ON EXTREMAL CONTRACTIONS OF LOG CANONICAL PAIRS

OSAMU FUJINO

Throughout this note, we will work over \mathbb{C} . We will freely use the basic definitions and results of the minimal model theory for log canonical pairs in [F1] and [F2]. The following theorems generalize Kawamata's famous result in [K].

Theorem 1 ([F5, Theorem 1.13]). Let (X, Δ) be a log canonical pair and let $\pi: X \to S$ be a projective morphism onto a variety S. Let R be a $(K_X + \Delta)$ -negative extremal ray of $\overline{NE}(X/S)$ and let $\varphi_R: X \to W$ be the contraction morphism over S associated to R. We put

$$d := \min_E \dim E,$$

where E runs over all positive-dimensional irreducible components of $\varphi_R^{-1}(P)$ for all $P \in W$. Then R is spanned by a possibly singular rational curve ℓ with

$$0 < -(K_X + \Delta) \cdot \ell \le 2a$$

More generally, we have:

Theorem 2 ([F5, Theorem 1.12]). Let (X, Δ) be a log canonical pair and let $\varphi \colon X \to W$ be a projective morphism between varieties such that $-(K_X + \Delta)$ is φ -ample. Let P be an arbitrary closed point of W. Let E be any positive-dimensional irreducible component of $\varphi^{-1}(P)$. Then E is covered by (possibly singular) rational curves ℓ with

$$0 < -(K_X + \Delta) \cdot \ell \le 2 \dim E.$$

In particular, E is uniruled.

Our approach in [F5] is different from and is independent of Kawamata's in [K]. We think that the argument in [K] does not work for pairs whose singularities are worse than kawamata log terminal. Lemma 3 is a key lemma for the proof of Theorems 1 and 2.

Lemma 3 ([F5, Lemma 12.1]). Let (X, Δ) be a log canonical pair and let $\varphi \colon X \to W$ be a projective morphism. We take an arbitrary closed point P of W. Let E be any positivedimensional irreducible component of $\varphi^{-1}(P)$. Let $\nu \colon \overline{E} \to E$ be the normalization. Then, for every ample \mathbb{R} -divisor H on \overline{E} , there exists an effective \mathbb{R} -divisor $\Delta_{\overline{E},H}$ on \overline{E} such that

$$\nu^*(K_X + \Delta) + H \sim_{\mathbb{R}} K_{\overline{E}} + \Delta_{\overline{E},H}.$$

We note that Theorems 1, 2, and Lemma 3 are formulated for quasi-log schemes in [F5]. Hence the results in [F5] are much more general.

Let us recall the definition of quasi-log schemes. For the details, see [F2, Chapter 6], [F4], and so on.

Definition 4 (Quasi-log schemes). A quasi-log scheme is a scheme X endowed with an \mathbb{R} line bundle ω on X, a closed subscheme $X_{-\infty} \subsetneq X$, and a finite collection $\{C\}$ of reduced and irreducible subschemes of X such that there is a proper morphism $f: (Y, B_Y) \to X$ from a globally embedded simple normal crossing pair satisfying the following properties:

Date: 2024/4/23.

- (1) $f^*\omega \sim_{\mathbb{R}} K_Y + B_Y$.
- (2) The natural map $\mathcal{O}_X \to f_*\mathcal{O}_Y([-(B_Y^{<1})])$ induces an isomorphism

$$\mathcal{I}_{X_{-\infty}} \xrightarrow{\simeq} f_* \mathcal{O}_Y([-(B_Y^{<1})] - \lfloor B_Y^{>1} \rfloor),$$

where $\mathcal{I}_{X_{-\infty}}$ is the defining ideal sheaf of $X_{-\infty}$.

(3) The collection of reduced and irreducible subschemes $\{C\}$ coincides with the images of the strata of (Y, B_Y) that are not included in $X_{-\infty}$.

We note that Y may be reducible in Definition 4 and that any log canonical pair has a natural quasi-log scheme structure. The notion of a basic slc-trivial fibration was first introduced in [F3] (see also [FH]).

Definition 5 (Basic slc-trivial fibrations). A basic slc-trivial fibration $f: (X, B) \to Y$ consists of a projective surjective morphism $f: X \to Y$ and a simple normal crossing pair (X, B) satisfying the following properties:

- (1) Y is a normal variety,
- (2) every stratum of X is dominant onto Y and $f_*\mathcal{O}_X \simeq \mathcal{O}_Y$,
- (3) B is a Q-divisor such that $B = B^{\leq 1}$ holds over the generic point of Y,
- (4) there exists a \mathbb{Q} -Cartier \mathbb{Q} -divisor D on Y such that $K_X + B \sim_{\mathbb{Q}} f^*D$, and
- (5) rank $f_* \mathcal{O}_X([-(B^{<1})]) = 1.$

We also note that X in Definition 5 is not necessarily irreducible. The author thinks that the theory of quasi-log schemes is a powerful framework to use mixed Hodge structures on cohomology with compact support for the study of higher-dimensional algebraic varieties. He constructed the theory of basic slc-trivial fibrations in order to make the theory of variations of mixed Hodge structure on cohomology with compact support applicable for various geometric problems.

Anyway, in [F5], we use quasi-log schemes and basic slc-trivial fibrations to establish Theorems 1, 2, and Lemma 3.

References

- [F1] O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727–789.
- [F2] O. Fujino, Foundations of the minimal model program, MSJ Memoirs, 35. Mathematical Society of Japan, Tokyo, 2017.
- [F3] O. Fujino, Fundamental properties of basic slc-trivial fibrations I, Publ. Res. Inst. Math. Sci. 58 (2022), no. 3, 473–526.
- [F4] O. Fujino, On quasi-log schemes, J. Math. Soc. Japan 75 (2023), no. 3, 829–856.
- [F5] O. Fujino, Cone theorem and Mori hyperbolicity, to appear in J. Differential Geom.
- [FH] O. Fujino, K. Hashizume, Adjunction and inversion of adjunction, Nagoya Math. J. 249 (2023), 119–147.
- [K] Y. Kawamata, On the length of an extremal rational curve, Invent. Math. 105 (1991), no. 3, 609– 611.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN

Email address: fujino@math.kyoto-u.ac.jp

 $\mathbf{2}$