VARIATION OF MIXED HODGE STRUCTURE AND ITS
APPLICATIONS

OSAMU FUJINO AND TARO FUJISAWA

ABSTRACT. We treat generalizations of Kollar’s torsion-freeness, vanishing theorem, and
so on, for projective morphisms between complex analytic spaces as an application of
the theory of variations of mixed Hodge structure. The results will play a crucial role in
the theory of minimal models for projective morphisms of complex analytic spaces. In
this paper, we do not use Saito’s theory of mixed Hodge modules.
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1. INTRODUCTION

We will establish the following theorem, which is an analytic generalization of [FFT,
Theorems 7.1 and 7.3]. Note that f: (X, D) — Y is assumed to be algebraic in [FET].
Our approach in this paper is slightly different from the one in [FFET] (see Remark TG
below). We also note that we do not use Saito’s theory of mixed Hodge modules (see
[Sadl, [Sa2|, [Sa3], [Sad], [FFS], and [Sa5]) in this paper.

Theorem 1.1 (Canonical extensions of Hodge bundles, see [FET, Theorems 7.1 and
7.3]). Let (X, D) be an analytic simple normal crossing pair such that D is reduced and
let f: X =Y be a proper surjective morphism onto a smooth complex variety Y. Assume
that every stratum of (X, D) is dominant onto Y. Let ¥ be a normal crossing divisor on
Y such that every stratum of (X, D) is smooth over Y* := Y\ X. We put X* := f~1(Y™),
D* := D|x+, and d :== dim X — dimY . If we assume that every stratum of (X, D) is a
Kdhler manifold in addition, then we have:
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(1) R*(f|x-\p*)Rx=\p+ underlies a graded polarizable variation of R-mized Hodge
structure on Y™ for every k.

We put

V¥ = R*(flx-\p*)iIRx-\p- @ Oy~
for every k. The Hodge filtration and the weight filtration on VE. are denoted by F and
L respectively. Moreover the lower canonical extension of V. is denoted by 'VE.. The
weight filtration L on V. is extended to V. by L,,(\VE.) = 'L,,(VE.) for every m. Then
we have the following:

(ii) There exists a unique finite decreasing filtration F on 'VE. such that
o FP("WE )|y« ~ FP(VE.), and
o Gr% GrL ("WE.) is a locally free Oy-module of finite rank
for every k,m,p.
(iii) R f,Ox(—D) is isomorphic to
Gr%(lvd:i) — FO(lvd:i)/Fl (lvd:i)
for every i. In particular, R f,Ox(—D) is locally free for every i.
(iv) R'fuwx v (D) is isomorphic to
(Gr%('"VEh)" = Homo, (Grh('ViZ"), Oy)

for every i. In particular, R' f.wx/y (D) is locally free for every i.

For the precise definition of upper and lower canonical extensions in Theorem I, see
[EET, Remark 7.4]. In Theorem I, X may be reducible, and we are mainly interested
in the case where X is reducible.

Remark 1.2. We do not need the relative monodromy weight filtration for applications
in the theory of minimal models (see, for example, [EnT0]). We are mainly interested in
Hodge bundles and their extensions. However, we can prove the existence of the relative
monodromy weight filtration in Theorem . In fact, the variations of R-mixed Hodge
structure in (i) of the theorem above are admissible. This can be checked by the same
argument as in [F'F1]. For the details, see Remark B8 below.

By Theorem [, we can use the Fujita—Zucker-Kawamata semipositivity theorem in
the complex analytic setting.

Theorem 1.3 (Semipositivity). In Theorem I, we further assume that every local mon-
odromy on the local system Rd_i(f X*\D*)!]RX*\D* around X is unipotent. Let ¢: V — X
be any morphism from a projective variety V. Then ¢*R' fiwx/y (D) is a nef locally free
sheaf on V.

In order to prove Theorem [, we will establish:

Theorem 1.4 (Weight spectral sequence). Let (X, D) be an analytic simple normal cross-
ing pair such that D is reduced and let f: X — 'Y be a proper morphism between complex
analytic spaces. We assume that Y is a smooth complex variety and that there ezists a
normal crossing divisor ¥ on'Y such that every stratum of (X, D) is dominant onto Y,
and smooth over Y \ X. If we assume that every stratum of (X, D) is a Kdhler manifold
i addition, then we have a spectral sequence:

EY = P R'f.05 = R*£.O0x(-D),
S
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where S runs through all (dim X —p)-dimensional strata of (X, D), such that it degenerates
at By and its Ei-differential dy splits. Moreover, R'f.Ox(—D) is locally free of finite rank
for every i.

By combining Theorem [ with Takegoshi’s results (see [T]), we can prove:

Theorem 1.5 (Torsion-freeness and vanishing theorem). Let (X, D) be an analytic simple
normal crossing pair such that D is reduced and let f: X — Y be a projective morphism
between complex analytic spaces. We assume that Y is a complex variety and that every
stratum of (X, D) is dominant onto Y. Then we have the following properties.

(i) (Torsion-freeness). Rif.wx (D) is a torsion-free sheaf for every q.
(ii) (Vanishing theorem). Let w:Y — Z be a projective morphism between complex
analytic spaces and let A be a w-ample line bundle on Y. Then

R, (A® R fuwx (D)) =0
holds for every p > 0 and every q.

Of course, Theorem I3 is a generalization of Kollar’s torsion-freeness and vanishing
theorem (see [Kaoll]) for reducible complex analytic spaces. We make a remark on the
relationship between [FET] and this paper.

Remark 1.6. In [FFT), we have already treated Theorems [Tl and I3 when X and Y are
algebraic and f: X — Y is projective. Roughly speaking, in [FFT, §6], we first establish
Theorem A when X is quasi-projective and f: X — Y is algebraic. Then, by using it,
we prove Theorem I under the assumption that X and Y are algebraic and f: X — Y
is projective in [EET, §7]. When X is quasi-projective, we can use the theory of mixed
Hodge structures. Hence we can obtain desired vanishing theorems and torsion-freeness
without using the theory of variations of mixed Hodge structure (for the details, see [En3,
Chapter 5]). In this paper, we will directly prove Theorems [l and [ with the aid of
some results established for Kahler manifolds (see [1]). Then, we will prove Theorem [
as an application. Theorem 4 is new even when X and Y are algebraic and f: X — Y
is projective.

By using Theorem 4, we have:

Theorem 1.7 (see [EnY, Theorem 3.1]). Let (X, D) be an analytic simple normal crossing
pair such that D is reduced and let f: X — 'Y be a projective morphism between complex
analytic spaces. Then we have the following properties.

(i) (Strict support condition). Every associated subvariety of R?f.wx (D) is the f-
image of some stratum of (X, D) for every q.

(ii) (Vanishing theorem). Let m:Y — Z be a projective morphism between complex
analytic spaces and let A be a m-ample line bundle on Y. Then

R, (A® RIf.wx(D)) =0

holds for every p > 0 and every q.

(iii) (Ingectivity theorem). Let L be an f-semiample line bundle on X. Let s be a
nonzero element of H(X, LZ*) for some nonnegative integer k such that the zero
locus of s does not contain any strata of (X, D). Then, for every q, the map

xs: RIf, (wX(D) ® £®l) ~ RYf, (wX(D) ® L®k+l)

induced by ®s is injective for every positive integer [.
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Note that Theorem 7 was first obtained in [En9, Theorem 3.1] under a weaker as-
sumption that f: X — Y is Kahler by using Saito’s theory of mixed Hodge modules.
Theorems T8 and 9 are the main results of [EnY]. Although they may look artificial
and technical, they are very useful and indispensable for the study of varieties and pairs
whose singularities are worse than kawamata log terminal (see [Al], [Fn3, Chapter 6],
[En6], [En7], [EnT0], [FnTl], and so on). In [EnY], we showed that Theorems I8 and 9
follow from Theorem 7 (i) and (ii). Note that Theorem @7 (iii) is an easy consequence
of Theorem 7 (i) and (ii). Hence this paper gives an approach to Theorems 8 and 9
without using Saito’s theory of mixed Hodge modules.

Theorem 1.8 (see [EnY, Theorem 1.1]). Let (X, A) be an analytic simple normal crossing
pair such that A is a boundary R-divisor on X. Let f: X — Y be a projective morphism
to a complex analytic space Y and let L be a line bundle on X. Let q be an arbitrary
nonnegative integer. Then we have the following properties.

(i) (Strict support condition). If L — (wx + A) is f-semiample, then every associated
subvariety of RUf.L is the f-image of some stratum of (X, A).

(ii) (Vanishing theorem). If L — (wx + A) ~g f*H holds for some m-ample R-line
bundle H on Y, where m:' Y — Z is a projective morphism to a complex analytic
space Z, then we have RPm,RIf,L =0 for every p > 0.

Theorem 1.9 (Vanishing theorem of Reid-Fukuda type, see [En9, Theorem 1.2]). Let
(X, A) be an analytic simple normal crossing pair such that A is a boundary R-divisor
on X. Let f: X =Y and w: Y — Z be projective morphisms between complex analytic
spaces and let L be a line bundle on X. If L — (wx + A) ~g f*H holds such that H is
an R-line bundle, which is nef and log big over Z with respect to f: (X,A) =Y, on Y,
then RPm,RYf.L =0 holds for every p > 0 and every q.

In this paper, we do not prove Theorems [C8 and 9. For the details of Theorems "8
and 9, see [FnY]. Although the motivation of the first author is obviously the minimal
model theory for projective morphisms between complex analytic spaces, we do not treat
the minimal model program in this paper. We recommend that the interested reader looks
at [Eng], [EnT0], [FnTl], and so on. Theorems I8 and 9 have already played a crucial
role in [EnT0] and [EnT1], where we established the fundamental theorems of the theory of
minimal models for projective morphisms between complex analytic spaces. Anyway, by
this paper, [EnT0] and [FnTl] become free from Saito’s theory of mixed Hodge modules.
The relationship between [FnY] and this paper is as follows.

Remark 1.10. In [FES, Corollary 1 and 4.7. Remark] (see [Fn9, Theorem 2.6]), we
constructed a weight spectral sequence of mixed Hodge modules. It is much more general
than Theorem [ in some sense. By combining it with Takegoshi’s results (see [1]), we
proved Theorems 2, T8, [, and so on, in [FnY]. From the Hodge theoretic viewpoint,

one of the main ingredients of this paper is Steenbrink’s result obtained in [St1] and [S£2].

