([lg, w') + (u([p, w]) + 1) Z(degp,glul),
k=1
and if m > 1,
m—1 YA k
) (3 a5 ( (Saert?) + 3 e
k=1j=1 k=1 h=1 =1

y4
+N([£q7w/]) + (p([lp, w]) + 1)

Z (deg P(l) ) + (L+m)(n+ 1)p([lp, w]).

k=1
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Remark 50.2. (1) When we regard the space of connecting orbits as a space of
pseudo-holomorphic maps from the unit disc, this sign is nothing but one determined
by the rule in Definition 47.1. Note that the way we treat the first two marked points
zo, 21 is different from the way we treat the other marked points. This is because
we need to do so when we define the orientation on the space M([(,, w'], [(p, w]).
Namely, we glue half discs at these marked points and after gluing these marked
points disappear.

(2) We discuss the case when L(®) and L") intersect cleanly, in §51.

The space My, ([€q, w'], [{p, w] : Pl(l), . ,Pg(l); p1(0)7 . ,Péi”) is the stable map
compactification of M, ([£,, w'], [€p, w]) : Pl(l), o ,Pg(l); P1(0)7 . ,Pélo)) and is a

£Z,m
space with Kuranishi structure with corners. Note that the orientation bundle of the

Kuranishi structure naturally extends to the stable map compactification. Hence
M ([Ug, W'], [€p, w]) : Pl(l), . ,Pz(l);Pl(O), . 7p7§10)) is also canonically oriented.
Using these oriented moduli spaces of dimension 0, we define ny ,,, by

gm(PP @ 0 PV @[, w]@ PO - @ PO), [ty w])
=H# My ([l w'], [y, w]) : PV, P PO pO)
as in Definition 12.41. Then we can show

Proposition 50.3. The operators ng ,,, satisfy the As, bimodule formulae.
Proof: We have three kinds of ends of the moduli space

(50.4) Mo ([bg,w'], [bp,w] : P, P PO POy,

The ends corresponding to bubbling off of holomorphic discs are treated in a similar
way to the proof of Proposition 48.1 (1). (These contributions cancel with the A
algebra operations on LV, i = 0, 1.) We see that other boundary contributions

cancel one another.
We find that

(—1) My ([, w'], [bpow) - PV 0PM o PV PO PLO)

(50.5)
COMym([bg, w'), [lp,w] : P, P PO PO,

where €1 = p([£q, w']) +n+ 1+ 377] (deg P + 1),
(~1) =M ([lgn '), [byw] - P, PO PO 9P PO

(50.6)
COMym([bgsw'], [lp,w] : P, ... P PO PO,

where

¢ i1
2 = ([l w) +n+ 1+ (deg PV 4 1) + (u([Lp,w]) + 1)+ Y (deg B +1).

=1 =1
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For the proof of (50.5) and (50.6), see (51.12.2) and (51.12.3) and the proof of
Theorem 51.10 (2) in the next section, where we will prove more general statement,
combined with Definitions 51.8 and 51.11.

Other ends of the moduli space (50.4) correspond to the splitting of a connecting
orbit into the sum of two connecting orbits. As for the orientation given in §44.3
and Convention 49.1, we can show that the gluing map

Mg, '], [lryw"]) x M([Er, "], [£p, w]) — M([lg, w'], [£, ")

respects their orientations. Note that the orientations we use are ones in §44.3.
These orientations are modified in Definition 50.1.

Now we consider the R-action defined as the translation in 7-variable. By our
convention in §45, we have the following analog of Lemma 46.5.

(=D M([lg, w'], [br, w"]) x M([lr, "], [£p, w]) € OM([Eg, w'], [bp, w]),

where e3 = p([lq, w']) — p([¢r,w"]) — 1. We will find a more general claim in the
proof of Theorem 51.10 (3). Using this fact, we find that

(1) Moy iy ([lgyw'), [, w"] = PV, P PO PLO)Y

mq
X My ([, w0"] [0, w) - P PR P PO
COMpm([lg, '), [bpyw] : P, PO P P PO PO PO PO

where €5 = 1([lg,w']) + 14 311 (deg PV 4 1), cf. (51.12.4).
The rest of the argument is now standard. [

§51. The Bott-Morse case.

We discuss the orientation problem for the space of connecting orbits in general
Bott-Morse setting. First of all, we review some notations in §12. Let L(®) and
L™ be two Lagrangian submanifolds which intersect cleanly. We denote by R}, a
connected component of L(® N L) We define

(TLO +17LW)
(TLO) + TLW)Le R,

h:

V}, is a vector bundle on Rj,. We regard V}, as a subbundle of TM|g, .
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For each point p in R, we denote by PRh(TpL(O), TpL(l)) the space of all paths
in the oriented Lagrangian Grassmannian of T}, M such that it is of the form ¢ —
A(t) @ T, Ry, and satisfies \(0) @ TRy, = T,L, \(1) @ T, Ry, = T,L(Y). Here A(t)
is a path of Lagrangian subspaces in V}|,. In Chapter 3, we consider the case that

ANt) @ TRy = Aw, 20
We like to remark that R itself may not be orientable. We write

Pr,(TLO, TLW) = | | Pg, (T,L, 7,L0).

PER

Denote by Xp the Lagrangian subbundle in [0, 1] x T, M corresponding to the
path A @ T, Ry,.

In this section we consider a connecting orbit as a holomorphic map u : D? — M
such that u(9yD?) C L, (0, D?) ¢ LW, u(l) = ¢ € Ry and u(—1) = p € Ry,
where 9y D? is the arc with negative imaginary part and 8, D? is the arc with positive
imaginary part. We denote by

M(Rp, Ry,)

the moduli space of such maps u. We remark that the order of Rj/, Rj in the
notation above is opposite to the convention in §12. (See the top of §44.3.) Namely

M(Ry/, Rp) = UMO,O([h7 w], [A', w'])

w

where the right hand side is as in Proposition 12.55. (Note we fix w and take a sum
over w’ in the right hand side.)
We recall

Z_ = (D*N{Rez < 0}) U ([0,00) x [0,1])
Z, = ((—00,0] x [0,1]) U (D?* N {Rez > 0}).

The Dolbeault operators
EA@TRh,Zi : Wiég)TRh(Zﬁ T0M> - Lp(Zi; TpM ® Ao’l(Zi»

are defined in §12.5. (See right before Definition 12.62.)
{8)\@TR}L,Z:|:})\@TRhe'PRh(TL(O)’TL(l)) is a family of elliptic operators parameter-
ized by Pg, (TL©®, TLD). We will show that there exists a fiber bundle Z(R},) —

Pr, (TLO TLM) such that the pull-back of the determinant line bundle descends
to Rh.
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We note that Remark 44.15 (1) is generalized to our situation in the following way.
Using the notations there, and putting \,(t) = A(t) @ T'Rj,, we have isomorphisms

Index(dy,:x,,5,) = Index(dy,,z, ) ® TpRy, ® Index(9y, 7 )

and B
Index(Qu,:x,.n,) = TpL(O) )

Therefore the orientation of T, Rj, ® Index(Oxarr,.7z_) determines the orientation
on Index(drgrr,, 2, )-

Pick and fix A\, € Pg, (TpL(O),TZgl)). Gluing the operator 9y, 7, and a family
of operators EA;’Z_ parameterized by )\; € Pr, (TpL(O),TZSI)), we obtain a family
of Dolbeault operators on D? with totally real boundary condition parameterized

by Pr, (TpL(O),ngl)). In a similar way as in Remark 44.15 (3), we find that the
determinant line bundle of this family is non-trivial on each connected component

of Pg, (TpL@),T}gl)). Since T, L(®) is oriented and the operator EA,,,Z+ does not
depend on )\;, the determinant line bundle of the family 5%’ z_ is non-trivial.
Now we introduce a family version of Z(p) and Z(p) in §44.3. Denote by Z(R;,)

the space of paths A, and trivializations o : [0,1] x R™ — \,. For o, we consider
v ¢ (Spin(n) x Spin(V,)) /{£} — Pepin(LW,V)|,, which is a lift of 04—, i = 0, 1.

We define Z(Rj,) as the space of quadruples (\p,o,t0,t1). Note that there is a
sequence of natural projections

I1: Z(Ry) — Z(Ry) — Pr, (TLY, TLW) — Ry,

Denote by D(Rj,)~ the pull-back of the family {EA;,Zf} of operators to Z(Rp).
Then we can show the following:

Proposition 51.1.  The determinant line bundle of the index bundle of the family
D(Rp)~ descends to a real line bundle on Ry,.

Proof. Note that II!(p) C Z(Ry,) is not connected. (This is because
Pr, (T,L, T,LW) C Pg, (TL, TLY), peR,

is not connected.) Thus we firstly present the way to compare the determinant lines
of the indices for A and )\ in different connected components.

