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Throughout this note, we will work over C. We will freely use the basic definitions and
results of the minimal model theory for log canonical pairs in [F1] and [F2]. The following
theorems generalize Kawamata’s famous result in [K].

Theorem 1 ([F5, Theorem 1.13]). Let (X,∆) be a log canonical pair and let π : X → S
be a projective morphism onto a variety S. Let R be a (KX +∆)-negative extremal ray of
NE(X/S) and let φR : X → W be the contraction morphism over S associated to R. We
put

d := min
E

dimE,

where E runs over all positive-dimensional irreducible components of φ−1
R (P ) for all P ∈

W . Then R is spanned by a possibly singular rational curve ℓ with

0 < −(KX +∆) · ℓ ≤ 2d

More generally, we have:

Theorem 2 ([F5, Theorem 1.12]). Let (X,∆) be a log canonical pair and let φ : X → W
be a projective morphism between varieties such that −(KX +∆) is φ-ample. Let P be an
arbitrary closed point of W . Let E be any positive-dimensional irreducible component of
φ−1(P ). Then E is covered by (possibly singular) rational curves ℓ with

0 < −(KX +∆) · ℓ ≤ 2 dimE.

In particular, E is uniruled.

Our approach in [F5] is different from and is independent of Kawamata’s in [K]. We
think that the argument in [K] does not work for pairs whose singularities are worse than
kawamata log terminal. Lemma 3 is a key lemma for the proof of Theorems 1 and 2.

Lemma 3 ([F5, Lemma 12.1]). Let (X,∆) be a log canonical pair and let φ : X → W be
a projective morphism. We take an arbitrary closed point P of W . Let E be any positive-
dimensional irreducible component of φ−1(P ). Let ν : E → E be tne normalization. Then,
for every ample R-divisor H on E, there exists an effective R-divisor ∆E,H on E such
that

ν∗(KX +∆) +H ∼R KE +∆E,H .

We note that Theorems 1, 2, and Lemma 3 are formulated for quasi-log schemes in
[F5]. Hence the results in [F5] are much more general.

Let us recall the definition of quasi-log schemes. For the details, see [F2, Chapter 6],
[F4], and so on.

Definition 4 (Quasi-log schemes). A quasi-log scheme is a scheme X endowed with an R-
line bundle ω on X, a closed subscheme X−∞ ⊊ X, and a finite collection {C} of reduced
and irreducible subschemes of X such that there is a proper morphism f : (Y,BY ) → X
from a globally embedded simple normal crossing pair satisfying the following properties:
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(1) f ∗ω ∼R KY +BY .
(2) The natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞.
(3) The collection of reduced and irreducible subschemes {C} coincides with the im-

ages of the strata of (Y,BY ) that are not included in X−∞.

We note that Y may be reducible in Definition 4 and that any log canonical pair has
a natural quasi-log scheme structure. The notion of a basic slc-trivial fibration was first
introduced in [F3] (see also [FH]).

Definition 5 (Basic slc-trivial fibrations). A basic slc-trivial fibration f : (X,B) → Y
consists of a projective surjective morphism f : X → Y and a simple normal crossing pair
(X,B) satisfying the following properties:

(1) Y is a normal variety,
(2) every stratum of X is dominant onto Y and f∗OX ≃ OY ,
(3) B is a Q-divisor such that B = B≤1 holds over the generic point of Y ,
(4) there exists a Q-Cartier Q-divisor D on Y such that KX +B ∼Q f ∗D, and
(5) rankf∗OX(⌈−(B<1)⌉) = 1.

We also note thatX in Definition 5 is not necessarily irreducible. The author thinks that
the theory of quasi-log schemes is a powerful framework to use mixed Hodge structures on
cohomology with compact support for the study of higher-dimensional algebraic varieties.
He constructed the theory of basic slc-trivial fibrations in order to make the theory of
variations of mixed Hodge structure on cohomology with compact support applicable for
various geometric problems.

Anyway, in [F5], we use quasi-log schemes and basic slc-trivial fibrations to establish
Theorems 1, 2, and Lemma 3.
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