We look at the organization of this paper. In Section B, we will briefly explain basic
definitions and results necessary for this paper. In Subsection 271, we will explain some
useful lemmas on analytic simple normal crossing pairs. In Subsection 222, we will briefly
review Kollar’s package in the complex analytic setting. In Section B, we will present
abstract arguments which help us to obtain a variation of mixed Hodge structure whose
Hodge filtration can be extended to its canonical extension along a simple normal crossing
divisor. Section B is the main part of this paper, where we will prove Theorems 1 and
4. We will also see that a generalization of the Fujita—Zucker—Kawamata semipositivity
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theorem holds in the complex analytic setting (see Theorem I3). In Section B, we will
prove Theorem 3. In Section B, we will prove Theorem 4. Section [ is a supplemen-
tary section, where we will explain a new construction of the rational structure for the
cohomological Q-mixed Hodge complex in [St2]. We hope that it will help the reader to
understand [SE1] and [St2].

Acknowledgments. The authors thank Yuta Kusakabe very much for answering their
questions. The first author was partially supported by JSPS KAKENHI Grant Numbers
JP19H01787, JP20H00111, JP21H00974, JP21H04994. The second author was partially
supported by JSPS KAKENHI Grant Number JP20K03542.

In this paper, every complex analytic space is assumed to be Hausdorff and second-
countable. Note that an irreducible and reduced complex analytic space is called a complex
variety. We will freely use the basic results on complex analytic geometry in [BS] and

).
2. PRELIMINARIES

In this section, we will collect some basic definitions. Let us start with the definition
of analytic simple normal crossing pairs.

Definition 2.1 (Analytic simple normal crossing pairs). Let X be a simple normal cross-
ing divisor on a smooth complex analytic space M and let B be an R-divisor on M such
that the support of B + X is a simple normal crossing divisor on M and that B and X
have no common irreducible components. Then we put D := B|x and consider the pair
(X, D). We call (X, D) an analytic globally embedded simple normal crossing pair and
M the ambient space of (X, D). If the pair (X, D) is locally isomorphic to an analytic
globally embedded simple normal crossing pair at any point of X and the irreducible
components of X and D are all smooth, then (X, D) is called an analytic simple normal
CTOSSING PAIT.

When (X, D) is an analytic simple normal crossing pair, X has an invertible dualizing
sheaf wyx. We usually use the symbol Kx as a formal divisor class with an isomorphism
Ox(Kx) ~ wy if there is no danger of confusion. We note that we can not always define
K globally with Ox(Kx) ~ wyx. In general, it only exists locally on X.

The notion of strata plays a crucial role.

Definition 2.2 (Strata). Let (X, D) be an analytic simple normal crossing pair as in
Definition 1. Let v: X¥ — X be the normalization. We put

Kxv+© =v*(Kx + D).

This means that © is the union of v, !D and the inverse image of the singular locus of X.
We note that X* is smooth and the support of © is a simple normal crossing divisor on

XV, If W is an irreducible component of X or the v-image of some log canonical center
of (X¥,0), then W is called a stratum of (X, D).

Remark 2.3. In this paper, D is always assumed to be reduced. Hence, © in Definition
22 is a reduced simple normal crossing divisor on X”. We do not need Q-divisors nor
R-divisors in this paper.

We recall Siu’s theorem on complex analytic sheaves, which is a special case of [Si,
Theorem 4]. We need it for Theorem 7 (i) and Theorem IR (i).



6 OSAMU FUJINO AND TARO FUJISAWA

Theorem 2.4. Let F be a coherent sheaf on a compler analytic space X. Then there
exists a locally finite family {Y;}icr of complex analytic subvarieties of X such that

ASS@X’J («Faz) - {px,la cee 7pw,r(m)}

holds for every point x € X, where pg1,. .., Par(z) are the prime ideals of Ox . associated
to the irreducible components of the germs Y, , of Y; at x with x € Y;. We note that each
Y; is called an associated subvariety of F.

Definition 2.5 (Relatively nef, ample, and big line bundles). Let f: X — Y be a pro-
jective morphism of complex analytic spaces and let £ be a line bundle on X. Then we
say that

o Lis f-nefif L-C > 0 holds for every curve C' on X such that f(C) is a point,
and
o Lis f-ampleif L|;-1(, is ample in the usual sense for every y € Y.

We further assume that f: X — Y is a projective surjective morphism of complex vari-
eties. Then we say that

o L is f-bigif there exists some positive real number ¢ such that rank f,£%™ > c¢-m?

holds for m > 0, where d = dim X — dim Y.
We need the notion of nef locally free sheaves in Theorem 3.

Definition 2.6 (Nef locally free sheaves). Let € be a locally free sheaf of finite rank on
a projective variety V. If Op,, (£)(1) is nef, that is, Op, ) (1) - C' > 0 holds for every curve
C on Py (), then & is called a nef locally free sheaf on V.

A nef locally free sheaf is sometimes called a semipositive vector bundle or a semipositive
locally free sheaf in the literature.

2.1. Lemmas on analytic simple normal crossing pairs. In this subsection, we will
collect some useful lemmas on analytic simple normal crossing pairs. We will repeatedly
use these lemmas in subsequent sections.

Lemma 2.7 (see [Fn9, Lemmas 2.13 and 2.15)). Let (X, D) and (X', D) be simple normal
crossing pairs such that D and D' are reduced. Let g: X' — X be a projective bimero-
morphic morphism. Assume that there exists a Zariski open subset U of X such that
g: U := g Y(U) — U is an isomorphism and that U (resp. U') intersects every stratum of
(X, D) (resp. (X', D). Then R'g.Ox =0 and R'g.Ox/(Kx: + D') =0 for every i > 0,
and g*OX/ ~ OX and g*OX/(KX/ + D/> ~ O)((KX -+ D) hold.

Proof. By [EnY, Lemma 2.15], we have R'g,Ox: = 0 for every i > 0 and ¢.Ox ~ Ox.
Since D and D’ are reduced, we can easily check that

(2.1) Kx+D =g*(Kx+ D)+ FE

holds for some effective g-exceptional Cartier divisor £ on X’ and that D’ = g, ! D holds.
By (1), we have ¢.Ox/(Kx + D') ~ Ox(Kx + D). By [FnY, Lemma 2.13|, we obtain
R'g.Ox/(Kx: + D') =0 for every i > 0. We finish the proof. O

Lemma 2.8 (see [End, Lemma 5.1]). Let (X, D) be an analytic simple normal crossing
pair such that D is reduced and let f: X — 'Y be a projective morphism between complex
analytic spaces. Let L be a Cartier divisor on X. We take an arbitrary point P € Y.
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Then, after shrinking Y around P suitably, we can construct the following commutative
diagram:
A

Y A"
such that
(i) ty: Y — A™ is a closed embedding into a polydisc A™ with vy (P)=0¢€ A™,
(ii) (Z,Dz) is an analytic globally embedded simple normal crossing pair such that Dz
18 reduced,
(iii) M is the ambient space of (Z, Dz) and is projective over A™,
(iv) there exists a Cartier divisor Ly on Z satisfying

Lz = (Kz+ Dz) = p"(L = (Kx + D)),

p.0z(Lyz) ~ Ox(L), and R'p.Oz(Lz) =0 for every i > 0,
(v) p(W) is a stratum of (X, D) for every stratum W of (Z, Dy),
(Vi) there exists a Zariski open subset U of X, which intersects every stratum of X,
such that p is an isomorphism over U,
(vii) p maps every stratum of Z bimeromorphically onto some stratum of X, and
(viil) for any stratum S of (X, D), there exists a stratum W of (Z,Dy) such that S =
p(W).
In particular, we have:
(ix) psOz(Kz+ Dy) ~ Ox(Kx+ D) and R'p,Oz(Kz+ Dz) = 0 holds for every i > 0.

Proof. The proof of [FnY, Lemma 5.1], where we allow D to be a boundary R-divisor,
works without any modifications. Thus we have the desired commutative diagram satis-
fying (i)—(viii). When L = Kx + D, we have Ly = Kz + Dz by (iv). Hence we obtain
(ix). O

Lemma 2.9 (see [En9, Lemma 2.17)). Let (X, D) be an analytic globally embedded simple
normal crossing pair such that D is reduced and let M be the ambient space of (X, D). Let
C' be a stratum of (X, D), which is not an irreducible component of X. Let o: M' — M
be the blow-up along C and let X' denote the reduced structure of the total transform of
X on M'. We put

KX/ + D/ = g*(KX + D),
where g := o|x,. Then we have the following properties:

(i) (X', D) is an analytic globally embedded simple normal crossing pair such that D’
15 reduced,

ii) M’ is the ambient space of (X', D'),

(iii) g.Ox' =~ Ox holds and R'g.Ox = 0 for every i > 0,

(iv) the strata of (X, D) are exactly the images of the strata of (X', D'), and

(v) o7XC) is a mazimal (with respect to the inclusion) stratum of (X', D), that is,
o }(C) is an irreducible component of X'.

Proof. The proof of [EnY, Lemma 2.17], where we allow D to be a boundary R-divisor,
works without any modifications. O
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2.2. Complex analytic generalization of Kollar’s package. Here, let us briefly re-
view Kollar’s package (see [Kol] and [Ko2]) in the complex analytic setting. We rec-
ommend that the interested reader looks at [Fn2], [N:3, Chapter V. 3.7. Theorem], and
).

Theorem P10 is a variant of Takegoshi’s vanishing theorem (see [, Theorem IV Rel-
ative vanishing Theorem| and [En2, Corollary 1.5]). We note that it is well known when
f: X =Y and 7: Y — Z are projective morphisms of algebraic varieties.

Theorem 2.10 (Vanishing theorem). Let f: X — Y and w: Y — Z be projective surjec-
tive morphisms between complex varieties such that X is smooth. Let M be a line bundle
onY. Assume that M is w-nef and w-big over Z. Then

(2.2) R, ( M® R'fuwx) =0
holds for every p > 0 and every q. In particular, if further ™ is bimeromorphic, then
(2.3) R R fuwx =0

holds for every p > 0 and every q.

Proof. The vanishing theorem (2) is more or less well known to the experts. For the
details, see, for example, [Fn2, Corollary 1.5]. Note that (23) is a special case of (22).
This is because the trivial line bundle on Y is w-nef and 7-big when 7 is bimeromorphic.

O

Lemma 71T is an easy consequence of Theorem ZZT10.