Let A@® T, Ry, € Pr, (T,L", T,L™M). We can twist the trivial pair Z_ x T, M by
gluing a complex vector bundle E of rank n on CP! as follows. Pick an isomorphism
from T, M to the fiber Es at the south pole S € CP! and identify the fiber of
Z_xT,M at O € Z_ and Eg to obtain a vector bundle (Z_ x T,M )V E over the
one-point union Z_ V CP!. We denote by

cont: Z_ — Z_ N CP!
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the mapping obtained by collapsing a small circle around O € Z_ and write

(Z_ x TyM,\® T,Rp,)#(CP' E) = cont*((Z_ x T,M,\® T,Rp,) V E).

For each AT, Ry, N ®T, Ry, € Pg, (T,L), T,,L (1)), there exists a complex vector
bundle E on CP! such that

(Z_ x T,M,\N ® T,Rp) = (Z_ x T,M,\®T,R;)#(CP', E).
Therefore, by the index sum formula, we have
Index(Oxarr, .z ) = Index(0g) © Index(Iza TR, .2_)-

Note that the index of the Dolbeault operator Oz has a canonical orientation as a
complex virtual vector bundle. Hence the orientation of Index(g,\/@T R,,.7z_ ) deter-
mines the orientation of Index(9xgrr,, z_) in the way independent of the choice of
E.

Next we prove that the determinant line bundle of D(R},) restricted to each
connected component of II71(p) is trivial. Combining the above argument, the
determinant line bundle descends to Rj. (Since the determinant line bundle is a real
line bundle, its structure group can be reduced to {£1}.) Pick and fix (A,, 0, t0,¢1) €
I !(p). Consider the family D, = {5%’2_} parameterized by (A, 0’,1,t)) €
IT1=*(p) through Pg, (T,L©,T,LM). Glue D, with EA,,,Z+ to obtain a family of
Dolbeault operators on D?. Since ()p,0,t0,t1) and (Ap; 0’515, 17) determine the
spin structure on the family of totally real subbundles in a consistent way, the
determinant line bundle of the family of Dolbeault operators is trivial on II=!(p).
Hence also the determinant line bundle of D,,. Proposition 51.1 follows. [

Definition 51.2. We denote by @ﬁh the local system on Rj,, which is obtained by
Proposition 51.1 from the determinant of the index bundle of Jxgr Ry, 24 -

In the situation of finite dimensional Bott-Morse theory, the local systems @Jlgh

and ©p correspond to the orientation bundles of the positive definite part (stable
direction) and the negative definite part (unstable direction) of the restriction of
the Hessian to the normal bundle, respectively.

Note that Ry, is not necessarily orientable and the space of connecting orbits may
not be orientable. Hence, we must deal with fiber product over a non-orientable
space. In order to treat them, we introduce the notion of the orientation bundle of
a space with Kuranishi structure and present its fundamental properties.

Definition 51.3. For a local chart (s; E — U) of a Kuranishi structure with tan-
gent bundle, we call det £ ® det T'U the orientation bundle.
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The orientation bundles of local charts (Kuranishi neighborhoods) are naturally
glued to a line bundle over the space with Kuranishi structure, if the Kuranishi
structure has a tangent bundle. (Definition A1.14.) We call it the orientation
bundle of the space with Kuranishi structure.

Next we give our convention on the identification of orientation bundles of fiber
products.

Convention 51.4. Let Ox, Oy denote the orientation bundles of the spaces X,Y
with Kuranishi structure with tangent bundle. Let f: X — Bandg:Y — B
be weakly submersive strongly continuous maps to a manifold B. Let Op be the
orientation bundle of B.

We identify the orientation bundle O x FXgY of the fiber product Xy x,Y with

pry(Ox ® ffOp) @ m*0p ® pry (¢"Op ® Oy ).
The above real line bundle is naturally identified also with
pryOx @ m*0p ® pry Oy

where prx and pry are projections to X and Y respectively and 7 is the projection
to B.
We emphasize that the order of factors in the above tensor products is essential.
For instance, in the case when X and Y are manifolds, the identification above
corresponds to the isomorphism : Ox ® Oy — Oxxy such that s® t +— s At.

We can prove the following properties in the same way as Lemma 45.3.

Lemma 51.5. We have the following identifications.

(1) Ogxxpy)loxxsy = Ooxxpy, Oaxxpy)lxxpoy = (—1)"YOxxov.

(2> O(X1><31X2)><32X2 = OX1X31(X2X32X3)'

(3) OX, x5, x5y (Xax X5) = <_1)b2(b1+w2)0(xlXlez)XB2X3' More generally, we
have

1 k _ s
(—1)Zk=2 b 22 (b1t J)O(...(X1 XpBy X2))xXB, Xiy1°

OXIXle-»-XBl(X2><"'Xl+1) %
We use Lemma 51.5 to study orientation bundle of the moduli space M (R}, Ry)
introduced at the beginning of this section.

Proposition 51.6. A relative spin structure for the pair (L(®), LMY induces an
1somorphism

— ~ o *QT *
M(Ryr,Rp) — eUO@Rh’ ©ev; O,

O

in a canonical way. We also have a canonical isomorphism

OM(RhuRh) = eva‘@;gh, &® GUTGE}L &® OR.
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Proof. We may assume that the evaluation maps evg,evy : M(Ry, Ry) — L are
weakly submersive. (This follows from a Bott-Morse analog of Proposition 29.1).

Let u € M(Rp/, Ry). The linearization D,0 of the Cauchy-Riemann operator
is a Fredholm operator. (See §29.2 Lemma 29.10 where D,,0 is defined in the case
Ry, = Ry = L. Tt is straightforward to generalize it to the general Bott-Morse
situation.) We have a homomorphism from the domain of D0 to T,Ry, ®Ty Ry, by
identifying T}, Rp,, (resp. T, Rjy/) with the zero eigenspace of J% at z1, (resp. 2p).

Let p’ = u(+00,t) € Ry, p = u(—00,t) € Ry, and let \,® Ry, € Pr, (T,L°), T,LM),
A\ @Ry € Pr,, (T L), T,y L), We trivialize u*TM and define a path A(Ay, u, Ap)
of Lagrangian linear subspaces of the fiber of this trivial bundle by gluing 7 —
TU(TJ)L(Z'), )\p ® Ry, )\p/ @ Ry in an obvious way.

Then, by a family version of the index sum formula, we have the following iso-
morphism of the fiber product of the indices. (See Convention 45.1 (4) for the
convention of the orientation of the fiber product and (46.9) for the definition of
fiber product of index bundles.)

IndeX(EA(Ap,,u’Ap)) > (Index gAp/EBTRhUZ—F ®TyRw)

XT, Ry, Index Dug XT, Ry, (TpRh @ Index EAPEBTR;“Z,)-

In the same way as the proof of Theorem 44.1 (and of Theorem 44.14) we can prove
that Index (0 Ay iy »,)) has a canonical orientation.

Therefore the orientation of Index D,0 is determined by the orientations of
Index gkp/@TthquL D Tth/, Tth/, TpRh and TpRh @ Index EAPEBTRh,Zf~ Since
each of T, Ry, and T, R, appears twice, the orientations of Index D,,0 is independent
of the orientation of T, Ry, T}, R},. Hence we obtain the first half of Proposition 51.6.
The second half follows immediately from the first half and Convention 45.1 (2). O

Recall that we are working with cohomological convention. We adopt the follow-
ing convention. The orientation on the standard simplex is the usual one. Let (A, o)
be a singular simplex in a manifold X, which is not necessarily orientable, with a
coefficient in the orientation bundle Ox = det T'X. For example, an embedded
submanifold with an oriented normal bundle represents an ordinary cochain.

Now, we explain how to work with chains with local coefficients in our con-
struction. Let S be a singular simplex in Rj with coefficient in Og, ® O =
det TRy, ® OF, , which is canonically isomorphic to @Eh. Recall that a connecting
orbit (that is an element of M(Ry,/, Ry)) is a pseudo-holomorphic map u : D? — M
such that u(9yD?) c L, w(0,D?) ¢ LW, u(1) € Ry and u(—1) € Ry, where
0o D? is the arc with negative imaginary part and 9;D? is the arc with positive
imaginary part.

Proposition 51.7. Let S be a singular simplex with coefficients in O, ® OFf, .
Then
(M(Rh/, Rh) XRp S, 6’00)
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is a chain with coefficients in ORr,, ® G)_h/.

