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sec4
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The main purpose of this section is to prove Ambro’s theorems (cf.
ambro
[?,

Theorems 3.1 and 3.2]) for embedded simple normal crossing pairs. The next
lemma (cf.

fujino-high
[?, Proposition 1.11]) is missing in the proof of

ambro
[?, Theorem 3.1].

It justifies the first three lines in the proof of
ambro
[?, Theorem 3.1].

re-vani-lem Lemma 0.1 (Relative vanishing lemma). Let f : Y → X be a proper mor-
phism from a simple normal crossing pair (Y, T + D) such that T + D is a
boundary R-divisor, T is reduced, and xDy = 0. We assume that f is an
isomorphism at the generic point of any stratum of the pair (Y, T +D). Let L
be a Cartier divisor on Y such that L ∼R KY +T +D. Then Rqf∗OY (L) = 0
for q > 0.

Proof. By Lemma
7
??, we can assume that D is a Q-divisor and L ∼Q KY +

T + D. We divide the proof into two steps.

1ne Step 1. We assume that Y is irreducible. In this case, L − (KY + T + D)
is nef and log big over X with respect to the pair (Y, T + D) (see Definition
2-46
??). Therefore, Rqf∗OY (L) = 0 for every q > 0 by the vanishing theorem
(see, for example, Lemma

vani-rf-le
??).

Step 2. Let Y1 be an irreducible component of Y and Y2 the union of the
other irreducible components of Y . Then we have a short exact sequence
0 → i∗OY1(−Y2|Y1) → OY → OY2 → 0, where i : Y1 → Y is the natural
closed immersion (cf.

ambro
[?, Remark 2.6]). We put L′ = L|Y1 − Y2|Y1 . Then we

have a short exact sequence 0 → i∗OY1(L
′) → OY (L) → OY2(L|Y2) → 0 and

L′ ∼Q KY1 + T |Y1 + D|Y1 . On the other hand, we can check that L|Y2 ∼Q
KY2 + Y1|Y2 + T |Y2 + D|Y2 . We have already known that Rqf∗OY1(L

′) = 0 for
every q > 0 by Step

1ne
1. By the induction on the number of the irreducible

components of Y , we have Rqf∗OY2(L|Y2) = 0 for every q > 0. Therefore,
Rqf∗OY (L) = 0 for every q > 0 by the exact sequence:

· · · → Rqf∗OY1(L
′) → Rqf∗OY (L) → Rqf∗OY2(L|Y2) → · · · .

So, we finish the proof of Lemma
re-vani-lem
0.1.

The following lemma is a variant of Szabó’s resolution lemma (see the
resolution lemma in

15-resol
??).

1This is a revised version of Section 2.5 of my book. 2010/3/25 version 1.01
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6 Lemma 0.2. Let (X, B) be an embedded simple normal crossing pair and D
a permissible Cartier divisor on X. Let M be an ambient space of X. Assume
that there exists an R-divisor A on M such that Supp(A+X) is simple normal
crossing on M and that B = A|X . Then there exists a projective birational
morphism g : N → M from a smooth variety N with the following properties.
Let Y be the strict transform of X on N and f = g|Y : Y → X. Then we
have

(i) g−1(D) is a divisor on N . Exc(g)∪g−1
∗ (A+X) is simple normal crossing

on N , where Exc(g) is the exceptional locus of g. In particular, Y is a
simple normal crossing divisor on N .

(ii) g and f are isomorphisms outside D, in particular, f∗OY ' OX .

(iii) f ∗(D +B) has a simple normal crossing support on Y . More precisely,
there exists an R-divisor A′ on N such that Supp(A′+Y ) is simple nor-
mal crossing on N , A′ and Y have no common irreducible components,
and that A′|Y = f ∗(D + B).

Proof. First, we take a blow-up M1 → M along D. Apply Hironaka’s desin-
gularization theorem to M1 and obtain a projective birational morphism
M2 → M1 from a smooth variety M2. Let F be the reduced divisor that
coincides with the support of the inverse image of D on M2. Apply Szabó’s
resolution lemma to Suppσ∗(A + X) ∪ F on M2 (see, for example,

15-resol
?? or

fujino0
[?, 3.5. Resolution lemma]), where σ : M2 → M . Then, we obtain desired
projective birational morphisms g : N → M from a smooth variety N , and
f = g|Y : Y → X, where Y is the strict transform of X on N , such that Y is
a simple normal crossing divisor on N , g and f are isomorphisms outside D,
and f ∗(D +B) has a simple normal crossing support on Y . Since f is an iso-
morphism outside D and D is permissible on X, f is an isomorphism at the
generic point of any stratum of Y . Therefore, every fiber of f is connected
and then f∗OY ' OX .

Remark 0.3. In Lemma
6
0.2, we can directly check that f∗OY (KY ) ' OX(KX).