Lemma 2.11. Let f;: X; — Y be a projective surjective morphism of complex varieties
such that X; is smooth for every 1 <i < k. Let m: Y — Z be a projective bimeromorphic
morphism between complex varieties. We put

k
F = @qufi*wxi,
i=1

where q; is some nonnegative integer for every i. Let G be a coherent sheaf on'Y . Assume
that G is a direct summand of F. Then we have RPm,F = 0 and RPm,G = 0 for every
p > 0. In particular, ©,G is a direct summand of

k
@ R%(m o f)swx,.
i=1

Proof. By Lemma 2710, RPm, R% f;,wx, = 0 holds for every p > 0. Hence we have RPm,. F =
0 for every p > 0. Since G is a direct summand of F, we obtain RPr,G = 0 for every
p > 0. It is obvious that 7,G is a direct summand of 7, F. Since

k k
m.F = PR fuwx, ~ @ R (m o fi)uwx,,
i=1 i=1

7.G 1s a direct summand of @le R%(7 o f;)swx,. We finish the proof. O

Theorem T2 below is a special case of Takegoshi’s torsion-freeness (see [, Theorem
IT Torsion freeness Theorem] and [Fn2, Corollary 1.2]). When f: X — Y is a projective
surjective morphism between projective varieties, it is nothing but Kollar’s famous torsion-
freeness (see [Kol, Theorem 2.1 (i)]).
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Theorem 2.12 (Torsion-freeness). Let f: X — Y be a projective surjective morphism of
complex varieties such that X is smooth. Then RIf.wx s torsion-free for every q.

When f: X — Y is algebraic, Theorem T3 below was first obtained independently by
Kollar (see [Ka2, Theorem 2.6]) and Nakayama (see [N2, Theorem 1]). When f: X — Y
is a projective morphism of smooth complex varieties, it was obtained by Moriwaki (see
[Md, Theorem (2.4)]).

Theorem 2.13 (Hodge filtration, see [Il, Theorem V Local freeness Theorem (ii)] and
[N3, Chapter V, 3.7. Theorem (4)]). Let f: X — Y be a proper surjective morphism
between smooth complex varieties and let 3 be a normal crossing divisor on'Y such that
[ is smooth over Y* :=Y \ ¥. We assume that X is a Kdhler manifold. Then R?f.wx/y
18 locally free and is characterized as the upper canonical extension of the corresponding
bottom Hodge filtration on Y™* for every q.

We make a remark on the proof of Theorem P7T3.

Remark 2.14. One of the main ingredients of [N2] is Steenbrink’s result established in
[St1] and [St2] (see [N2, Theorem 3]). Although it was explicitly stated only for projective
morphisms, it also holds for proper morphisms from Ké&hler manifolds (see Remark B2
below). Hence the argument in [N2] works for Kéhler manifolds with the aid of [1]. We
recommend that the interested reader looks at [N1, Conjectures 7.2 and 7.3] and [N2].

3. ON VARIATIONS OF MIXED HODGE STRUCTURE

In this section, we present abstract arguments which help us to obtain a variation of
mixed Hodge structure whose Hodge filtration can be extended to its canonical extension
along a simple normal crossing divisor. Although the arguments look rather technical,
they give us an appropriate viewpoint for the proofs of Theorems I and 4.

3.1. Let X be a complex manifold and
K = ((Kg, W), (Ko, W, F),«a)

be a triple consisting of

e a bounded complex of R-sheaves Kr on X equipped with a finite increasing filtra-
tion W,

e a bounded complex of Oy-modules Kp on X equipped with a finite increasing
filtration W and a finite decreasing filtration F', and

e a morphism of complexes of R-sheaves a: Kg — Ko preserving the filtration W.

Such a triple K yields a pair of spectral sequences
EP(K, W) = (EP9(Ke, W), (EP(Ko, W), F), E2%(a))
where F' on EP?(Kp, W) stands for the first direct filtration (cf. [D2, (1.3.8)]), that is,
FCEPY Ko, W) = Image(EPY(F'Ko, W) — EPI(Ko, W))

forr=10,1,2,...,00 and for a,p, q € Z. Here we remark that F' on EP9(Kp, W) above is
not necessarily a filtration by subbundles. The morphism of E,-terms is denoted by dP4
for every p,q,r.

3.2. For a triple K as in B, we consider the following conditions:
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(3.2.1) The triple
(H™(Gr)Y Kg), (H™(Gr)) Ko), F), H*(Gr), @)
is a variation of R-Hodge structure of weight n +m on X for every m,n.

(3.2.2) The spectral sequence associated to (Gr! Ko, F) degenerates at F)-terms for
every m.

The following lemma is a counterpart of [D3, Scholie (8.1.9)] for variations of (mixed)
Hodge structure.

Lemma 3.3. If K satisfies [3.2.1) and [3.2.2), then the following holds:

(3.3.1) EPY(K,W) is a variation of R-Hodge structure of weight ¢ on X for every
r=1,2,...,00 and for every p,q.

(3.3.2) The triple
(GI'X[: Hn(KR)a (GI‘K Hn(KO)v F)a Grg Hn(a>>

is a variation of R-Hodge structure of weight n+m on X for every m,n € Z.

(3.3.3) The spectral sequence associated to (Ko, W) degenerates at Eo-terms.
(3.3.4) The spectral sequence associated to (Ko, F') degenerates at Ey-terms.
(3.3.5) There exists an isomorphism
EPYGre Ko, W) ~ Gry EPY( Ko, W),
under which the morphism of the E,.-terms of the left hand side coincides with
Gr% d2? on the right hand side for every a,p,q,r.

(3.3.6) The spectral sequence associated to (Gry Ko, W) degenerates at Ey-terms for
every a € 7.

Proof. From the assumption [3.2.2], the differential of Gr!¥ K is strictly compatible with
F for every m. Then we obtain the conclusions from the assumption by a similar
argument to [D3, Proposition (7.2.8) and Scholie (8.1.9)] and by Lemma B4 below. [

Lemma 3.4. The category of the variations of R-Hodge structure of a fixed weight on a
complex manifold is an abelian category.

Proof. By Lemma 3.14 (i) of [EFET] (replaced Q by R), it suffices to prove that the kernel
and the cokernel of a morphism of variations of R-Hodge structure satisfy the Griffiths
transversality. Let ¢: Vi — V5 be a morphism of variations of R-Hodge structure of the
same weight on a complex manifold X. Then, from the commutative diagram

OHOX(@KGI(@)HOX@VH —>Ox®V2—>OX®COkeI"(Q0) ——0

d®id i d®id l l d®id \L d®id

00— O ® Ker(p) —= QL @V, —= QL @ V, ——= QL @ Coker(p) — 0,

we can easily check that the first and the last vertical arrows satisfy the Griffiths transver-
sality. Here we note that the Hodge filtrations on Ox ® Ker(¢) and Ox ® Coker(p) are
induced from the Hodge filtrations on Ox ® V; and Ox ® V, respectively. O

3.5. Now we study the case of a pair (X, ), where X is a complex manifold and ¥ a
reduced simple normal crossing divisor on X having finitely many irreducible components.
We set X* = X\ X.
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The following elementary lemma will be used several times in the present and next
sections.

Lemma 3.6. Let F and G be locally free O x-modules of finite rank on X and p,v: F — G

morphisms of Ox-modules. If ¢|x+ = ©|x+, then p = . In particular, if |x« = 0 then
@ =0.
Proof. 1t is obvious. 0

3.7. For the case of (X,X), we consider a triple
K = ((KR7 W)7 (K(97 VV7 F)7 Oé)
consisting of

e a bounded complex of R-sheaves Kr on X* equipped with a finite increasing
filtration W,

e a bounded complex of Ox-modules Kp on X equipped with a finite increasing
filtration W and a finite decreasing filtration F', and

e a morphism of complexes of R-sheaves a: Kg — Ko
w.

Note that only (Ko, W, F') is defined over the whole X. We set
K‘X* = ((KR7 W)7 (KO> I/Va F)’X*a&)a
which is a triple on X* considered in B, and consider the following conditions:

(3.7.1) K|x- satisfies [3.2.1) and [3.2.2) on X*.

(3.7.2) For every m,n, the R-local system H"(Gr!” Kg) is of quasi-unipotent local
monodromies around all the irreducible components of 3.

(3.7.3) For every m,n, the variation of R-Hodge structure on X* in for K|x~
is polarizable.

x+ preserving the filtration

If K satisfies these conditions, then the lower canonical extension of O x«® H ”(Grr‘ﬁ/ Kg) ~
H™(Gr) Kp)|x- is denoted by *H™(Gr)Y Ko)|x- for every m, n. By Schmid’s nilpotent or-
bit theorem [Sd, (4.12)], the Hodge filtration F' on H"(Gr!” Ko)|x~ extends to a filtration
(by subbundles) on ‘H™(Gr? Kp)|x-, which is denoted by the same letter F. Moreover,
the condition for K|x~ implies that there exists a natural isomorphism

(3.1) H™(Gr% Gr)Y Ko)|x+ ~ Gr% H*(CrY Ko)

for every a,m,n. Here we remark that this morphism induces the isomorphism in
for r = 1.

On the other hand, we conclude [3.3.1]H3.3.6) for K

we can easily obtain the following:

X*

x+ by Lemma B33. In addition,

(3.7.4) H"(Kg) is an R-local system on X* of quasi-unipotent local monodromy along
¥ for every n.

(3.7.5) W, H"(Ko)|x+ ~ Ox+ @ W,, H"(Kg) for every m,n. In particular, we have
H"(Ko)|x+ ~ Ox+ @ H"(Kg) for every n.

(3.7.6) The variation of R-Hodge structure EPY(K|x«,W) is polarizable for every
p,q,r. In particular, the variation of R-Hodge structure

(Gr,, H"(Kg), (G, H"(Ko), F)|x+, Gr,, H"(a))

is polarizable.




12 OSAMU FUJINO AND TARO FUJISAWA

The following lemma and theorem play essential roles in the proofs of Theorems I
and 4.

Lemma 3.8. Let (X,Y) be as in @I and K = (Kg, W), (Ko, W, F),«) as in B1 satis-
fying the conditions [3.71)H{3.7.3). For a € Z, if there exists an isomorphism

H™(Gr. GrY Ko) — Gri(“H™(GrY Ko)
whose restriction to X* coincides with the isomorphism (B) for every m,n, then the
spectral sequence associated to (Gry Ko, W) degenerates at Fy-terms and the morphism
of E1-terms splits. Moreover Grg H"(Gr% Ko) is locally free of finite rank for every m,n.
In particular, so is H"(Gry Ko) for every n.