Proof. 1t is enough to consider the case that S is a singular simplex with coefficient
in Og, ®OF . Write S = (¢, s), where ¢ : A* — Ry, and s is a non-zero flat section
of ¢*(Or, ® OF, ). Note that s gives an orientation of T),R), ® Index O\, ®T Ry, 7 -
Now we take the fiber product of M(Ry/, Ry) and S over Rj. Note that S is
equipped with a non-zero flat section of the local system Og, ® ©F . Based on
Convention 51.4 and Proposition 51.6, we find

OM(Rh/,Rh)XRhS = (@Eh’ ® @];Lh) ® ORh ® (ORh ® @];Lh) ® OAk = @_Igh/ ® OAk

Note that Oax is trivialized by the standard orientation. Since Op, ® Of is
trivialized by s, we have

O = @_Igh/ = ORh’ ® @]_%h/ .

M(Rh/,Rh)XRhS
Finally, we find that
OM(Rhlth)XRhS = @Eh’ ® OR = ORh’ ® @Eh’ ® OR'

A choice of orientation on M(Ry,, Rp,) X g, S at a point 2z (in the sense of Kuranishi
structure) determines a non-zero element of the fiber of evb“@gh, = evy(Or, ®0O% )

at z. If we reverse the choice of the orientation, the element of ev;(Og,, ® OF |-
is multiplied by —1. Note also that we have a canonical orientation on Or. Hence
we obtain, from the space M (R, Rp,) X g, S with Kuranishi structure, a chain with
coefficients in evg(Og,, ® OF ). O

Taking Proposition 51.7 into account, we can forget the effects of local coefficients
and pretend as if we can work with ordinary oriented chains from now on. We will
further modify the orientation to define the filtered A,, bimodule operation (see
Definition 51.11).

Hereafter Pi,. .., P, stand for smooth singular simplexes in either L(®) or L),
Here the order of the marked points on the boundary of the infinite cylinder R x [0, 1]
is arbitrary and may not respect the standard ordering. Namely we require no
particular rule on the order of the marked points on R x {0, 1}. Moreover whether
P, c L or P, ¢ L™ has no relation to the order i. We denote this moduli space
by

<*) Mk+2((Rh/,w’), (Rh,w)) XRh><L><~--><L (S X P1 X X Pk)
See Figure 51.1. We remark that in case

1 1 0 0
(Pr,...,P) =", . PV PO, P
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with Pj(i) being a smooth singular simplex of L(*), the moduli space (*) contains (as
an open susbset) the moduli space

Mk1,k0,(—|—oo) (L(1)7 L(O)7 [h’/7 wl]7 [h7 w]? ﬁ(l)y S7 ﬁ(O))7

which is defined in §12.5 right after Remark 12.58 and is used to define filtered A,
bimodule structure in Definition 12.71. (We like to remark again the the order of
[h, w], ['w'] is reversed.) We are going to define an orientation on the moduli space

().

Figure 51.1

Let S be a singular simplex in Rj,. We define its degree by
(51.8) deg S = u([h,w]) + dim R, — dim S.
(See just before Definition 12.52.) We remark that

w([h, w]) = Index(OrgTR, . z_)) mod 2

for any A® TR}, € Pg, (TpL(O), T,LW). (This is the consequence of the indepen-
dence (modulo 2) of the right hand side and the definition of u([h,w]), Definition
12.62.)

For computation, we introduce a temporary convention as follows. The final
orientation convention will be given in Definition 51.11. We put

Ml((Rhlaw/>7 (Rh,ﬂ]), Sa P17 cee 7Pk)
= (—1)€Mk+2((Rh/,w/), (Rh,’w» XRhXLX~~~><L (S X P1 X - X Pk),

where

k—1 3
= k(n+ Du([h,w]) + u([h,w']) + k(n+1)deg S + (n + 1 ZZdegP

j=11=1
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Remark 51.9. When we exchange the marked points z;, z;11 with ¢ > 1 (note
that z; = —o0) and P;_1, P; at the same time, we have an isomorphism

Ml((Rh/,’w/),(Rh,’w);S,Pl,... 7Pi—17Pia--- ,Pk)
— Ml((Rh/,w/>,(Rh,?U);S,Pl,... 7P1'7Pi—17--- ,Pk>,

which is a (—1)(des Pi-1+1)(deg Pit1)_griented isomorphism. The proof of this fact is
similar to the proof of Lemma 47.3.

From now on, we abbreviate the data w, w’, etc., and simply write
M1(Rh/, Rh; S, Pl, . ,Pk> = Ml((Rh/,w’), (Rh, w); S, Pl, . ,Pk>.

We also write p(Ry,) in place of p([h, w]) mod 2.

There are four types of boundaries of the moduli space M1 (R, Rp; S, P, ... , Pg).
The first type appears when S is replaced by 05. The second type appears when
P; is replaced by OP;. The third type appears when connecting orbits split and
become broken connecting orbits. The third type is described by

My (Rpr, Rprs My (Rpr, R S, Py ooy Pry)y Prytts oo Pyt )

after interchanging the marked points and P;’s. In (3) of the next theorem we put
k=ki, £ =ky, Q; = Pg,+i, and write the above moduli space

Ml(Rh’7Rh”;Ml(Rh”th;S7 P17 R 7pk)7Q17 te 7Qﬂ)~

The fourth type appears in case of the bubbling-off of holomorphic discs.

Theorem 51.10. Let Ry,,, Ry,, Ry, be connecting components of L'ONLY) . Write
= dim Ry, and p; = p(Rp,) mod 2. Then we have the following :

(1)
(—1)€1M1(Rh2,Rh1;8S, Pl,. .. ,Pk) - aMl(RhQ,Rhl;S, Pl, e ,Pk>,

where €1 = (ug +12) + (u1 +7r1) + 1.
(2)

(—1)€2M1(Rh2,Rh1;S, Pl,... ,8Pi,... ,Pk> C aMl(ha,Rhl;S, Pl,... ,Pi,... ,Pk>,

where €2 = (u2 +12) +n+ (deg S+ 1) + E;;ll(deg P;+1)+1.
(3)

(=) Mi(Rpgs Riys Ma(Rhy, Rpys S, Pryeoo s Pr), Qs e, Qo)
C@Ml(Rhs,Rhl;S,Pl,... ,Pk,Ql,... ,Qg),
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where €3 = (ug +13) + 1.
(4)

(_1)E4M1(Rh27Rh1;S7Mk+1(ﬁ; Pl?"' 7Pk)7Q17"' 7@3)
C@Ml(ha,Rhl;S, Pl,... ,pk,Ql,... ,Qg),

where €4 = (g + 1r2) + deg S.

Proof. First of all, we note that dim M(Rz, Ry) = o — p1 + 712 — 1.
(1) By (51.8), we have

K
Mi(Rpy, Rpy; 08, Py, Pr) = (—1)a1Mk+2(Rh2,Rh1)><Rh1xLx...xL(35 X HPZ> ;

where

x>

ar =kpi(n+1)+ps+k(n+1)degdS+ (n+1) deg P;.
11:=1

<.
Il

We also have
k
Mi(Rpys By S, Pry oo Pr) = (=1)" Mg qo(Rhys By )X Ry xLx-xL (5 X HR) ,
i=1
where

k—1 7
as =kpi(n+1)+ps+k(n+1)degS+ (n+1 ZZdegP

7j=11=1

By Lemma 45.3 (1), we have
k
(_1)a3Mk+2(Rh2;Rh1) XRhlex~~~><L <GS X HP1>

k
CaMk+2(Rh2,Rh1> XRhleX'--XL (S X HP1,> 9

where
ag = (ro+p2) — 1 +k—14+r + kn.

Hence we have €; = ay +as +ag = (ro + po) + (r1 + p1) + 1.
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(2) Similarly, we have

M1(Rh2,Rh1; S, Pl, .. .8PZ~, . ,Pk)

k
= (_1)b1Mk+2(Rh27Rh1) XRhleX~”XL S X HPJI 9

where P} = P;, j #1i, P| = 0P,

&

by =kpin+1)+ps+k(n+1)degS+ (n+1 Z deg Py
1h=1

<.
Il

Note that (—1)°¢S x H§:1 P; C (S x H§:1 i), with ¢ = dim S + El : dim P;.
By Lemma 45.3 (1), we have

k
(—1)b3Mk+2(Rh2,Rh1) XRhlexme S x HPJ/

k
COMp12(Rhy, Riy) XRy xLxxL | S X HPj ,

where

i—1
bs = a3 +c= (rg—I—ug)—,ul—I—k—l—I—rl—i—kn—I—dimS—i—Zdiij.
j=1
Hence we have €3 = by +ag+b3 = (r2+p2) +n+ (deg S—i—l)—l—Z;;ll(deng—I—l)—I—l.