By Lemma 5.1, Rqf∗OY (KY ) = 0 for q > 0. Therefore, we obtain f∗OY '
OX and Rqf∗OY = 0 for every q > 0 by the Grothendieck duality.

Here, we treat the compactification problem. It is because we can use the
same technique as in the proof of Lemma

6
0.2. This lemma plays important

roles in this section.
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comp Lemma 0.4. Let f : Z → X be a proper morphism from an embedded simple
normal crossing pair (Z,B). Let M be the ambient space of Z. Assume
that there is an R-divisor A on M such that Supp(A + Z) is simple normal
crossing on M and that B = A|Z. Let X be a projective variety such that
X contains X as a Zariski open set. Then there exist a proper embedded
simple normal crossing pair (Z, B) that is a compactification of (Z, B) and
a proper morphism f : Z → X that compactifies f : Z → X. Moreover,
SuppB∪Supp(Z \Z) is a simple normal crossing divisor on Z, and Z \Z has
no common irreducible components with B. We note that B is R-Cartier. Let
M , which is a compactification of M , be the ambient space of (Z, B). Then,
by the construction, we can find an R-divisor A on M such that Supp(A+Z)
is simple normal crossing on M and that B = A|Z.

Proof. Let Z, A ⊂ M be any compactification. By blowing up M inside
Z \Z, we can assume that f : Z → X extends to f : Z → X. By Hironaka’s
desingularization and the resolution lemma, we can assume that M is smooth
and Supp(Z + A) ∪ Supp(M \ M) is a simple normal crossing divisor on
M . It is not difficult to see that the above compactification has the desired
properties.

rem-2 Remark 0.5. There exists a big trouble to compactify normal crossing vari-
eties. When we treat normal crossing varieties, we can not directly compact-
ify them. For the details, see

fujino0
[?, 3.6. Whitney umbrella], especially, Corollary

3.6.10 and Remark 3.6.11 in
fujino0
[?]. Therefore, the first two lines in the proof of

ambro
[?, Theorem 3.2] is nonsense.

It is the time to state the main injectivity theorem (cf.
ambro
[?, Theorem 3.1])

for embedded simple normal crossing pairs. For applications, this formulation
seems to be sufficient. We note that we will recover

ambro
[?, Theorem 3.1] in full

generality in Section
sec6
?? (see Theorem

61
??).

5.1 Theorem 0.6 (cf.
ambro
[?, Theorem 3.1]). Let (X,S +B) be an embedded simple

normal crossing pair such that X is proper, S +B is a boundary R-divisor, S
is reduced, and xBy = 0. Let L be a Cartier divisor on X and D an effective
Cartier divisor that is permissible with respect to (X, S + B). Assume the
following conditions.

(i) L ∼R KX + S + B + H,

(ii) H is a semi-ample R-Cartier R-divisor, and
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(iii) tH ∼R D +D′ for some positive real number t, where D′ is an effective
R-Cartier R-divisor that is permissible with respect to (X, S + B).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L + D)),

which are induced by the natural inclusion OX → OX(D), are injective for
all q.

Proof. First, we use Lemma
useful-lemma
??. Thus, we can assume that there exists a

divisor A on M , where M is the ambient space of X, such that Supp(A+X)
is simple normal crossing on M and that A|X = S. Apply Lemma

6
0.2 to an

embedded simple normal crossing pair (X,S) and a divisor Supp(D+D′+B)
on X. Then we obtain a projective birational morphism f : Y → X from an
embedded simple normal crossing variety Y such that f is an isomorphism
outside Supp(D + D′ + B), and that the union of the support of f∗(S + B +
D +D′) and the exceptional locus of f has a simple normal crossing support
on Y . Let B′ be the strict transform of B on Y . We can assume that SuppB′

is disjoint from any strata of Y that are not irreducible components of Y by
taking blow-ups. We write KY + S ′ + B′ = f ∗(KX + S + B) + E, where
S ′ is the strict transform of S, and E is f -exceptional. By the construction
of f : Y → X, S ′ is Cartier and B′ is R-Cartier. Therefore, E is also R-
Cartier. It is easy to see that E+ = pEq ≥ 0. We put L′ = f ∗L + E+

and E− = E+ − E ≥ 0. We note that E+ is Cartier and E− is R-Cartier
because SuppE is simple normal crossing on Y . Since f∗H is an R>0-linear
combination of semi-ample Cartier divisors, we can write f∗H ∼R

∑
i aiHi,

where 0 < ai < 1 and Hi is a general Cartier divisor on Y for every i. We
put B′′ = B′+E−+ ε

t
f∗(D+D′)+(1−ε)

∑
i aiHi for some 0 < ε � 1. Then

L′ ∼R KY + S ′ + B′′. By the construction, xB′′y = 0, the support of S ′ + B′′

is simple normal crossing on Y , and SuppB′′ ⊃ Suppf∗D. So, Proposition
2
?? implies that the homomorphisms Hq(Y,OY (L′)) → Hq(Y,OY (L′ + f ∗D))
are injective for all q. By Lemma

re-vani-lem
0.1, Rqf∗OY (L′) = 0 for any q > 0 and

it is easy to see that f∗OY (L′) ' OX(L). By the Leray spectral sequence,
the homomorphisms Hq(X,OX(L)) → Hq(X,OX(L + D)) are injective for
all q.