Proof. Because the variation of R-Hodge structure EP?(K|x«, W) is of quasi-unipotent
local monodromy and polarizable as mentioned in [3.7.5], we obtain a filtered Ox-module
(*EPY( Ko, W)|x~, F) for every p, q,r by using Schmid’s nilpotent orbit theorem as in BZ.

Because d}'?| x~ is a morphism of variations of R-Hodge structure of weight ¢, we obtain
a polarizable variation of R-Hodge structure 1?9 of weight ¢ on X* by

= (1, (15, )

xot BYVUK W) e — EPY(K, W)
for every p,q. It is clear that I§? is of quasi-unipotent local monodromy along 3. Thus
we obtain a filtered Ox-module (‘I%?, F) as in B again.

By the semisimplicity of the polarizable variations of R-Hodge structure, we have the
direct sum decomposition

BPU(K o, W) = BR(K ., W) & 1P & 710
as variations of R-Hodge structure on X*. Therefore we obtain the direct sum decompo-
sition
(3:2) ("EY (Ko, W)|x+, F) ~ (‘B (Ko, W)|x-, F) & (‘I§", F) & (‘I5™, F)

as filtered O x-modules because the extension of the filtration is unique by [FE1, Corollary
5.2]. Tt is clear that the morphism ‘d}| x is identified with the composite of the projection

EESH(KO, W) X+ D équ @ Elg-i—Lq N EI(pQ-i—Lq

x+)

= Image(d?™ "4

x+)

and the inclusion
é]g&-l,q N EEg—H’q(Ko, W)

under the isomorphism (B2).
We fix a € 7Z satisfying the assumption, and consider the spectral sequence

EP9(Grs Ko, W) = HP'(Gr% Ko)

with the morphism of FE,-terms d?9(Gry Ko, W). By the assumption, there exists an
isomorphism

(3.3) EPYGry Ko, W) ~ Gra(‘EPY(Ko, W)
for every p, ¢, because we have

EPY(Grl Ko, W) ~ HP*9(GrY Gr}, Ko)

~ H"*(Gr% Gr‘f; Ko)

~ Gr“F(EHp’Lq(GrKI; Ko)

~ Gre(*EPY Ko, W)

X*

x+)

x+)

).
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In particular, EVY(Gr% Ko, W) is locally free of finite rank for every p,q. Moreover, the
restriction of the isomorphism (B33) to X* identifies d"!(Gry Ko, W)|x« and Gri di| x-
by the assumption and by for K|x~. Then

d7*(Gry Ko, W) = Grip("d|x-)

under the identification (B=3) by Lemma B®. Therefore there exists an isomorphism
EYY(Gry Ko, W) =~ Gry(“ERY (Ko, W)

and EY?(Gr% Ko, W) is isomorphic to a direct factor of EYY(Gry Ko, W) by the direct
sum decomposition (B2). In particular, EY?(Grf Ko, W) is locally free of finite rank.
Then d5(Grf Ko, W) = 0 because d5?(Gr}. Ko, W)|x = 0 by of Lemma B3.
Inductively, EP9(Grf Ko, W) is locally free of finite rank, and d??(Gry Ko, W) = 0 for
r > 2 by of Lemma B3 again. Thus the spectral sequence (B23) degenerates at
FEs-terms. Moreover,

CGrY H"(Gr% Kp) ~ E; ™" (Grg Ko, W) ~ Gre(“Ey ™" ™ (Ko, W)

x+)

x+)
is locally free of finite rank for every m,n. O

Theorem 3.9. Let (X,X) be as in Bd and K = ((Kg, W), (Ko, W, F),«a) as in B1
satisfying the conditions [3.7.1)H3.7.3). If there exists an isomorphism

(3.4) H(CrY Kp) ~ ‘H" (Gt Ko)

X*
whose restriction to X* is the identity for every m,n, then we have the following:
(3.9.1) There exist isomorphisms
H"(Ko) ~"H"(Ko)|x+,
W H" (Ko) ~ ‘W H" (Ko)| x+,

whose restriction to X* coincide with the identities, for every m,n € Z. In
particular, Gr,‘fl/ H"(Ko) is locally free of finite rank on X for every m,n.

(3.9.2) The spectral sequence associated to (Ko, W) degenerates at Ey-terms on X.

If we further assume that H"(Gr%. Gr) Ko) is locally free of finite rank for every a,m,n
and that Ko satisfies on the whole X, then we have the following:

(3.9.3) The spectral sequence associated to (Ko, F') degenerates at Ey-terms.

(3.9.4) Gr% GrYY H™(Kp) is a locally free Ox-module of finite rank for every a,m,n.

(3.9.5) The spectral sequence associated to (Gry Ko, W) degenerates at Ea-terms for
every a.

Proof. We use the same notation as in the proof of Lemma B=3.
From (B4), we have

(3.5) EPY Ko, W) ~'EPY (Ko, W)

X*

for every p,q. In particular, E{"(Ko, W) is locally free of finite rank. Then, by Lemma
B8, we have di? = *d}"!|x~ under the isomorphism (B3H) because (‘d}"!|x+)|x- = d}*
Therefore

(3.6) EYY Ko, W) ~ ‘EPY Ko, W)|x-

X*-



14 OSAMU FUJINO AND TARO FUJISAWA

by (B32). In particular, EYY(Kp, W) is locally free of finite rank for every p, ¢. Lemma BTG
implies d5? = 0 because dy?|x+ = 0 by of Lemma B33. Inductively, EP9(Ko, W) is
locally free of finite rank and d?? = 0 for r > 2. Thus we obtain [3.9.2)]. We have

GrV H"(Kp) ~ E;™" (Ko, W) ~ 'E; ™" ™ (Ko, W)|x- ~ “(Gr?¥ H"(Kp)

from which we obtain [3.9.1}.
Next, we will prove the latter half of the theorem. By the assumption on the

whole X, the sequence of the canonical morphisms
0— H*"(F™ GrY Ko) = H"(F*Gr)) Kp) — H"(Gr% Gt Ko) — 0
is exact for every a,m,n. Then we have
Gre H"(GrY Kp) ~ H"(Gr% GrY Ko)

for every a, m,n, from which Gr% H "(Grnwl/ Kp) is locally free of finite rank by the assump-
tion. Thus F*H"(Gr)’ Ko) turns out to be a subbundle for every a. Since the extension
of the filtration F' on E}"? (Ko, W)|x~ is unique by [FFET, Corollary 5.2], the isomorphism
(84) induces an isomorphism
(3.7) (H™(Gr)) Ko), F) ~ ("H™"(Gr), Ko)|x-, F)
of filtered Ox-modules. In particular, we have isomorphisms

H™(Gr GrY Kp) ~ Gry H*(Gr!Y Kp) ~ Gr.("H™(Gr)Y Ko)
whose restriction to X* coincides with the natural isomorphism (B). Thus we obtain
by Lemma B8. From (B7), it turns out that (B3) is, in fact, an isomorphism of
filtered Ox-modules
(38) (E{)’q(K(% W)aF) = (zEqu(K(’% W) X*vF)v
under which d?? = *d}"?|x-. Therefore d?? is strictly compatible with F by the direct sum
decomposition (B2). The assumption implies that

dy?: By (Ko, W) — By (Ko, W)

is strictly compatible with the filtration F'. By [3.9.2], we already have dP? = 0 for all
r > 2. Thus the morphism dP is strictly compatible with the filtration F' for every p, g, .
Hence we conclude by the lemma on two filtrations (see e.g. [D3, Proposition
(7.2.8)], [PS, Theorem 3.12, 3)]).

From (B3R) and the direct sum decomposition (B3), the isomorphism (B8) induces an
isomorphism of filtered O x-modules

(B3 (Ko, W), Frec) = ("E3* (Ko, W)|x+, F)

where F.. denotes the inductive filtration (la filtration récurrente in [D2, (1.3.11)]). On
the other hand, F' = F.. on EYY (Ko, W) by the lemma on two filtrations again (see
e.g. [D3, Proposition (7.2.5)], [PS, Theorem 3.12, 1)]. Thus we have

Gry V(Ko , W) ~ Gt} EYY (Ko, W) ~ Gty (“EY (Ko, W)

for every a,p, q. In particular

X*)7

x+)

x+)

Gry EYY (Ko, W)

is locally free of finite rank for every a,p,q. Moreover, the filtration F' on E5 (Ko, W)
coincides with the filtration £ on Grg HPt(Kp) under the isomorphism

EY(Ko, W) ~ Gt H"™(Ko)
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by the lemma on two filtrations (see e.g. [PS, Theorem 3.12, 2)]). Thus we obtain
from

Gre By, ™" ™ (Kp) ~ Gry. Gr)Y H™(Ko)

for every a, m, n. O

4. PROOFS OF THEOREMS [, =3, AND 2

In this section, we will prove Theorems [1, I3, and I4. Our approach to Theorem
T (ii)—(iv) here is different from [FET] (see also [EmfF, Section 13]) because we do not
assume that (X, D) is projective over Y in this section. We use the terminologies in [FFT,
Section 4].