(3) Based on our orientation convention for the index of the linearized operator
of connecting orbits and Convention 45.1 (4), we can see that

MV(R}B?Rhl) = '//\—/lv(RhB?ha) XRh2 M(hathl)-

Then, an analogue of Proposition 46.3 holds, i.e., if we put the ¢ marked points
before the £ marked points as in §46, we have

(—1)% My 12(Rhy, Riy) X Ry, Meg2(Rhy, Riy) C OMiipya(Riy, Ryy),

where dog = kl + k(pua — p1) + (ps — p2) +k— 1+ r3.
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By the definition, we have

Ml(RhgaRhQ;Ml(haaRh1;Sapla'" 7P£)7Q17"' 7Qk)

k
:(—1)d1j\/{k+2(Rh3,Rh2) XRh2><L><---><L <M1(Rh2,Rh1;S, pl,. .. ,Pg) X HQZ> ,

i=1
where
dl :k(n + 1),“2 + U3 + k(n + 1){degM1(Rh27 Rh1; Sv P17 cee ,P[)}
k—1 i
+ (n+1)ZZdeng.
i=1 j=1
Note that

deng(haaRh1;Sapl7"~ 7P£>
=1y + ll2 — <T2+M2—M1 +€—1—(degS—,u1)—ZdegPi)
= —€+1—|—degS+ZdegPi.

We also have, by the definition,

)4
Mi(Ruy, Rpy3 S, Py, Pr) = (1) Mygo(Riys Riy) Xy, xnxexr (S % [[ P,
=1

where dy = l(n+ 1)py + p2 +4€(n+1)deg S + (n + 1) Zj;i 3:21 deg P;.
Using Lemma 45.3 (3) several times, we find that
MIC—FQ(Rhga RhQ) XRh2 XLX--XL

¢ k
(Me+2(Rh2,Rh1) X Ry, xLxxL (5 X HR)) X HQj

1=1 j=

—

k
=(=1)® Myt 2(Ray, Biy) X Ry, Meya(Ray, Riy) X gy xoxxrn | Sx[[Px []@Q5 |

where d3 = kn(pe — p1 + ¢ —1).

Ml(RhgaRh1;57P17"' 7P€7Q17"' 7Qk)

¢ k
=(—1)%“Mpres2(Ruy, Rny) X Ry, xLxoxr | 9 % HPi X HQj :
i1 =1
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where

-1 3
dy =(k+0)(n+ Dp1 +ps + (k+0)(n+1)deg S+ (n+1)> Y deg P;

Jj=11i=1

k-1 3
+k(n+1 ZdegP—i— n+1) ZZdeng
=1

7j=11:=1

Combining these contributions, we find that €5 = dy+d;+da+ds+ds = (us+rs)+1.
The last statement (4) can be proved in a similar way to Proposition 48.1 (1). O

In order to define the filtered A,, bimodule structures, we consider the case where
the marked points respect the standard ordering, i.e., zop = +00, 21,..., 2k, are on
R x {1} such that Rez; > -+ > Rezg,, 2k, 41 = —00, and 2, 42, - - ., 2Zk; +ky+1 L€
on R x {0} such that Rezg, 42 < -+ < Rezi, 4+k,+1. See Remark 12.23 (2). Taking
Remark 51.9 and Theorem 51.10 into account, we adopt the following:

Definition 51.11. (1) Let Pl(l), e ,Péll) be smooth singular simplexes in L)

and Pl(o), e ,Pég) smooth singular simplexes in L(®). We define the orientation of
the moduli space My, ko, (+o0) (LY, LO; [, w], [B, w']; PD) 5, PO)Y which is used
in §12.5 by the following formula.
My oo, (o0y (LD, L [h,w], [, w']; PO, S, PO))
= (_1)6M1(Rh'7 Rh7 S7 P17 s 7P]€>7
where
k1
§=(degS+1)> (deg PV +1)
i=1

and

1 1 0 0
(P177Pl€>:(P1( )7 7P]§1)’P1( )’ ’P’“‘(?O))

The moduli space in the right hand side is used to define ny, x, in Definition 12.71.
(2) For the classical contribution 0y o to ng,o, we define

o0 = (_1)dim Rh-l-M(Rh)a

for chains in Ry, where 0 is the usual boundary operator for chains in Ry,.

In this new convention (Definition 51.11), Theorem 51.10 then implies the fol-
lowing.

(51.12.1)
(—1)% My, o (o0) (Rigs Bis P, PV, 88, PO PLY)
CﬁMkl ko, (+oo)(Rh27 Rh17 P(l)v ]4(;11)7 S P(O) P]S;(?))?



CHAPTER 9. ORIENTATION

where

k1
0 = (2 +r2)+ (1 +7r1) Z (deg P(l) )+ 1.

(51.12.2)
(—1)% M, o (+00) (Rigs Bis PV, 0P P S PO PO

CaMkl,ko,(—i—oo)(Rhga Rhl; Pl(l), ceey P,éll), S, Pl(o), ceey P,é?),

where
i—1
0a = (pa+72) +n+ Y (deg PV +1) +1.
j=1
(51.12.3)

1 1 0 0 0
(—1)% My g (+00) (Rigs Bis PV, P S PV 0P PO
CaMk1,ko7(+00)<Rh27Rh1;Pl(l)v'"7plgll)’S’Pl(O)""’péc?))’

where
k1 i—1
1 0
03 = (2 +72) +n + Z(degp; )+ (deg S+ 1) + Z(degp; Sy 1) 41
j=1 j=1
(51.12.4) (=) M1 ko .(+00) (Rig, Ry PV, o, PO,
Mkl—i—i-l,ﬁ,(—l—oo) (Rh27 Rhl; Pi(l)a RN Pk(;ll)a Sv Pl(O) P(O)> PE(_?_)17 R P]é(?)>

C 8Mk1’k0’(+oo)(Rh3, Rhl; Pl(l), ceey P,gll), S, Pl(o), ceey Pé?),

where
i—1

01 = (13 +73) + D (deg PV +1) + 1.

j=1

(—1)% My —r1i ko (o0) (Rigs Ry Py oo, PO Mo (8 P PR P,

(51.12.5) P s, P, P
C 8Mk1,k07(+00)(Rh27 Rhl; Pl(l) Pléll)’ S P(O) ’ Plé(?)>’

69
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where -
05 = (p2 +712) + Y _(deg Pj(l) +1)+1.
j=1
and

(—1)66Mk1,k0—€+i,(+00) (Rh27 Rh1;P1(1)7 ceey Pk(:ll)7 S P(O) P.(O)l,
(51.12.6) Me_ia(3; P, P(O)) Pﬁ)p---,P,ﬁf))
C My, ko (400) (Rgs Bii PV PV 5, PO PO,

where
k1 i—1
06 = (p2 +72) Z deg PV 4 1) + (deg S + 1) + Y (deg P +1) + 1.
j=1 j=1

Hence ny ¢ satisfies (12.2) including sign. 0O

§52. Orientation of M (M' L', {J,}, : B;top(p)).

In §19 Proposition 19.1, we used the moduli space M2 (M’, L', {J,}, : B3; top(p))
to the define the filtered A,, homomorphism. We can reduce the general case to the
case that the symplectic diffeomorphism ¢ is the identity and {J,}, is an arbitrary
family of almost complex structures compatible with w. (However, we used (M, L)
and (M', L) in order to clarify the domain and the target.) The goal of this section
is to give a canonical orientation of

Wi ({Jo}p : Biton(p); P, .., Pe) = MRS (M, L' {Jp}, : Bytop(p); Pr,..., Pr)

so that the resulting f is a filtered A, homomorphism. We first recall an element
of Mpair(M', L', {J,}, : B;top(p)). Let ((£,2), (ua), (pa)) be a system satisfying
the following properties

( ) Ua i (Xa,0%4) — (M, L) is a J,, holomorphic map.

( ) pa €10,1]. If a1 < g, then po, < pa.,

(19.7.3)  ((%,2), (uq)) is stable in the sense of Definition 2.24.
( ) The homology class of uq is f(a) and ), f(a) = .
( ) IfzeX,NXy, then uy(2) = vy (2).
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We denote by I,ffll“(ﬂ, Pi,..., Py J,) the moduli space of objects in (10.1)
with respect to the almost complex structure J,. One of top dimensional strata
of MpPai(M' L', {J,}, : B;top(p)) is the stratum consisting of objects in (19.7)
with the domain being irreducible. When the domain is irreducible, we define the
orientation by

(52.1) (D)™ U oy x MRS P P ),

0<p<1

which we denote by

le_z:iln,reg({Jp}p; 57 tOp(,O), P17 s 7Pk?) C Ikn—iiln({‘]/?}/? : ﬁ? tOp(,O), P17 s 7Pk:)
Recall that, for each fixed J,,

lefiln’reg(ﬁ; Pi,..., Py lJ,)

k
= (_1)61M1;1j11n,reg(L;ﬁ; Jp)(ev1,...,evk) XF1 XX fre (H PZ'>

=1
where
k—1 j
e =(n+1) Z deg P;.
j=1i=1
See Definition 47.1. Note that P; appearing in Mglfiln’reg(ﬁ; Py, ... Py J,) are

regarded as singular simplexes in L by P; — L. Then Proposition 48.1 (1) implies
that

