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Symplectic Geometry ?

Origin  Hamiltonian Dynamics  



  

€ 

q1,,qn position  

  

€ 

p1,, pn momentum  

  

€ 

H (q1,,qn; p1,, pn;t) Hamiltonian  

Hamiltonian’s equation  

€ 

dqi
dt

=
∂H
∂pi

dp1
dt

= −
∂H
∂qi

 

 
  

 
 
 



Hamilton’s equation is invariant of the coordinate change

  

€ 

Qi =Qi (q1,,qn , p1,, pn )
Pi = Pi (q1,,qn , p1,, pn )
 
 
 

€ 

dPi ∧∑ dQi = dpi ∧∑ dqi

canonical transformaiton = symplectic diffeomorphism



Symplectic manifold

€ 

Ui has local coordinate   

€ 

q1,,qn, p1,, pn

coordinate change is symplectic diffeomorphism

€ 

ω = dpi ∧∑ dqi is globally defined.

€ 

dω = 0   

€ 

ω∧∧ω = volume form.

  

€ 

X = Ui

symplectic form 



Two important sources of 
symplectic Geometry

(1)  Hamiltonian dynamics

(2)  Algebraic or Kahler geometry



(1)  Hamiltonian dynamics

€ 

X =T *M cotangent bundle.

  

€ 

q1,,qn local coordinate of   

  

€ 

p1,, pn coordinate of the 
cotangent vector 

€ 

M

€ 

ω = dpi ∧∑ dqi
symplectic form 



(2)  Algebraic or Kahler geometry

Solution set of polynomial equation 
has a symplectic structure 

(Fubini-Study form)

€ 

X = (x, y, z,w) x5 + y5 + z5 +w5 =1{ }
Example

(Take closure in projective space.)



Clasical mechanics  Hamiltonian mechanics  

€ 

⊃

Quantum mechanics  

Hamilton formalism 
play important role

Symplectic geometry?



Global Symplectic Geometry ?

It is not clear whether 
Global Symplectic Geometry 
is related to the origin of symplectic geometry, 
that is Physics.

On the other hand, 
from Mathematical point of view
Local symplectic geometry is trivial.



Riemannian geometry

€ 

Rijkl curvature (how locally spacetime curves.)

The most important quantity of Riemannian geometry.

There is no curvature in symplectic geometry.
(Dauboux’s theorem 19th century.)



There is nontrivial
Global Symplectic Geometry.

This is highly nontrivial fact and was 
established by using

“string theory’’



Classical mechanics  Hamiltonian mechanics  

€ 

⊃

Quantum mechanics  Symplectic geometry

?

QFT ? String ?  

Why? 

Global symplectic 
geometry



I will discuss geometry of
 
Lagrangian submanifold
 
as an example of nontrivial 
Global Symplectic geometry.



Lagrangian submanifold 

Example    

€ 

f (q1,,qn ) a function of               .  

€ 

q1,,qn

  

€ 

pi =
∂f
∂qi
, i =1,,n

defines an n dimensional submanifold, 
Lagrangian submanifold   L.



q graph of               .

€ 

p =
∂f
∂q

€ 

f (q) = area



no longer a graph
finally becomes a 
manifold 
without boundary

function

no longer a graph

Lagrangian submanifolds



Definition:

€ 

L ⊂ X

€ 

ω = 0 on  L.

€ 

dimL = 1
2 dimX

 L  is a  Lagrangian submanifold.

a submanifold of  X.



Role of Lagrangian submanifold

Lagrangian submanifold of  T*M  is a generalization of a function on  M

Symplectic diffeomorphism: X     X  is a Lagrangian submanifold of  

€ 

→

€ 

X × X

is a Lagrangian submanifold

€ 

Rn ⊂ Cn



Role of Lagrangian submanifold

Lagrangian submanifold of  T*M  is a generalization of a function on  M

Symplectic diffeomorphism: X     X  is a Lagrangian submanifold of  

is a Lagrangian submanifold

€ 

Rn ⊂ Cn

X X



Role of Lagrangian submanifold

Lagrangian submanifold of  T*M  is a generalization of a function on  M

Symplectic diffeomorphism: X     X  is a Lagrangian submanifold of  

€ 

→

€ 

X × X

is a Lagrangian submanifoldRn Cn



Role of Lagrangian submanifold

Lagrangian submanifold of  T*M  is a generalization of a function on  M

Symplectic diffeomorphism: X     X  is a Lagrangian submanifold of  

€ 

→

is a Lagrangian submanifold

€ 

Rn ⊂ Cn

Lagrangian submanifold is the correct boundary condition for open string.

D brane



Symplectic Geometry 
       -  analogy from algebraic geometry

=  Hamiltonian dynamics 
            +
     Lagrangain submanifold
           +
            epsilon
     



no longer a graph

Lagrangian submanifold of  2 dimensional Euclidean space

= Circle



Classify Lagrangian submanifolds of        ?

The first interesting case   n =  3.

The case   n =  2.    
Answer:  2 dimensional torus.   (Easy (except the case of Klein bottle))

€ 

Cn



Theorem (Gromov, 1980’)

3 sphere S3  is NOT a 
Lagrangian submanifold of  C3 . 

We need “open string theory” to prove this.



If  L  is a Lagrangian submanifolds in  R2n = Cn 
then there exists a disc which bounds it.

(1)

holomorphic.

L

€ 

∂D2 → L
  

€ 

ϕ : D2 →Cn



(1I)

Such a disc can not exists  if  L  is  sphere S3

because

L  is  S3

€ 

ϕ*ω
D2∫ = 0

holomorphic.

€ 

ϕ

€ 

ϕ*ω
D2∫ > 0



Classical mechanics  Hamiltonian mechanics  

€ 

⊃

Quantum mechanics  Symplectic geometry

?
QFT ? String ?  