4.1. First, we briefly recall several constructions and results in [FET, Section 4], which
are necessary for the proofs of Theorems [Tl and 4.
Let f: (X, D) — Y be as in Theorems [0 and 4. Let

X=JX; and D=|[]D,
iel AEA
be the irreducible decompositions of X and D, respectively. Fixing orders < on A and I,

we put

DinX;= [ DawpnDun--NDyNXNXyne--NX;

Ap<A1 < <A
10<i1<---<iy

for k,1 > 0 (see [FET, 4.14]). Here we use the convention

Dp=DynX_1= J[ DxnDyn---NDy,
Ap<AL <<

Xi=DnX= [J] XunXyn--nX
10<iy1<---<i]

for k,1 > 0. By setting

(X,D)y:=(DNX),\D,= [[ DinX,
g

we obtain an augmented semisimplicial variety ¢: (X, D), — X. Note that (X, D), is
the disjoint union of all the strata of (X, D) of dimension dim X — n for all n € Z~y. We
set f, :== fen: (X, D), = Y for every n. Then f, is smooth over Y* =Y \ X. Then the

complex €,Rx p), is given by

<E*R(X7D)')n = (gn)*R(XvD)n = @RDn—l—lmxl
>0

with the Cech type morphism § as the differential. Note that this complex is the single
complex associated to the double complex obtained by deleting the first vertical column
of the double complex in [FET, p.626, 4.14], and by replacing Q with R. Then we have
quasi-isomorphisms

iRx\p = (Rx = Rp, > Rp, & --) S e.Rix.p).
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from the double complex in [FET] mentioned above, where ¢ denotes the open immersion
X\ D — X. By setting

0 n<-—-m
(En)*R(X,D)n n Z —-m

Ly (eRx,py,)" = {

a finite increasing filtration L is defined on €,R(x p),. We have the relative de Rham
complex Q(x p),/v for the morphism fe: (X, D), — Y. Then the complex €,8x p), v is
given by

n n—k
(eQx,pyu/v)" = @( 1)Uy, v
k>0

with the differential d+(—1)*d on (&) Qx h ),/y> Where 0 denotes the Cech type morphism

for (X, D), and d denotes the differentlal of the relative de Rham complex € (x p),/v. By
setting

L (esx.0)0/y)" = @ (er)s QnX];) e%

k>—m
Fp(é‘*Q(X’D)./Y)n = @ ( ) Q?XkD V& /Y7
0<k<n—p

a finite increasing filtration L and a finite decreasing filtration F' on €,8x p),/v are
defined. The canonical morphism R(x p), — Ox, p), induces a morphism of complexes
L: E*R(XJ)). — E*Q(X’D)./y.

By setting
K = ((Kg, L), (Ko, L, F),«)

= ((Rf*g*R(X,D).a L) Y+, (Rf*E*Q(X,D)./Ya L, F)v Rfa

(see [FET, 4.1]), we obtain a triple K as in B72 satisfying the following:

(4.1)

v+)

(4.1.1) There exists a quasi-isomorphism R(f

X*\D*)'RX*\D* ~ KR.

(4.1.2) There exists a quasi-isomorphism Grf. Ko ~ Rf.e.Qx p, v [—p]. for every p.
In particular, Rf,Ox(—D) ~ Gr}. Ko.

(4.1.3) For every m € Z,

Grl K = (Gt Kg, (G} Ko, F),Grl )
@ (fs+):Rg=[m], (R(fs)«Qs/v[m], F), R(fs+)sts+[m]),
where S runs through all (dim X + m)-dimensional strata of (X, D), fs = f|s,
= fs'(Y"), fs- = (fs)|s-, and tg- is the composite Rg: < Cg- — Qgejy=.

First, we will prove Theorem 4.

Proof of Theorem [I.4. We use the notations and terminologies in 0. We will prove that
the spectral sequence

EP9(GrY Ko, L) = HP™(GrY% Ko)

associated to the filtered complex (Gr% Ko, L) satisfies the desired properties.
By [4.1.2), we have an isomorphism

HPM(Gr% Ko) ~ RPf,0x(—D)
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as desired.

By [4.1.3), K satisfies [3.7.1]H{3.7.3] because fg: S — Y is smooth over Y* for every

stratum S of (X, D). Moreover, we have

H™(GrY% Grt Ko) ~ EB R"™™(f5).0s
s

where S runs through all (dim X 4 m)-dimensional strata of (X, D). Therefore K satisfies
the assumption of Lemma B8 by the dual of Theorem EZZI3. Thus we obtain the conclusion
by Lemma BS. U

Next, we will prove Theorem I (i).

Proof of Theorem I (i). As already mentioned above, K satisfies the conditions [3.7.1}-
(3:7.3). By applying Lemma B33 together with [3.7.4)}{3.7.6), the triple

(Grl HY(KR), (Grk H*(Ko), F)|y~, Grl H"(«))
is a polarizable variation of R-Hodge structure of weight k+m for every k, m. By [4.1.1],
we have RF(f|xn p+)Rx~ p- ~ H*(Kg), which implies V§. ~ H*(Ko)|y+ as in for
all k. By using these isomorphism, we introduce filtrations L on Rk( flx\p*)1IRx~ p- and
VE., F on VE. and then obtain a polarizable variation of R-Hodge structure

(GrEF RE(f]xo o )R x\ e, (GrEF VE. F) GrEH g)

of weight m on Y* for every k,m, where the natural morphism RF(f
V{g* = Rk(f X*\D*)!RX*\D* & Oy* is denoted by ﬁ
On the other hand, the Griffiths transversality for

(W, F) = (HY(Ko), F)ly~ = (R f.e.Q(x,)u)v: F)ly
can be easily seen by the same way as in the proof of Lemma 4.5 of [FFT1]. Therefore
((Rk<f X*\D*)!RX*\D*a L[k])v (Vili*a L[k]v F)? B)

is a graded polarizable variation of R-mixed Hodge structure on Y* as desired. 0

In order to prove Theorem I (ii)—(iv), we recall results in [SE1] and [St2] in a slightly
generalized form.

Definition 4.2. Let f: X — Y be a surjective morphism of smooth complex varieties
and ¥ a simple normal crossing divisor on Y. We assume that £ = (f*¥),.q is a simple
normal crossing divisor on X. For such f, we set

Qﬁ(/y(log E) = Coker(f*Qy-(log¥) — Q% (log F))

and

P
Py (log B) = \ Q% )y (log E)
for every p. An f~'Oy-differential d: QF, /Y(log E) — Qi’;;;(log E) can be uniquely defined

by the commutative diagram

P (log E) —— Q% (log E)

dl |a

0 (log B) —= Q3 (log ),
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where the horizontal arrows are the canonical surjections induced from the surjection
QL (logE) — Qﬁ(/y(log E). Thus we obtain a complex of f~'Oy-modules Qx,y (log E),
which is called the relative log de Rham complex of f.

Lemma 4.3. Let f: X — Y be a proper surjective morphism from a Kdahler manifold X
to a smooth complex variety Y. Assume that there exists a smooth divisor ¥ on'Y such
that

(4.3.1) f is smooth over Y* =Y \ X,

(4.3.2) E = (f*Y)1eq s a simple normal crossing divisor on X having finitely many
wrreducible components, and

(4.3.3) Q;/Y(log E) is a locally free Ox-module of finite rank.

Then we have
sz*Qx/y(lOg E) ~ l(RZf*Qx/y(lOg E) y*) ~ l(OY* &® (le*CX)’y*)

for all i, where '(-) stands for the lower canonical extension as before. In particu-
lar, R'f.Qxy(logE) is a locally free Oy-module of finite rank for all i. Moreover,
Rif*Qg(/Y(log E) is also a locally free Oy -module of finite rank, and the stupid filtration

(filtration béte in [D2, (1.4.7)]) F on Qx/y(log E) induces the natural exact sequence

for all i, p.

Proof. We may assume Y = AF with the coordinates ti,...,#, and ¥ = {t; = 0}. For
any x € I/, we can take local coordinates x1,...,x, centered at x on X with

f*tl — xilll ... m;ll

for some ay,...,a; € Zso by [4.3.2). We set f; = f*t; for i = 2,... k. On the other hand,

we have the canonical exact sequence
(4.3) 00— f*Qy(logX), ® C(z) = Qx(log E), @ C(x) = Qx,y(log E), ® C(z) — 0

where C(z) denotes the residue field at x, because 2} sy (log E) is alocally free O x-module
of rank dim X — dimY by [4.3:3]. Under the isomorphisms

l

d i
O (log E) ~ @OX o (@ Oxdz;)
i=l41

the morphism f*Q (log¥), ® C(z) — Q4 (log E), ® C(z) is represented by the matrix

a ... al‘() ... 0
0O ... 0
) - 8mj
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where ¢ and j run through 2,... k and [ + 1,...,n respectively. The exactness of (E=23)
implies that the matrix () is of rank k, and then we may assume

rank <8fl (0)) =k—1
Ox; 2<i<k I+1<j<I+k—1
by changing the order of z;,1,...,z,. Replacing x;,1,...,2;x_1 by fo,..., fr, we obtain
a new local coordinates (z1,...,x,) at x, under which the morphism f is given in the
form
(45) tl = {L‘(lll tet l‘?l,tg = Tj+1y- - - ,tk = Lj+k—1

around x. We set fi: Xy — A = A x {s} by the Cartesian square
Xs—X

Al

A——Y

for any s = (to,...,tx) € A*1. Then X, is smooth, f, is smooth over A* = A\ {0}
and Supp f;1(0) is a simple normal crossing divisor on X by the local description (£3).
Hence R'(f).Qx,/a(log(E N X)) and R*(f;).Q% 5 (log(E N X)) are locally free of finite
rank for every i,p by [Stl, (2.18) Theorem| and by [St2, (2.11) Theorem|. Therefore

R f.Qx/y(log E) and R'f, Q% /Y(log E) are locally free Oy-modules of finite rank for all

i,p by the base change theorem. Once we know that R’ f,Qx/y (log E) is locally free, it is
the lower canonical extension of its restriction to Y* =Y \ ¥ by [Sf1l, (2.20) Proposition].
Next, we consider the spectral sequence

(46) Ef’q(Rf*Qx/y(log E), F) = Eerq(Rf*QX/y(lOg E)) = Rerqf*Qx/y(lOg E)
and denote the morphism of E,.-terms by
@9: EPUREQxgy (log B), F) — EPY " (Rf.Qxy (log E), F)

for a while. Then d??|y+« = 0 for all p,q and r > 1 because the restriction of this spectral
sequence to Y* degenerates at Ej-terms. Since

EP(RfSx)y(log E), F) = R Q% (log E)

is a locally free Oy-module of finite rank for all p, ¢, we have d}" = 0 for all p, ¢ by Lemma
B®. This implies that

ESNRfQxy(log E), F) ~ EPY(Rf.Qx/y(log E), F')

is locally free for all p, ¢ and that d5? = 0 for all p,¢ by Lemma BB again. Inductively,
we obtain d?? = 0 for all p,q and r > 1. Thus the spectral sequence (E8) degenerates at
E;-terms, or equivalently, (E72) is exact. O

Remark 4.4. In [Sf2], f, is assumed to be a projective morphism. However, we can
check that the proof of (2.11) Theorem in [St2] is also valid to a proper morphism from
a Kéhler manifold by using results in [PS, 1.2.5 Almost Kéhler V-manifolds]. See also
Theorem [9 below.

Corollary 4.5. In the situation of Lemma [.3, we have the canonical isomorphisms
R f.FPQx )y (log E) ~ FPR' f.Qx/y (log E),
Rif*Qﬁ(/Y(log E) ~ Gih R' f.Qx/y(log E)
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for alli,p. In particular, FPR' f.Qx/y(log E) is a subbundle of R'f.Qx/y(log E).