(_1)€/2+1 U {p}XMI]:flgr_lﬁgeg(ﬁla P17 s 7P’£—17 M?l_fin’reg(ﬁ//; P’ia s 7P1l—|—1€—1; Jp>7

0<p<1
Pi+£7"' 7Pk7Jp)

- alejiln’reg({Jp}p : Bitop(p); P, .., Pr)

where
1

7

chb=e—(n+1)=

(]

(degP; +1), and p=p"+73".
1

8.1 (2) implies that

U {IO} X Mgl_a‘igr_z;eg(ﬁl;Pb v 7Pi—17

0<p<1

<.
Il

W~

On the other hand, Proposition

MPEE (B Py Piyoo1; Jp), Pt oo Pri )
CMrknfiﬂr—lﬁgeg({Jp}P : 6’ top(ﬂ)? P17 e 7P’i—17 8Q56(6//)7 P’i+£7 R 7Pk7)
C(_1)€3+18Mrknfiﬁr—l|—2({‘jp}0 : ﬁ? tOp(,O), P17 s 7Pi—17 26(5//)7 PH_g, s 7Pk)7
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where -
e3 =1+ Z(deng +1)
j=1
and
(2.2) QL") = (CUM Lo} x MBS P Py o).

0<o<p

Hence the orientation of

U {IO} X Mgl_a‘igr_zgeg(ﬁl; P17 v 7Pi—17
(52.3) 0<p<t

M?}fin,reg(ﬁll; Pi) v 7Pi—|—£—1; Jp)7 P’H—Za cee 7P.l€7 Jp)
as the boundary of

MEEE({ T}, « Bitop(p); Py, .., Pr)

and its orientation as the boundary of

IkI:lEiEI}I—Q({JP}p : 67 tOP(P)7 P17 v 7pi—17 Qf’[(ﬁ“% Pi-i—E? v 7pk:)

are opposite. Thus the orientation on

MEE({J,}, < Bitop(p); Pr,. . ., Pr)

and the one on

IkI:lEiEI}l—Q({Jp}p : ﬂ,tOp(p),Pl, o 7Pi—17QZE(BH)7P’L'+A€7 cee 7Pk>

match on the codimension 1 stratum (52.3).

More generally, for the moduli space of objects in Definition 19.8, we define
the orientation on M2 ({J,}, : B;top(p); P, ..., Px) by the induction on the
number of singular points, in other words, the number of irreducible components.

For ¢ € [0,1] and (53, k) # (Bo, 1), we denote by

M= T} « B:50p(p): Pr. . Py)

the moduli space of objects as in (19.7) such that all p, € [0, c|.

Suppose that the orientation on ijiln’gc({,]p}p : B;top(p); Py, ..., Py) is deter-
mined for all elements with the domain consisting of at most d irreducible compo-
nents and all ¢ € [0,1]. Let u be as in (19.7) with d + 1 irreducible components.
Then u belongs to

{o} x MEE™ T8 (85Q1, ..., Qe o),
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where each @); is either (a) one of P;’s or (b) an element in
main, <o . . .
Mk:ij-i-l ({Jp}p ‘ﬂ’ﬁtop(p)?Pij—rFlv"'7P’L'j)'

By the assumption, there must be at least one @); of type (b). Note also that the
number of irreducible components appearing in the element of @; of type (b) is
bounded by d. Thus all @); are oriented by the hypothesis of the induction. Then
we adopt (52.1) for the orientation on

U {p} x ME™5(85Q1, ..., Qe J,),

0<p<c

which determines the orientation on ijiln’gc({Jp}p : B;top(p); Pu, ..., Py) at u.
In a similar way to the above discussion (the case that d = 2), we find that the
orientations above match on codimension 1 strata and give a compatible orientation

on the moduli space Mglfiln(M’, L' {J,},: B;top(p); Pi,. .., Py).
Next we discuss the sign problem for the map ;‘ in Theorem 19.1 and Proposition
19.14. We state the following

Proposition 52.4. Suppose that (8,k) # (Bo,1). The boundary of the moduli
space MP2({J,}, : Bitop(p); Py, ..., Py) is the closure of the strata as follows.
Let ko + 1 be the number of special points (i.e., marked points or singular points)
on Y.

Case (1) pa, =1 and (', €) # (B0, 1).
(=)™ IMPENB Qs -, Qe J') COMEE({ T}, + Bitop(p); P, - ., Pr),
where Q; is either one of P;’s (then we write BY) = By) or
Q; = M ({J,}, : BV top(p); Piy_y 41, -+, Py)

with BY) # By and B = B + >, B,
Case (2). Some of po, = 0.
<_1)n+1+63Mznfli€I—l|—2({Jp}p : ﬁ/a tOP(P)y P17 ety pi—17
anin(ﬁ”; Pi? e ey Pi—|—£—1)7 Pi—|—1€7 ey Pk)
C M ({Jp}p : Bitop(p)iPy, ..., Pr),

where

ﬁ// _ Z ﬁ(o/)

o' <«
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and
i—1

€3 = 1 —+ Z(deng —+ 1)

j=1

Case (3). P; is replaced by its boundary OP;.
(_1)1+€3Mrkn—ﬁiln({‘]/)}p : 57 tOP(p)a P17 ey Pi—17 6PZ7 P’H—lv BRI} Pk)
COMEET({Ip}p : Bi top(p); Py -, Pr).

Case (4). pa, = 0.

(~1)" MR (B Prs .., Pos Jo) C OMEE ({1}, Bstop(p); Pr..... Py).

In Case (2), we have (B(«), ko) # (Bo, 1) and (', k—£+1) # (5o, 1) because of the
stability condition. Cases (3) and (4) may be regarded as the cases that (G(«a), kq) =
(6o, 1) and (0, k—¢+1) = (Bo, 1), respectively, i.e., the classical boundary operators
0= (-1)"my o on L and L’ appear in Case (3) and (4), respectively. In the proof
of this proposition, we only need to note that

()" MPEN(B Py, P Jh)
COMPEP({ o} : Bitop(p); P, ..., Pr),

and

(—1)"MPE(3: Py, Pis Jo)
CaMIl;lfiln({Jp}p 1 B top(p); Py, Pk)7

see (52.1) and Convention 45.1(1). Then we can show Proposition 52.4 in a similar
way to Proposition 48.1.
We put

szﬁ(P17' .- 7Pk) - ( Ilsl—ﬁiln(M,7L,7{Jp}p : ﬂ;top(p);Pl, <. 7Pk>78U0>7

for (k, ) # (1, Bp) and
flﬁo(P) = P.

It is clear that f; g, o m1 g, = My g, © f1,3,-
The strata of Case (1) correspond to

(—=1)"* (me,5 0 g )(Pr, ..., Pr)
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with ="+ 5", (8',¢€) # (6o, 1). Here, recall that

for = Z firp0 ® - @ Fi, por
such that 3” = () 4 ... 4 B see (7.28). The strata of Case (2) correspond to

(=1)"(fx—e+1,5' © my g7 )(Pr,. .., P)

with (8',k — €+ 1) # (Bo,1) and (8”,€) # (Bo,1). Here, recall that m, s~ is the
extension of my g as a graded coderivation, see (7.15). The strata of Case (3)
correspond to

(—=1)"(fr.p 0 M1,5,)(P1, - - -, Pr).
The strata of Case (4) correspond to
(_1)n<f1,ﬁo © mk,ﬁ)(Plv RN Pk:)

On the other hand, dMP({J,}, : B;top(p); Py, ..., Py) corresponds to

(_1)n(m1,50 © ](kﬁ)(Ph .- '7Pk)'

Hence, taking fi g, o m; g, = my g, o f1,3, into account, we find that
mof=fod

Finally, we define orientations on the moduli spaces involving the time-wise-
product, which are used in previous chapters. For the moduli space

Ikn—ﬁiln(Mlv le {JLS}S : ﬁ; th(S)) = U {8} X Mllgl—ﬁiln(le JLS>7 B)?
s€(—e,1+€)

we give the orientation by putting the parameter s € (—e¢, 1 + €) before the moduli
main

space MM (L', Jy1s), 3). Similarly, for the moduli space

P (M L {5} s : B top(p), twp(s))

= |J st x MEER (M, L {5}, 1 Bitop(p)),
s€(—e,1+¢€)

we give the orientation by putting the parameter s € (—e, 1 + ¢€) before the moduli
space M (M, L', {J, s}, 1 B;top(p)).
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653. Homotopy unit, operators p, g
and continuous family of perturbations.