Why? 

Global symplectic 
geometry



To go further we need to be more systematic.

Approximate     Geometry     by    Algebra.



Poincare  (begining of 20th century)

X  :  space

H(X)  :  Homology group



Poincare  (begining of 20th century)

X  :  space

H(X)  :  Homology group

Algebraic topology=



Poincare  (begining of 20th century)

X  :  space

H(X)  :  Homology group

Linear story



Begining of 21th century  

we are now working on non Linear story



Classify the Lagrangian submanifolds of        ?

€ 

C3



Thurston-Perelman

3 manifolds are one of the 8 types of spaces

Which among those  8 types is a Lagrangian 
submanifold of        ?

€ 

C3



3 manifold Lagrangian submanifold?

€ 

S3 No(Gromov)

€ 

R3 Yes

€ 

H 3 No(Viterbo)

€ 

R× S2 Yes

€ 

R×H 2 Yes

€ 

SL(2,R) No (F)

€ 

Sol No (F)

€ 

Nil No (F)

Answer 



3 manifold Lagrangian submanifold?

S3 : Curvature =1 No(Gromov)

R3 : Curvature =0 Yes

H3 : Curvature=-1 No(Viterbo)



3 manifold
Lagrangian 

submanifold?

€ 

SL(2,R) No (F)

€ 

Sol No (F)

€ 

Nil No (F)

€ 

a b
c d
 

 
 

 

 
 ad − bc =1

€ 

* *
0 *
 

 
 

 

 
 

€ 

1 * *
0 1 *
0 0 1

 

 

 
  

 

 

 
  



Method :      Count the discs.

                     =  Open string

holomorphic.

L

€ 

∂D2 → L

€ 

ϕ : D2 →C3



Count the discs.

Obtain numbers.  (Many numbers)

Those sysem of numbers has a structure.  

Obtain algebraic system; (something like group)



●　In theoretical Physics, 

　   Higher (>4) dimensional spaces are (at last) begining to be studied. 

●　Space of dimension > 4 will never directly observable from human. 

●　They will be seen to us only through some system of numbers which       

       can be checked by experiments.

●　The role of higher dimensional geometry in physics here seems to be 

       to provide a way to understand some huge list of numbers.

●　This is the same as what I said about algebraic topology.



Difficulty
Counting the discs is actually a difficult problem.

Counting the discs = Counting the number of             
                                  solution of Non Linear
                                  differential equations

Keep going and understand 
Lagrangian submanifold 
by open string theory.



If  L  is a Lagrangian submanifold in  R2n = Cn 
then there exists a disc which bounds it.

First and essential step to show  S3  is not a Lagrangian submanifold.

Counting the discs is difficult.



Difficulty

Counting the discs is actually a difficult problem.

Counting the discs = Counting the number of             
                                  solutions of Non Linear
                                  differential equations



Physics helps

Mirror symmetry (discovered in 1990’) 

provides (potentially) a powerful tool to 
compute the number of discs.



Classical mechanics  Hamiltonian mechanics  

€ 

⊃

Quantum mechanics  Symplectic geometry

?
QFT ? String ?  

Why? 

Global symplectic 
geometry



(Homological) Mirror symmetry (Konsevitch 1994)

€ 

X

€ 

X
^

Symplectic manifold Complex manifold

€ 

L
Lagrangian submanifold
(A brane)

€ 

E→ X
^

Holomorphic vector bundle



(Homological) Mirror symmetry

Difficult problem of counting discs 

becomes 

Attackable problem of complex geometry



(Homological) Mirror symmetry

Difficult problem of counting discs 

becomes 

Attackable problem of complex geometry

Global,    Non Linear

Local,      Linear



Difficult problem of counting discs 

becomes 

Attackable problem of complex geometry

Global,    Non Linear

Local,      Linear

Non perturbative

Perturbative



Theorem (Seidel-Smith-F, Nadler) 

Compact Lagrangian submanifold  L  of           is 
the same as                       as D-brane 

if

L, M  are simply conneted and  L  is spin.   

€ 

T *M

€ 

M ⊂ T *M

A special case of a version of a conjecture by Arnold. 



 L   is the same as  M  as D-brane 

○ Homolog group of  L  is homology group of  M.

○ [L] = [M]  in  H(T*M).

implies in particular

Arnold conjectured stronger conclusion in 1960’s.



(Homological) Mirror symmetry (Kontsevitch 1992)

€ 

X

€ 

X
^

Symplectic manifold Complex manifold

€ 

L
Lagrangian submanifold
(A brane)

€ 

E→ X
^

Holomorphic vector bundle



In our case                     is noncompact and situaltion is slightly different.

Symplectic manifold

€ 

L
Lagrangian submanifold
(A brane)

Flat vector bundle€ 

T *M

€ 

X
^

=T *M (or M )€ 

X =T *M

€ 

E→M

●  String theory of            is gauge theory on  M.  (Witten 1990’) 

€ 

T *M

●  M  is simply connected               Flat bundle on  M  is trivial.



●   By proving a (small) part of (homological)   
    Mirror symmetry conjecture we get new  
    insight on Lagrangian submanifolds.

●  Then we enhance conjecture and make it more 
   precise and richer.

●  Solving some more parts we get another insight.

●  Conjecture now is becoming richer and richer   
   contain many interesting and attackable  
   open problems.



I want to keep going and understand
 
Global symplectic geometry 

by using the ideas from

String theory.



Hamiltonian 
Dynamics

€ 

H :T *M → R

Quantum mechanics

Global  symplectic 
manifold X

?
  

€ 

−1 ∂ψ
∂t

= H q, −1∂ ∂q( )ψ