Lemma 4.6. Let f: X — Y be a proper surjective morphism between smooth complex
varieties. Assume that there exists a smooth divisor ¥ such that
e [ is smooth over Y* =Y \ X, and
o /= (f*Y)eq is a simple normal crossing divisor on X having finitely many irre-
ducible components.
Then there exists a closed analytic subset 3o C X with dimY, < dimY — 2, such that
QY )y (log E) is locally free on [~1(Y \ Xo).

Proof. We may assume that X is irreducible. Let £ = Zfil E; be the irreducible decom-
position of £. For a nonempty subset I C {1,...,N}, we set E; = [,.; E;, which is
a smooth closed subvariety of X. If f(E;) # X, we set ¥; = f(E}), which is a closed
analytic subset of 3. If f(E}) = X, then there exists a closed analytic subset ¥; C 3 such
that f|g,: B — ¥ is smooth over ¥\ ;. We are going to check that the closed analytic

subset
So= J %
0#£1c{1,...,.N}

satisfies the desired property. We have Yy # 3, by definition. Therefore dim ¥, <
dimY — 2 because ¥ is irreducible. Then, it suffices to prove that Q7 /Y(log E) is locally
free on f~1(Y'\Xg). A point x € ENf~1(Y'\Xg) defines a nonempty subset I C {1,..., N}
by I ={i |z € E;}. Then z € E; and f(E;) = ¥. Take local coordinates zy,...,z,
and tq,...,t; centered at x and f(x) on X and Y respectively, satisfying the following
conditions:

e X ={t; =0} onY, and

o f*t; =aft -} for some ay,...,a; € Zsy.
We set f; = f*t; for i = 2,... k. Then F; = {z; = --- = x; = 0} and the morphism
(fle,) Q5 — Qf, is represented by the matrix

Afi
( f (O,...,O,xl+1,...

z; ’xn))
J 2<i<k,l+1<j<n

via the isomorphisms (f|g,)*QL ~ @5:2 Op, f*dt; and Qp ~ @, Op,dx;. Since
r € f~1(X\ ), the morphism f|z, is smooth at x. Then

rank <8fZ (O)) =k—1,
Ox; 2<i<k,l+1<j<n

which implies that the matrix (£=4) in the proof of Lemma B3 is of rank k. Therefore the
canonical morphism f*Q3 (logY), @ C(x) — QX (log ), ® C(z) is injective, by which we
conclude that % sy (log E) is locally free around z. O

4.7. We return to the situation in B-1. For the moment, we assume that there exist another
semisimplicial variety Z, and a morphism of semisimplicial varieties o: Z, — (X, D),
satisfying the conditions

e /, is smooth and Kahler,

e 0,: Z, — (X,D), is a projective surjective morphism,

o for g, == fno, = fenon: Z, — Y, the divisor E, := (¢} ¥)eq is a simple normal
crossing divisor on Z, having finitely many irreducible components, and
On: Zn — (X, D), is isomorphic over Y*
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for every n € Z>o. We obtain an augmentation n: Z, — X by setting 7 = €o. The relative
log de Rham complex of Z,, over Y is denoted by Q, /v (log E,,). Then {Qz, ;v (log E,,) }nez.,
forms a complex on the semisimplicial variety Z,.

For an augmentation of a semisimplicial variety, we can define the direct image functor
as in [FET, 4.1, 4.2] (for the detail, see e.g. [D3, 5.1, 5.2], [PS, 5.1.2]). The complex
Re,Q(x.py, is isomorphic to €,y p), defined in the proof of Theorem M (i) in the
derived category because ¢,: (X, D),, — X is a finite morphism for all n. On the other
hand, we obtain a complex Rn,Qz, v (log E,) on X. Here, we briefly recall the definitions
of this complex, of the finite increasing filtration L, and of the finite decreasing filtration F'
on it. First, the complex Rn.(z, /v (log E,) is given as the total single complex associated
to the double complex

A (R(np>*QZp/Y(10g Ep)>q (R<77p+1)*QZp+1/Y(log Ep+1>)q -

(~1)rd (~1r+id

i (R(np)*QZp/YOOg Ep))QH s (R(anrl)*QZpﬂ/Y(lOg Ep+1))q+1 —

that is,
(Rn.Qz,v (log Ea)" = ED(R(1,). 0z, v (log E,))" 7,

p
where R(1,).8z,/y (log E,) is regarded as a genuine complexr on X by using the Godement
resolutions (cf. [FET, 4.1]). The filtrations L and F are defined by

Lin(Bn.Qz, v (log )" = €D (R(n,).Qz,/v(log E,))" ",

p>—m

F'(Rn.fz, /v (log E.)) @FT (1p)+827, /v (log Ejp))"~

for all m,n,r. Therefore we have
(4.7) (Gry, B0z, v (log Eu), F) o (R(1-). 7., /v (log B—p)[m], F)

in the derived category. From the morphism o: Z, — (X, D)., we obtain a morphism of
bifiltered complexes

(4.8) (eQx.pyeyys L F) = (Bnfz, ;v (log E,), L, F),
which induces a morphism
GrTLn Grl, £8x,0)0 )y = (E-m)«Ox,0)_.n

(4.9) L 1,0
— R(N-):O0z_,, ~ Gr,, Grp Rn.Qgz, )y (log E,)

for all m. Because o, induces the isomorphism Ox p), = R(0,).0y, for all n, we have
the isomorphisms

(5—m)*O(X,D),m =~ R(g—m)*O(X,D),m ~ R(g—m)*R(O——m)*OZ,m ~ R(n—m)*OZ,m
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for all m. Therefore the morphism (E9) is an isomorphism for all m in the derived
category, which implies

(4.10) (Grh expy. /v, L) = (Grh R Qz, v (log Es), L)
in the filtered derived category.
Now, we complete the proof of Theorem I

Proof of Theorem I (ii)—(iv). First, we prove (ii). The uniqueness of the filtration F' on
'VE, follows from [FET, Corollary 5.2]. Therefore we may work locally on Y. Then after
shrinking Y to a relatively compact open subset, we can take Z, and o,: Z, — (X, D),
in 72 by the theorem of resolution of singularities (see [BM, Section 13]). By Lemma A8,
there exists a closed analytic subset ¥y C ¥ with dim 3y < dimY — 2 such that ¥\ X is
a smooth divisor in Y \ ¥, and that len/y(log E,,) is locally free over g 1(Y \ ¥¢) for all
n € Zso. By setting Y, := Y \ Xy, we trivially have Y* C Yy C Y.
Now we set
K(lOg)o = Rf*Rn*QZ./Y(IOg Eo)

equipped with the induced filtrations L and F. Because ¢ is isomorphic over Y*, the
morphism (AR) induces an isomorphism
(4.11) (Ko, L, F)

~

vy« = (K(log)o, L, F)

Y+,

and then a morphism of complexes 5: Kg — K (log)pl|y~ is defined by

B: Kg % Koly- = K(log)o

Y*,
where Ky and « are given in (E). A triple
K(log) = ((Kg, L), (K(log)o, L, F'), B)

satisfies the conditions [3.7.1JH{3.7.3] because K|y: ~ K(log)
triple on Yj

v+ as above. Then the

K(log)‘yo = ((KRvL)v (K<10g>07L7F)|Y076>

satisfies all the assumptions in Theorem B by (E=7) and Lemma B=3. Applying Theorem
B to K(log)|y,, we conclude

H" (K (log)o)ly, = ("H" (K (log)o)|y+)

L, H"(K(log)o)ly, =~ (‘L H™(K (log)o)

from (EIT), and that Gr% Gr: H"(K(log)o)ly, is locally free of finite rank for every
a,m,n. By the isomorphism V{. ~ H*(Kp)|y~ as in the proof of Theorem T (i) above,
we obtain a filtration F' on (“VE.)|y, satisfying the two conditions in Theorem [T (ii) on
Y. Then Lemma 1.11.2 in [Ka] together with Schmid’s nilpotent orbit theorem (see [Sd,

(4.12)]) for each Grk VE. implies the conclusion of Theorem I (ii) on the whole Y.
Next, we will prove (iii). By of Theorem B for K (log)|y,, we have

H*(Gr% K(log)o)|y, ~ Grf H*(K (log)o)|y, ~ Gre(“Vi.)
for every a, k. On the other hand,
Gr K(log)o = Gr% Rf.Rn.z, /v (log E,)
~ GI‘(I); Rf*E*Q(XVD)./y = GI‘% K@ ~ Rf*Ox(—D)

vo ~ ("H™(Ko)

v+)
vo = (‘L H" (Ko)

Yo

y+) v+)|vo

Yo
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by (E10) and [4.1.2). Thus we obtain an isomorphism
R f.Ox(=D)ly, = H*™(Grf K (log)o) |y, = Gri-("V§=")ly,

for every i. Because R f,Ox(—D) is locally free of finite rank by Theorem I4, and
because ¥y = Y \ Yp has the codimension at least two, the isomorphism above extends
uniquely to the whole Y.

By Grothendieck duality (see [RRV]), we obtain (iv) from (iii). O

Remark 4.8. As already mentioned in Remark 2, the local system Rk(f x\D* IR x+\ p
underlies an admissible graded polarizable variation of R-mixed Hodge structure on Y*. In
order to check the admissibility, we may assume that (Y, X) = (A, {0}) from the beginning.
We may further assume that all the monodromy automorphisms of R*(fs).Rg|a+ around
the origin are unipotent for all strata S and for all i € Z by [Ka, Lemma 1.9.1]. Then
the extension of the Hodge filtration has been already given by Theorem [T (ii). On the
other hand, the existence of the relative monodromy weight filtration can be proved by
the same way as the proof of Lemma 4.10 of [FFT]. Here we remark that the coincidence
of the monodromy weight filtration and the weight filtration on the limit mixed Hodge
structure in [St1, (5.9) Theorem] holds true for a proper surjective morphism f: X — A
from a Kéahler manifold X to the unit disc A such that f is smooth over A*, that the local
system R!f,R|a+ is of unipotent monodromy for every 4, and that f=1(0).,q is a simple
normal crossing divisor (cf. [Sall, 4.2.5 Remarque], [GN, (5.2) Théoreme]).

The following theorem is an easy consequence of the proof of Theorem 4. We will use
it in the proof of Theorem 3.