53.1. Homotopy unit.

We first discuss the orientation of the moduli space glflln (5; ]3+) x [0, 1]1% used
in §31. Recall that we start with Py,---, P,_j, and insert copies of L at a;-th

positions, where @ = (a1,...,a)), to obtain Pt. Write P+ = (P, ... ,P,j').
Then we put the orientation to the moduli space in Proposition 31.10, by

(=1)[0, 1'% x M (8; PY),

where € = E'Ji'l ?i;l(deg P +1). Tt is straightforward to check that this orien-

tation convention is compatible with the homotopy unit formulae.

53.2. Operators p, q.

In the definition of the operators p,q, etc., we consider the moduli spaces of
holomorphic discs with interior marked points on the domain.

Firstly, we consider the case where the zero-th marked point is a boundary
marked point. We put

M1,1),0(8) = Mi1.0(8),

that is a moduli space of pseudo-holomorphic discs of the class 8 with £+ 1 bound-
ary marked points and ¢ interior marked points. We define its orientation by the
following equalities;

M1,k),0(B) == M(l,k),z(ﬁ)/PSL@;R).

Definition 53.1. For smooth singular simplexes f; : P, — Lin L and g; : Q; — M
in M, we define

I(Ii?liﬁl)l,é(ﬁ;Ql?"' 7Qf;p17"' 7Pk:)

::(_1)6 ?i?]icr)l,z(L; ﬁ)(evilnt,... evitt evy, . evy)

£ k
Xglx...xgexflx...xfk HQZX HPJ 3
i=1 j=1
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where
k—1 3

=(n+1)) > degPi+ ((k+1)(n+1)+1) Zdeng

Jj=11=1

Note that when ¢ = 0, the moduli space M i i o(f) is nothing but Mj41(53)
and the orientation above is the same as in Definition 47.1. In Definition 53.1, we
only deal with the main component of the moduli spaces. We also adopt the same
orientation convention for other moduli spaces, which will be used in the proof of
Proposition 53.4 below. When the zero-th marked point is an interior marked point,
we define

Mi1.0(8)
=M(B) x D2 x D? x -+ x D2 x ODZ,, x -+ x ODZ,,,
M 1.0(B) = My 1.0)(8)/PSL(2; R).

Definition 53.2. For smooth singular simplexes f; : P, — Lin L and g; : Q; — M
in M, we define

??i?z)(ﬁ?@l;--- Qo Pry. .., Pr)
4 k
=(=1)° gl?in@(L @(e“mt v ey, ..evy) X g1 X XgeX f1X X fi, (H Qi X H Pj),

i=1 j=1

where

k—1 3
=(n+1)> Y deg P+ ((k+1)(n+1)+1) Zdeng

71=113=1

When PSL(2;R) is oriented so that the embedding
g€ PSL(2;R)— (g-1,9-v/—1,9-(—1)) € 9D2 x D3 x D3

preserves the orientations, then the embedding g € PSL(2;R) — (g- 0,9 21) €
D} x D% preserves the orientations. Here O is the origin of the disc D3 and D3 is
oriented by the complex structure. Since we take the quotient by the right action,
we adopt the opposite orientation to the one above (see Convention 46.1). This
implies that py,0 = ¢ mod Ag ney as in (13.10.1).
We may identify
Ae(BiQuye v, Qus Py .., Py)

and

T??i?O)(ﬂ07 I(Ii?,ligr)lj(ﬁ;Qla s 7Q£;P17 s 7Pk>)7
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where (3, is the class represented by constant maps from D? to L. Under this
identification, it is easy to see that

main (5.0, Qi Pr....  Py)
C<_1)naMII<I:l,?iI}£)<ﬁ7 Qh cee 7Q€; p17 cee 7Pk:)

Here we note the following graded symmetry for the operator p. Since each inner
marked point carries 2-dimensional freedom and M is of even dimension, it is clear
that, for ¢ # 7,

??E})(B7Qla 7Q’L'7Q’L'+17"' 7QZ;P17"- 7Pk)
:(_1)deg Qi-deg QZ+1M??§?€)(B7Q17 s 7Qi+17Qi7' .. 7Q1€;P17' .. 7P]€)7

where deg ) = 2n —dim Q. It is straightforward to see that we can use these orien-
tation conventions to define the operators p, q, etc. such that the cyclic symmetry
condition for @}s in Theorem 13.32, etc. holds with sign.

Note that

dim/\/l;z%7(17£1)(ﬁ’) = dirn/\/l?ﬁm)’g1 B)Y+1=n+mg+1

modulo 2. Taking 41 in the right hand side into account, we can show an analog of
Proposition 46.3 as follows. (This 4+1 appears in the exponent of (—1) in the right
hand side of the equality in Proposition 53.3.)

Proposition 53.3. We have an isomorphism
OME (7 + 5
= )i mam e mm AL ) (B X M (T, (87)

as oriented spaces with Kuranishi structures. Here the union is taken over 3 =
Br+ B2, £ =Ly + Ly and m = my +my — 1.

Proposition 53.4. (1) For 8 = 1 + (32, we have
113132124-1,(1,&) (ﬁl7 Q17 cee 7@[1; P17 s 7Pi—17
I(Ii?lizlzl),gg (62’ er‘rl? s 7@514—@2; pi7 oo 7Pi+k:2—1)7 pi+k2, ce ,Pk;)

- (_1)616M??i113ﬁl+€2)(ﬁ; le s 7Q€17Q‘€1+17' .- 7Q£1+€2;
pl?"' 7Pi—17Pi7"' 7Pi+k2—lypi+k27"' 7pk:)7

where
i—1 01 i—1 01+0o
eo=n+)» (degP;+1)+ ) degQ;+ Y (degPj+1)( >  degQ;).
=1 j=1 j=1 i=£1+1
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(2) We have

gt?i?[)(ﬁa@la 7QZ;P17--- 78P7~,--- ,Pk)
C(=D)2OMPN Y (B; Q1. Qs Pry..  Pryo o, Pr),

where : é
Jj=1 j=1
(3) We have
Ilgl?iné)<ﬁ;Ql7'~- 76Qh,~-~ ,Q@;Pl,... 7Pk:)
c (=1)*a gl?ine)(ﬁ Qi, - Qn,y... s Qu; Pr,..., Py),
where

h—1
€3 = 1 -+ Zdeng
7j=1

Proof. The proof is a modification of the proof of Proposition 48.1. The proof of
(1) is divided into several steps.

Step 1. As in the proof of Proposition 48.1, we will use the components other than
main components at the intermediate stage of the calculation. Note that

deg ?i?]lcl;),ZQ (ﬁ27 Q£1+17 s 7@[14—[2; Pi7 e 7Pi—|—k2—1)

i+ko—1 01442
= Z (degPj +1) + Z deg@Q; (mod 2).
j=i i=01+1

Then by using an analog of Lemma 47.3 repeatedly, we find

;cnf}cr;+1,(17£1)<ﬁl; Qh ce 7@@1; P17 cee 7P’£—17
I(Ii?lizlzl),ég (62’ er‘rl? s 7@514—52; Pi7 oo 7Pi+k2—1), Pi+k2, ce ,pk;)
C(=1)"" Mp—pyr1,1,00) (815 Q1 - -+, Quy;

ha)es (B2 Qey1 -+ s Qv Py o oo Piyiy—1),
Pl?"' 7Pi—17Pi+k:27"' 7Pk:)7

where

i+ko—1 01442 i—1
o1 = (1 + Z (deg P; +1 Z deg Q; ) ( (deg P; + 1))
1

J=1 i=01+1 Jj=
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Step 2. Next, we compare the orientation on

M _kot1,(1,00)(B1; Q1 - -+, Quys
(Ckayes (B2 Qeyt1s - Qe Piy oo Pipiy—1),
Pi... Py, P, Py)
with that on

OM,(1,0040) (B3 Q1y - s Qe s Qe 1y -+ 5 Quy gy
Py Piiky1,P1y o s i1, Py, oo Pre).

By Definition 53.1, we have

M (1,00402) (B35 Q1o Qo Quyvrs -5 Quyyay;
Py Piky1, Py s Pty Py oo, Pr)

:(_1)71/\/17%(17[14-[2)(6)(61)11‘“,... evznt,evl,... ,ev) X

Z1—|—;€2 Z—|—k2 1
HQZX H PxHPx H P,
j=i+ko
where
i+ko—1 J i—1 i+ko—1
= (n+1) ( > Zdeng—l—Z( Z deg P, +Zdeng>
j=i =i
k—1 i+ko—1
Z ( Z deg P, +Zdeng—|— Z deng)>
j=i+ko m=1 =i+ko
L1+4o
+<(k+ D(n+1)+ )Zdeg@Z
Using the iteration formula Lemma 45.3 (3), we have
1€1—|—£2 Z—|—k2 1
Mk,(1,€1+1€2)(ﬁ)(evilm,...,ev}?ﬂrez,evl,...,evk) X H Qz X H P X HP X H P
j=i+ko
l1+4o it+ko—1
— (1) . .
_< 1) 2 Mk,(17f1+€2)(ﬁ)(evz‘f_’_l,...,evzlit+£2,ev1,...,evk2) X H Ql X H P
i=01+1

(evi™®,... ,evitt ety 1, evr) X HQZ HP x H B,

j=i+ko
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where
i+ko—1 l1+4o

Yo =(k — k:g)n(k‘gn—i— Z (n —deg P;) + Z (2n—degQi))

j=i i=01+1

+ (f:@n — deg Qi)) <i+§fl(n ~ deg Pj))

=1 =1

01 51]4-52
#(Sen-dwe)( X en-dwen)

=1 1=01+1

which is congruent to

’L+k2 1 £1+£2 61 i-f—kg—l
(k—ka)n Y degPj+(k—ky)n Y  degQ;+ <Zdeg@i)< > (n—deng))

J=i i=01+1 i=1 j=i
£ 01442
s (Saewa)(S awa)  (moas)
i=1 i=01+1
By Proposition 53.3, we find that
£1+L2 itko—1
0 Mk,(1,€1+€2)(B)(“’Ehﬂ:---:6”2122’%1,...76%) X ( H Qi X H P;)
1=01+1
(evint, ... evzm €Uk 41500+ ,E€VE) X HQ'L H P X H P
Jj=i+k2

(1) ((Mk:—kg—i—l,(l,él)(ﬁl)evfl X guz M1 k) 0 (ﬁz))

1€1—|—£2 Z—|—k2 1
v I o 10 »
(evzll_’_nl, .,evelfzz,evl, .,evlc2 < QZ

i=01+1

44
(evlﬁ’mt,...,evf’int,ev£2+1,...,ev£) x HQ’L H P X H P )
=1

1
Jj=i+ko

where

V3 =(k—ko)(ka —1)+n+k—ke=n+kks+ ks (mod2).
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By the associativity property Lemma 45.3 (2) and Definition 53.1, we have

<(Mk—k2+1,(17£1)(51)evf1 Xgugz M(Lkz)’@(ﬁZ))(evﬁ’mt ,evint s ,evk )
2

01412 €V, 405EV1 50
L1+4o i+ko—1
(I e 11 =)

i=01+1
£y 1—1 k
,in ,in X H . X H P D% H P
(61)15 L. ,evfl t,ev,€2+1,... ,ev,f) . QZ | j 0
=1 j=1 j=itka
= (Mk—kz—FL(Lfl)(ﬁl)evfl <M(1 ka).to (02) (g o2ine T )
£1+42 itko—1
( [T @ix H P, )
i=01+1
£y 1—1 k
,in in X H - X H P X H p
(evlﬁ L ,e'vfl t:€1}l€2+17' .,evl’f) Qz 7 i
=1 7j=1 j=i+ko

=(-1)™ (Mk—kﬁl,(l,zl)(ﬁl)evfl X gtz M1ko) 02 (025 Quugrs - Quyptss

P, ... ,P¢+k2_1)>

(evf’int,... ,evflmt,ev,fz_’_l,. '7€vk | | Q’L | | P X | | P )

Jj=i+ko

where

i+k2_2 ] £1+1€2

y=Mm+1) > Zdeng—l—((kQ—l—l)(n—l—l)—l—l) > degQ;.

j=i =i i=ti1+1
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Again by using the iteration formula and Definition 53.2, we find that

(Mk:—kzﬂ,(l,el)(ﬁl)eufl X o2 M1 ko) 0o (02 Qertrs oo Quypen; Bis - 7Pi+k2—1))

2 i—1 k
,in ,in X H i X H P X H P
(evf t,...,evfl t,ev£2+1,...,ev£) ( Ql J J

i=1 j=1 j=it+ko

B1,int 81 B1
e, ,ev] ""’evk—k2+1)

:<_1)V5Mk_k2+17(17£1)(61)(6»0?1’1“"".

0 i1 k
X(HQiXHPjX H P]>)
=1 J=1 Jj=t+tke
=(=1)" T My pyi1,(1,00) (B Q1 - -+ Qe M1k 00 (823 Qerg1s - -+ Qeyvt
Py oo Piyky1),Pryo o, Pict, Piggyy -5 Pr),
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where
i+ka—1 L1442
v5 = n(k — ko) <2n - Z (deg P; +1) — Z deg Qi)
j=i i=01+1
itho—1 L1405
= n(k — ko) (/@ + ) degPi— > deg Q)
j=i i=0+1

Y6 = (n+1) (degM(l,kg),Eg(BQ;Q£17 oo Qoo Py ooy Pigiy—1)

i1 j
+ Z(degM(LkQ),zQ(ﬁz; Qeyy- o Quyrn; Piy ooy Pipgy—1) + Z deng)
=1 =1
k—1 i—1
+ Z (degM(Lkz),ez(ﬁz;QelH, oo Qo Py Py 1) + Z deg Py,
j=i+ka m=1
J £y
+ Z deng)> +((k—k2+2)(n+1)+1)2degQi
l=i+ko =1

41
+ (Z(Qn — deg Qi)) <dimM(1,k2),Eg(62§Q£1+17 o Qo By 7Pi—|—k2—1)>

i=1
i+ha—1 0 +4o i—1

= (n+1)<(k—k2)<k2+ Z deg P, + Z degQi) —i—(k—z’—k@)(Z deng)
m=i i=01+1 m=1

J

i—1 k—1 J £y
+) 0> deg P+ > > deg&) + ((k; —ka)(n+ 1)+ 1) Y deg

j=1¢=1 j=itko b=i+ko
01 i+ko—1 L1442
+ (Z deg QZ) <n — (ko + Z deg P, + Z deg Qz))
i=1 m=i i=01+1
Then an elementary calculation shows that
41

N+r+p+rutrstrs=nt )y degQ;  (mod2).

=1
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Hence we have found that

M hyt1,(1,00) (B Q1 -+ 5 Qe
(ks (B2 Qeyt1y -+, Q4 0,Qis Pry oo, Piggp—1),
Pl?"' 7Pi—17Pi+k27"' 7P.l€>

121 e .
C(=1)" 2= B QLM 1 g0y (B3 Qs - s Qi
P Py 1,P1,. . s Pi1, Py, oo, Pr).

Step 3. On the other hand, by using Lemma 47.3 again, we can see that

Mk,(1,1€1+1€2)(6; Ql? st 7QE1+EQ;
Py Py 1,P1,. oo Pty Pighgy oo, Pr)

:(_1)02 Ikn,?ir,lﬁl—kﬁg)(ﬁ;le'” 7Q£1+£2;
Pl?"' 7Pi—17Pi7"' 7Pi+k2—17pi+k:27"' 7pk:)7

where
i+ko—1 i—1
oy = ( > (deg P; + 1)) (Z(degpj + 1)).
j=i j=1

Therefore we have

41
or+n+ ) degQi+ oo
i=1
0 i1 i1 b+0s
=n + Zdeg Qi + Z(deg P;+1)+ Z(deg P+ 1)( Z deg@;) (mod 2),
i=1 j=1 j=1 i=01+1

which proves Proposition 53.4 (1).
Next, we prove (2) and (3). We recall that

??i?g)(ﬁ?@1,... Qo Py Py Py)
¢ k

s .
:(_1) 1Mrl€n—ﬁlln(ﬁ)(evmt,...,ev}“t,evl,...,evk) X g1 x-goX f1 XX fi, HQ'L X H Pj
1= =1

with
k-1

5= (n+1) ZdegP+((l€+ J(n+1)+ )Zdeng

1:=1

.
I
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By Lemma 45.3 (1), we find that

V4
main
0 k,(l,E)(ﬁ)(ev”‘t . .,ev?‘t,evl,...,evk) X g1 X--go X f1 X X fr, HQZ X H P
1=

j=1

£ k

_ main . .

- <8Mk,(1,£)(ﬁ>) (evlPt ... vl evy,... ,evy) X g1 X-geX f1 XX fr | | Ql X | | P
i=1 j=1

n+k+14+nk main )
I_l(_l) Mk,(l,ﬁ)(ﬁ)(evmt ,evznt,evl,...,evk)xglx'“géxflx“'xfk
y4 k
[TeixII#).
i=1 j=1

because dim Mgl?ing)(ﬁ) =n+uB)—3+k+20+1)=n+k+1and M is even
dimensional. Note also that

V4 k
HQixHPJ

7

k
2= 1d‘inQ X oo X 0Qp X - - ngHPj
j=1

fldlmQ-l-Z]ldlmP HQZX‘Pl ..xaPTx-.-ka.