Theorem 4.9. In Theorem I, for every i, there exists a finite filtration of locally free
sheaves

0=E& Cé C---C& =R fuwxy(D)
such that
i lE)
is isomorphic to a direct summand of
@ Raf*wSB/Y7
finite

where « is a nonnegative integer and Sg is a stratum of (X, D), for every j.
Moreover, if m:'Y — Z is a projective bimeromorphic morphism of complex varieties,
then

R, R fuwx(D) =0
holds for every p > 0. In particular, we have
TR fawx (D) ~ R(7m o f).wx (D).
Proof. By Theorem [, there exists a finite filtration of locally free sheaves
0=F"'CcF'c--cFH'=R"fOx(-D)
such that
Fii )7
is isomorphic to a direct summand of

@ er*0557

finite
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where S is a stratum of (X, D) and r is a nonnegative integer, for every j. We put

&} = Homo, (F " | FZ:, Oy)
for every j. Then, by Grothendieck duality (see [RRV]]), we obtain a desired filtration
of Rif*wX/Y(D). By Theorem P10, we have RPm, R f,ws, = 0 for every p > 0. This
implies that RPm, (SJZ ® wy) = 0 holds for every p > 0 and every j. Thus we obtain
RPr, R fiwx (D) = 0 for every p > 0. Hence we have m, R’ fuwx (D) ~ R' (7 o f).wx (D).
We finish the proof. O

We close this section with the proof of Theorem IZ3.

Proof of Theorem 3. This theorem is obvious by Theorem [ (iv) and the Fujita—
Zucker-Kawamata semipositivity theorem. For the details of the Fujita—Zucker-Kawamata
semipositivity theorem, see, for example, [FET, Section 5], [EES, Corollary 2|, [FE2], and
SO on.

O
We note that Theorems [T and =3 have already played a crucial role when f: (X, D) —
Y is algebraic. We recommend that the interested reader looks at [Fnd], [En5], [Fnl],
[En7], [FET), [EH], and so on.

5. PROOF OF THEOREM [AH

In this section, we will prove Theorem 3 by using Theorem E-9. In Section B, we will
see that Theorem 4 follows from Theorem IA.

Proof of Theorem . In Step [ and Step B, we will prove (i) and (ii), respectively.

Step 1. In this step, we will prove (i).

We take an arbitrary point P € Y. It is sufficient to prove (i) around P. By Lemma
PR, we may assume that (X, D) is an analytic globally embedded simple normal crossing
pair and that there exists the following commutative diagram:

X——M

1| Jon

YCL—Y) Am,

where M is the ambient space of (X, D), such that g is projective and 1y (P) =0 € A™.
By taking a suitable resolution of singularities of Y (see [BM, Sections 12 and 13]), there
exist a projective bimeromorphic morphism ¢: Y’ — Y from a smooth complex variety
Y’ and a simple normal crossing divisor >’ on Y’ such that every stratum of (X, D) is
smooth over Y \ ¢(3'). Then, by taking a suitable resolution of singularities of M (see
[BM, Sections 12 and 13]) and applying Lemma P77, we may assume that

-1
rox Ly iy
is a projective morphism. Hence we have the following commutative diagram:

X=—=X

A

Y —Y
P
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such that every stratum of (X, D) is smooth over Y\ ¥’. By Theorem B, R flwx/y(D)
is locally free and has a finite filtration as in Theorem EZ9. Since 1 is projective bimero-
morphic and RYf,wx (D) ~ ¥.RIflwx(D) by Theorem B9, R?f.wx(D) is torsion-free.
This is what we wanted.

Step 2. In this step, we will prove (ii).

We take an arbitrary point P € Z. It is sufficient to prove (ii) around P. As in Step [,
after shrinking Z suitably, by Lemma 228, a suitable resolution of singularities (see [BM,
Sections 12 and 13]), and Lemma P70, we may assume that there exists the following
commutative diagram:

X=—=X"—"">M

1

Y/TY qm

such that tz(P) =0 € A™. By Theorem B9, we have
R (A® R fuwx (D)) = RPm (A® R flwx (D)) ~ R (w0 ), (V" A® R flwx (D)) .

By Theorem B9 again, R?f/wx/y+(D) has a finite filtration as in Theorem BEY. Thus we
can reduce the problem to the case where X is smooth and D = 0. Since ¢* A is (mo1))-nef
and (mo1)-big over Z, we get the desired vanishing theorem by Theorem EZ10. We finish
the proof of (ii).

We finish the proof of Theorem 3. [l

Remark 5.1. By the above proof, we see that Theorem I3 (ii) holds under a weaker
assumption that A is m-nef and 7-big over Z (see Theorem 2710).

6. PROOF OF THEOREM 1

In this section, we will prove Theorem [ by using Theorem [H. As we mentioned
before, Theorem [ (iii) is an easy consequence of Theorem I (i) and (ii).

Proof of Theorem [I.7. In Step M, we will prove Theorem [ (i). Then, in Steps & and B,
we will prove Theorem 7 (ii) and (iii), respectively.

Step 1. In this step, we will prove Theorem 7 (i).

By replacing Y with f(X), we may assume that f(X) =Y. Let P € Y be an arbitrary
point. It is sufficient to prove the statement after shrinking Y around P suitably. By
Lemma P78, we may assume that (X, D) is an analytic globally embedded simple normal
crossing pair and that there exists the following commutative diagram:

X——M

YCT Am,

where M is the ambient space of (X, D), such that g is projective and 1y (P) =0 € A™.
By using Lemma 279 finitely many times, we can decompose X = X'+ X" as follows: X’
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is the union of all strata of (X, D) that are not mapped onto irreducible components of
Y = f(X) and X" = X — X’. We put
KX/ + DX’ = (KX + D)|X’
and
Kx// —|— Dx// = (KX —|— D)‘X// — X,’X”'

We note that (X", Dx~) is an analytic globally embedded simple normal crossing pair
such that Dy» is reduced and that every stratum of (X", Dxn~) is mapped onto some
irreducible component of Y. We consider the following short exact sequence:

0— OX//(K)(H + DX//) — Ox(KX + D) — OX/<le + DX/) — 0.

By Theorem [F (i), every associated subvariety of R?f,Oxn(Kx»+ Dxr) is an irreducible
component of Y for every ¢q. Note that every associated subvariety of R?f.Ox/ (Kx +Dx)
is contained in f(X’) for every ¢q. Thus, the connecting homomorphisms

0: qu*OX/(KX/ + DX/> — RQ+1f*OX//(KX// + DXN)
are zero for all ¢. Hence we obtain the following short exact sequence
(61) 0— qu*OX//<KXn + DX//) — qu*OX<KX + D) — qu*OX/(KX/ + DX/) — 0

for every ¢. By induction on dim f(X), every associated subvariety of R?f,Ox/(Kx/+Dx)
is the f-image of some stratum of (X', Dx/) for every gq. Therefore, every associated
subvariety of RYf,Ox(Kx + D) is the f-image of some stratum of (X, D) for every ¢ by
(6T).

Step 2. In this step, we will prove Theorem 7 (ii).

We may assume that f(X) =Y and 7o f(X) = Z. Let P € Z be an arbitrary point. It
is sufficient to prove the desired vanishing theorem after shrinking Z around P suitably.
As in Step IO, by Lemma 8, we have the following commutative diagram:

X——M

WOfJ/ \LQM

ZCL—Z> Am?

where M is the ambient space of (X, D), such that gy is projective and 1z (P) =0 € A™.
By the same argument as in Step [, we obtain

0— qu*OX//(KXN —+ DX//) — qu*OX<KX + D) — qu*OX/(KX/ + DX/) —0

for every ¢. By applying Theorem I3 (ii) to every connected component of X", we see
that

RPm, (A® R f.Oxn(Kxn + Dxn)) =0
holds for every p > 0. By induction on dim f(X), we obtain
RPm, (A® R f,Ox/(Kx + Dx/)) =0
for every p > 0. This implies
R (A® R f.Ox(Kx + D)) =0

for every p > 0. This is what we wanted.
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Step 3. In this step, we will prove Theorem 7 (iii).

Since we have already proved the strict support condition (see (i)) and the vanishing
theorem (see (ii)) in Steps 0 and B, respectively, the proof of [Fn9, Theorem 3.1 (iii)]
works. Hence we obtain the desired injectivity in (iii).

We finish the proof of Theorem 2. O

Remark 6.1. Theorem 4 (ii) holds under a weaker assumption that 4 is nef and log
big over Z with respect to f: (X, D) — Y. We can easily check it by the above proof
of Theorem 7 (ii) and Remark B. We do not discuss the details here because we have
already known a more general statement, that is, the vanishing theorem of Reid-Fukuda
type (see Theorem [9).

7. SUPPLEMENT TO [St7]

In this section, we give a remark on the construction of the cohomological QQ-mixed
Hodge complex ((Ag, W), (Ac, W, F)) in [St2, p.536]. More precisely, we will present a
new construction of (Ag, W) here. In the context of log geometry, such a construction is
originated in [St3] and used in other articles (e.g. [EN], [Es?] and so on). For the case
of a semistable reduction, a new construction of (Ag, W), which is similar to [St3], is
given in [PS, 11.2.6 The Rational Structure]. (For the case of a semistable morphism over
the polydisc, see e.g. [FsT].) Here we will see that the construction in [Fs2] works in the
situation of [Sf2].

7.1. Let f: X — A be a proper surjective morphism from a smooth complex variety X
to the unit disc A satisfying the conditions

e f is smooth over A* = A\ {0}, and

e Supp f1(0) is a simple normal crossing divisor on X
as in [St2, (2.1) Notations]. Note that f~'(0) is not assumed to be reduced. We fix
N € Z-y, which is a multiple of all the multiplicities of the irreducible components of
Supp f~1(0), and consider the morphism o: A — A given by o(t) = t. We define X,
and }vby the commutative diagram

where v is the normalization. We set £ = Supp ]7_1(0), which is an effective Cartier
divisor on X. The irreducible decomposition of £ is written in £ = Ui:l E;. The closed
immersion F; — X is denoted by a;.