=1

U
L

On the other hand, Definition 53.2 yields that

I’;f?i?e)(ﬁac?l, 7Qf;p17"' 78P7’7"' ’Pk)

5 .
:<_1) 2M;cn,?il,1£)<ﬁ)(evi“t eVt evy,. .,evk)X91><"'><ge><f1><"'><fk

1 b

(f[lQ HP % OP, x H P)

j=r+1

with

N

—1

J
5 Zdeng (k;+1 )ZdegQg,

14¢=1

<.
Il

where Qs P for £
/ eg Py or r

(deg Pg) {
degPy+1 forl=r.
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Therefore we can see that

r—1 4
51_|_n-|-k—|—1+nk+Z(n—deng>+Z(2”_degQi>+52
j=1 =1
r—1 ¢
=) (degPj+1)+ Y deg@; (mod 2),
j=1 =1

which proves Proposition 53.4 (2).
Recall that

gf?i?ﬁ)(ﬁa@l? 78Qh7"' 7Q€;P17"' 7pk:)

5 .
:<_1) SM;cn?iné) (ﬁ)(evmt ,eviznt,evl, .,evk) X g1 XX gex f1 XX fr

HQzXﬁQhX H Q’LXHP

i=h-+1
with
k—1 7
03=(n+1)) > (deg P;) + ((k+1)(n+1)+1)( Zdeng—l
Jj=11=1
Therefore we can see that
h—1
61+n—|—k’—|—1—|—nk+z 2n — deg Q;) + 03 = Zdeg@z—i—l (mod 2),
1=1

which proves Proposition 53.4 (3). O
In a similar way, we find the following:

Proposition 53.5. (1) For = (1 + (2, we have

I(Ii?lijrl—k2+1)7£1 (ﬁla Q17 s 7Q£1;P17 s 7P’L'—17
(ks (B2 Qei1s -+ Quyvens P oo Pipko—1)s Pigegs - -

- (_1)616‘/\48?1?)1,51—#52 (ﬁ? Qh s 7Q‘€17Q‘€1+17 s 7Q£1+£2;
pl?"' 7Pi—17Pi7"' 7pi+k2—lypi+k27"' 7Pk:)7

where

i—1 21 i—1 01442

e =n+1 —|—Z(deng +1) —i—zdeng —l—Z(deng + 1)( Z deg Q;).

J=1 J=1 Jj=1 i=f1+1
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(2) We have

I(Iiali;)lf(ﬁ;Q17"' Qe Pr,y... 0P, ..., Py)
C (—1)5’2 I(Iia;;)le(ﬂ’ Q- ,Qu;Pry... ,Pry... Py,

where . g
€ = (degpj-l-l)—I-Zdeng-l—l.
Jj=1 j=1
(3) We have
I(Iiai;n (6;Q1,...,0Qn, ..., Qu; Pr,...,Px)
C(—1)SOMES (B:Qu, ., Qv s Qui Prye e, i),
where

h—1
= Z deg Q;.
j=1

Next, in order to check the sign in (13.10.3), we need to study the orientation
of Mo2(M;B3) and My (1,0)(L; 3), where 3 € Hy(M) and 3 is the image of 3 by
ix : Ho(M) — Ho(M, L), see §13.

Proposition 53.6. The fiber product orientation on Mreg(M 5)51;1 x L coincides
with the orientation as the boundary of ./\/lge’(g1 0y (L3 B).-

Proof. Fixing 0,00 € CP! as the 0-th and first marked points, we write
ME®(M; B)/Aut(CP*; 0, 00) = M™% (M; ).

Similarly, fix 0,1 on the closed unit disc as the O-th interior and first boundary

marked points on D?. Then the moduli space le%l,o)<L; 0), resp. Mlie‘%l 0)(L: 5)

, is identified with the space Mres (L;0), resp. Mres (L; 8) of pseudo-holomorphic
maps from D? in the class 0, resp. 3.
In a similar way to Lemma 46.5, we find that the gluing map

.//\Xreg(M; B)ev};‘f Xev%)m Mreg(L; 0) _ Mreg(ﬂ>

is orientation preserving in the sense of Kuranishi structure. Therefore we have the
identification (in the level of tangent spaces)

(Meg(M B) x Aut(CP;0, oo))evm X cygme MIE ) (L50)
=M 0)(B)-
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Note that Aut(CP1;0,00) = C* = Ry x S1. We give an orientation on R~ so
that the action on CP' induces a flow from 0 to co. Then, as in the proof of
Lemma 46.5, R<g corresponds to the outer normal vector field. Note also that

int . reg . . . . .
evg" MY (170)(L, 0) — L is orientation preserving. Hence we have

Rout X (MBG,E%(M,B) X Sl)eviogt XL L
=My o) (B)-

Note also that, after gluing, the S!-action moves the first boundary marked point
in the counter-clockwise direction. Therefore we obtain

MB?%(M, /E)evggt XL L
COMy 0y(B)-

0

Finally, we prove the sign in the formula
/ k—1 ! D.
Pra(Pry- -, Py) = (—1)d8 Poxoizides Plp, 5(P Py, Pyy)

stated in Lemma 13.25. Here deg’ is the shifted degree.
The following is a straightforward generalization of Lemma 47.3.

Lemma 53.7. Let o be the transposition element (i,i+ 1) in the k-th symmetric
group &y. (i=1,...,k—1). Then the action of o on

Mia,0(B;Q1, .., Qe Pr,y... Py, Pigy, ..., Py)
by changing the order of marked points is described by the following.

o(Mp,a,0(B;Q1,...,Qu; Pry..., Py Piya, ..., Pr))
:(—1)(degPi+1)(degpi+1+1)/\/lk,(1,£)(ﬁ;Qh Qe Py, P, Py P).

Proof. Recall Definition 53.2. Then the lemma can be proved in the same way as
that of Lemma 47.3. [

Then Lemma 53.7 for ¢ = 0 immediately implies the desired sign in Lemma 13.25.

53.3. Continuous family of perturbations.
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We finally discuss orientation of the moduli spaces we used in §33 to define an
Ak homomorphism f, : B(RX) — Q(L). In §33, we defined the moduli space

Uesr(f, P') = (L X pesn (L X P{ X - x PY) X Ny
and used it to define X,(P'), by Formula (33.48) :
(33.43) 2(P') = {(p,w) € Upa (1. ') X We | 41 (p,w) = 0}

Here tf é 41 18 a section of the obstruction bundle on U, (f, 2 ) X Wy. We have a

projection Uy (f, ]3’) — W,.
We used a top form w, on W, and defined

(33.49) fo(P') = ev(miy, (we)) € Q(L).

Here 7 : %g(ﬁ’ ) — L is the evaluation map at the 0-th marked point.

The orientation of Wy is given by w,. We need to find an orientation of Uy (f, P )
which induces an orientation of X,(P’) and hence the sign of Formula (33.49) above.
We will reduce this problem to ones on the moduli space used to define filtered A,
homomorphisms. This later problem is discussed already in §52.

Let d|we| be the smooth measure on Wy such that

fwe= fd|w,l
W W,

for any positive function f. By a standard transversality theorem, we can find a
subset W) of full d|w,| measure such that for each w € W}

s (w) € Xe(P)
is a smooth submanifold. If we have an orientation on W‘;/t (w), then
W(W‘}/t(w» CcL

defines a current on L. Moreover it is easy to prove that

(5339 evn(eiy () = [ wmh )l (w)

holds as an equality among smooth forms, up to sign. Hence the problem to find
an appropriate sign for (33.49) reduces to the problem to find an appropriate ori-
entation of W;Vt (w).
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We next recall that W, is the space parameterizing the family of perturbations

(sections) of the Kuranishi structure on Upy1(f, P').
The set . .
T, (W) = Xe(P') 0 (Uesa (f, P') x {w})

is the zero set of the section
ﬁ/ ﬁ/
P 10 =t e (Pyw).

If we regard tf é 41 as a W, parameterized family {tf é 41w wew, of sections on

Ups(f, ]3’), then W;V}g(w) is its zero set.
We consider the space

Ug_|_1(](,ﬁ/)+ = (L X [e+1 (Pll X oo X Pé X L)) XM+1

with Kuranishi structure. (We remark that there is no prime for the notation Ny
in the right hand side.)
Note Ups1(f, P')T coincides (together with Kuranishi structure) with the space

(53.9) MM, L, {J,}, : o top(p) @pe (P x -+ x P)).

We used (53.9) to construct an A, homomorphism § : (RXy,m) — (RX;,m)
between two A, algebras (established by Theorem 9.8) which are obtained by two
different choices of perturbation and two different choices of the sets of singular
simplexes Xp,, X]. Thus we already defined a coherent orientation of the space

Upr (5, P)T in §52.
On the other hand, by Theorem 33.63, there exists a smooth surjective map

/
M+1 - Afé—l—l?

which is a diffeomorphism outside the boundary. Therefore, orientation of Uy (f, P )+
induces orientation of Upy1(f, P’). It determines a sign of (33.49). O