7.2. We recall the local description of X and f given in the proof of [S£2, (2.2) Lemma).
For any point of )Z, there exist an open neighborhood U in )?, di,...,d € Z~y with
ged(dy,...,dg) =1, and e € Z-o N (ﬂle d;Z) with N € eZ such that U and ﬂﬁ are de-
scribed by using dy, . . ., dg, e as follows. By setting ¢; := e/d; € Z~q and G := @le ALY
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the kernel of the morphism

k k
G=EPzZ/cZ> (br,....bx) =Y dibi € ZfelL
i=1 i=1
is denoted by H. The finite abelian group G acts on the polydisc A™ by

(b b) s = exp(2my/—1b;/c;)y;  for 1 <i <k

where (y1,...,¥,) is the coordinate of A™. Then U ~ A"/H and f*t = yi - Yp, where

t is the coordinate of A. Note that y; - - -y, is H-invariant. Moreover, U = 7(U) is
an open subset of X, and we also have U ~ A"/G and f*t = (y,---y.)Y. Here
we note that (y;---yx)" is G-invariant because N € eZ. The G-invariant functions
Uit YR Ykt - - - Yn Glve us a coordinate on U.

From the local description above, X is trivially a V-manifold. We can easily see that
Ej is a reduced Cartier divisor on X \ {J;; ;. Moreover, E; is locally irreducible at any

point because 7(E;) is an irreducible component of Supp f~!(0) and because Supp f~(0)
is a simple normal crossing divisor on X.

7.3. In the situation [T, the log structure on X associated to the effective divisor F is
denoted by M, that is,
M= (9}? N 7.0

*
X\E

in 7,0 B where 7 denotes the open immersion X \E — X. The abelian sheaf associated
to the monoid sheaf M is denoted by M®P. By using the fact that FE; is locally irreducible,
a morphism of monoid sheaves M — (a;).Ng, can be defined by

(7.1) M =05 ﬂj*O}\E S a > ordg,(a) € (a;)«Ng,

for any 7, where ordp, denotes the vanishing order of a holomorphic function on X along
the divisor E;. The direct sum of the morphisms (1) for all 7 induces a morphism

!
(72) Mgp — @(az)*ZEza
i=1
which fits in an exact sequence
!
(7.3) 0= 0% = M — P(a).Zp,
i=1

by definition.
The following is a key lemma for the construction of (Ag, W).
Lemma 7.4. We obtain the exact sequence
!
0= 0% @2 Q = M® @, Q = P(a:).Qp, — 0

=1

by tensoring Q to (3).
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Proof. We may work in the local situation described in [C2. Since y;* is H-invariant,
it gives us a holomorphic function on U for ¢ = 1,..., k. We may assume that E; =
Supp{y“ = 0} for 1 < i < kand E;NU = () for Kk +1 < ¢ < [ by changing the
indices. Because Ej is the zero set of f*t = y;---yp on U \ U;;(E; N U), the image of
Yt € M C M# by the morphism (2) is (0,...,0,¢,0...,0) € @;:1(%)*2@., where ¢;
is on the i-th entry. Thus we obtain the conclusion. 0
7.5. We briefly recall the constructions of the Koszul complexes and related objects. For
the detail, see [Es?, Sections 1 and 2] and [PS, §4.4 and §11.2.6] (cf. [l], [SE3] and so on).

A morphism of abelian sheaves e: O — M?P is defined as the composite of the
exponential map

Oz >arr g™Vl ¢ 0%

and the inclusion (9} — M®#_ Then the morphism e ® id: O ~ O ® Q = M ® Q
is obtained. Note that 1 € I'(X,0O%) is contained in the kernel of e ® id. We set
MG = M® @ Q for short. For p € Z, a Q-sheaf Kos(M)? on X is defined by

p
Kos(M)? := lim Symg; *(Og) ®g \ ME,

where Symgp (O%) denotes the symmetric tensor product of degree n — p of Oz over Q,

and where the inductive limit is taken over the inductive system defined by the morphisms

p p
(74)  Symg "(Og) ®q /\M%p Sa®br (1-a)®b e Symy™7(05) ®q /\M%p

for all n > p. A morphism of Q-sheaves
p+1

p
Symg P(Og) ®g \ M — Symy " (O5) @g \ ME
is defined by

k
(7.5) Al apE @b Y maltcal T apt ® (e ®id)(a) Ab
j=1
where ny, ..., n; are positive integers with ny + - - - +ny = n — p. These morphisms form

a morphism of inductive systems defined by (IZ4) for p and p + 1 because 1 € I'(X, O%)
is contained in the kernel of e ® id. Then a morphism of (Q-sheaves

d: Kos(M)? — Kos(M)P*

is induced. We can easily see the equality d?> = 0. Thus we obtain a complex of Q-sheaves
Kos(M) on X. Replacing M®P by O%, we obtain a complex of Q-sheaves Kos((’)}).
We set

p p—m m
W (Symg *(O5) ®g A\ ME) = Symy 7 (Ox) ®a \ (0% ©Q) @g A MF,

which is a Q-subsheaf of Symy ™ (Oz) ®g A" M§ for every m € Z. Since the morphism
(732) trivially preserves W, on the both sides, a subsheaf W,, Kos(M)? of Kos(M)P is
obtained by

p
Wi Kos(M)? = lim W, (Symg *(O%) ®g \ ME)
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for every m. It can be easily checked that they define a finite increasing filtration W on
the complex Kos(M).

~_The singular locus of X is denoted by Sing()? ) and the smooth locus Xom is defined by
Xem = X \ Sing(X). Note that the restriction F N X, of E to X, is a simple normal
crossing divisor on Xg,,. Then we have a morphism of monoid sheaves

dlog: M|z — Q% (logEN Xom)
defined by dlog(a) := a~'da for a € M|g_ C Og . Thus we obtain a morphism
0Ol
M — Q5 (log E)

denoted by the same letter dlog as above. This morphism induces a morphism of Q-
sheaves

p
/\ Mg — Q% (log E)

denoted by A”dlog for every p. A morphism of Q-sheaves

p
Symg, *(Ox) ®q /\ Mg — Q- (log E),
defined by

"Rb (2rv—1)"Palt - /\ dlog(b)

for positive integers nq, . .., n; with ny+- - -+n; = n—p, is compatible with the morphisms
(4) and (I3). Therefore we have a morphism of complexes of Q-sheaves

Kos(M) — (NZ;((log E),

which is denoted by ¢ as in [Fs2, (2.4)]. It can be easily seen that the morphism
preserves the filtration W on the both sides.
The global section f*t € T'(X, M) defines a morphism of complexes

(f*t)/\: Kos(M) — Kos(M)[1],

which sends W,,, Kos(M)" to W, 11 Kos(M)"*! as in [Fs?, (1.11) and (1.12)]. It can be
easily checked that the diagram

(7.6) Kos(M) v Q)?(log L)
(F o)A l“
Kos(M)[1] oy ﬁ)} (log E)[1]

is commutative, where 6 = f*(dt/t) € Q% (log E).
For Kos(M) and v above, we have the following lemmas.
Lemma 7.6. In the situation above, we set

im

Em) — H E, N---NE;

1<iy <<t <
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for m € Zwy. Moreover, we set E©) = X. The natural morphism E™) — X is denoted
by a,, for m € Z>y. Then there exists a quasi-isomorphism

(am)«Qpim [—m] — Gr¥ Kos(M)
for allm € Z.

Proof. We have an isomorphism

/\(Mgp ® Q/0% ® Q) ® Kos(O%)[—m] ~ Gr}, Kos(M)
by [Es2, Proposition 1.10], and a quasi-isomorphism Qg — Kos(O}() by [Es2, Corollary
1.15]. Therefore we obtain the conclusion by Lemma 4. U

Lemma 7.7. In the situation above, we have the commutative diagram

(7.7) () e Qpom [ =] — D) o [

| |

Gr! Kos(M) Gr)/ Q;((log E)

Gry,‘l/ ¥

where v 1s the natural morphism induced from the inclusion Q — Ogwm), the left vertical
arrow s the quasi-isomorphism in Lemma [7.4, and the right vertical arrow is the inverse
of the residue isomorphism in [St2, (1.18) Definition and (1.19) Lemma] (see also [DT,
3.5]). In particular, the morphism

Kos(M) ® C — (NZ;((log E)
mduced by v is a filtered quasi-isomorphism with respect to W on the both sides.

Proof. The commutativity of the diagram ([”7) can be checked by the direct computation
from the definition of ¢ (cf. [Fs2, (2.4)]). Then the latter conclusion follows from [St2,
(1.9) Corollary]. O

Once we obtain these two lemmas, it is more or less clear that the construction, parallel
to Ac in [SE1, (4.14) and (4.17)] and [S£2, (2.8)], works for Ag.

Definition 7.8. In the situation 1, a bifiltered complex of C-sheaves (Ac, W, F) on X
is defined by

Ap = P O (log E) /W0 (log E),

q>0
WinAZ = €D Winy201Q% " (log E) /W, (log E),
q=0
FPAL = @ QL' (log E)/W, Q% (log E)
0<g<n—p

with the differential —d — OA, where d denotes the differential of the complex (2 z(log E)
as in [SE1, (4.17)]. Similarly, a filtered complex of Q-sheaves (Ag, W) on X is defined by
Af = @ Kos(M)" /W, Kos(M)™H!

q20

Win A = @D Winsaq1 Kos(M)™ ! /W, Kos(M)" !

q=>0
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with the differential —d — (f*t)A, where d denotes the differential of the complex Kos(M).
The direct sum of the morphisms of Q-sheaves

(2my/=1)"" g Kos(M)" /W, Kos(M)" ! — Q% (log E) /W, (log E)
gives us a morphism of Q-sheaves

& = P Kos(M)" /W, Kos(M)" — @5 Q% (log E) /W, QL (log E) = AL

q=0 q=>0

which is compatible with the differentials by the commutativity of the diagram (IZ3).
Thus we obtain a morphism of filtered complexes of Q-sheaves a: (Ag, W) — (Ac, W).
Note that the supports of A¢ and A are contained in E for every n. Therefore they are
the (bi)filtered complexes on E.

Theorem 7.9 (cf. [St2, (2.8)]). Let f: X — A be as in [71. If we assume that X is
Kibhler, then ((Ag, W), (Ac, W, F),a) is a cohomological Q-mized Hodge complex on E.

Proof. By Lemmas [[8 and 72, (Gr)Y Ag, (Gr)V Ac, F),Gr!Y a) is identified with the direct
sum of the direct images of

(Q(=m — q)[=m — 24, (Qpomsacen[-m — 2q], F[-m — q])

by the finite morphism a,, 9,41 for all ¢ > max(0, —m). Since X is an almost Kéhler V-
manifold as in [PS, 1.2.5] by the assumption for X being Kéhler, we obtain the conclusion
by Theorem 2.43 of [PS]. O
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