The following theorem is another main theorem of this section. It is
essentially the same as

ambro
[?, Theorem 3.2]. We note that we assume that

4



(Y, S + B) is a simple normal crossing pair. It is a small but technically
important difference. For the full statement, see Theorem

62
?? below.

8 Theorem 0.7 (cf.
ambro
[?, Theorem 3.2]). Let (Y, S + B) be an embedded simple

normal crossing pair such that S + B is a boundary R-divisor, S is reduced,
and xBy = 0. Let f : Y → X be a proper morphism and L a Cartier divisor
on Y such that H ∼R L − (KY + S + B) is f -semi-ample.

(i) every non-zero local section of Rqf∗OY (L) contains in its support the
f -image of some stratum of (Y, S + B).

(ii) let π : X → V be a projective morphism and assume that H ∼R f ∗H ′

for some π-ample R-Cartier R-divisor H ′ on X. Then Rqf∗OY (L) is
π∗-acyclic, that is, Rpπ∗R

qf∗OY (L) = 0 for every p > 0 and q ≥ 0.

Remark 0.8. It is obvious that the statement of Theorem
8
0.7 (i) is equivalent

to the following one.

(i′) every associated prime of Rqf∗OY (L) is the generic point of the f -image
of some stratum of (Y, S + B).

Proof. Let M be the ambient space of Y . Then, by Lemma
useful-lemma
??, we can

assume that there exists an R-divisor D on M such that Supp(D + Y ) is
simple normal crossing on M and that D|Y = S + B. Therefore, we can use
Lemma

comp
0.4 in Step

8-2
2 of (i) and Step

o3
3 of (ii) below.

(i) We have already proved a very spacial case in Lemma
re-vani-lem
0.1.

Step 1. First, we assume that X is projective. We can assume that H is
semi-ample by replacing L (resp. H) with L+f∗A′ (resp. H+f∗A′), where A′

is a very ample Cartier divisor. Assume that Rqf∗OY (L) has a local section
whose support does not contain the f -images of any strata of (Y, S+B). More
precisely, let U be a non-empty Zariski open set and s ∈ Γ(U,Rqf∗OY (L)) a
non-zero section of Rqf∗OY (L) on U whose support V ⊂ U does not contain
the f -images of any strata of (Y, S + B). Let V be the closure of V in X.
We note that V \ V may contain the f -image of some stratum of (Y, S + B).
Let Y1 be the union of the irreducible components of Y that are mapped into
V \ V and let Y2 be the union of the other irreducible components of Y . We
put

KY1 + S1 + B1 = (KY + S + B)|Y1

such that S1 is reduced and that xB1y = 0. By replacing Y , S, B, L,
and H with Y1, S1, B1, L|Y1 , and H|Y1 , we can assume that no irreducible
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components of Y are mapped into V \ V . Let C be a stratum of (Y, S + B)
that is mapped into V \ V . Let σ : M ′ → M be the blow-up along C and
Y ′ = σ−1(Y ) as in Lemma

useful-lem2
??. We can write Y ′ = Y ′

1∪Y ′
2 where Y ′

2 = σ−1(C).
We put

KY ′ + S ′ + B′ = σ∗(KY + S + B)

such that S ′ is reduced and xB′y = 0. We define

KY ′
1
+ S ′

1 + B′
1 = (KY ′ + S ′ + B′)|Y ′

1

such that S ′
1 is reduced and xB′

1y = 0. Thus,

σ∗H ∼R σ∗L − (KY ′ + S ′ + B′)

and
σ∗H|Y ′

1
∼R σ∗L|Y ′

1
− Y ′

2 |Y ′
1
− (KY ′

1
+ (S ′

1 − Y ′
2 |Y ′

1
) + B′

1).

We note that S ′
1 − Y ′

2 |Y ′
1

is effective. We replace Y , H, L, S, and B with
Y ′

1 , σ∗H|Y ′
1
, σ∗L|Y ′

1
, S ′

1 − Y ′
2 |Y ′

1
, and B′

1. By repeating this process finitely

many times, we can assume that V does not contain f -images of any strata
of (Y, S + B). Then we can find a very ample Cartier divisor A with the
following properties.

(a) f ∗A is permissible with respect to (Y, S + B), and

(b) Rqf∗OY (L) → Rqf∗OY (L) ⊗OX(A) is not injective.

We can assume that H − f ∗A is semi-ample by replacing L (resp. H) with
L+f ∗A (resp. H +f ∗A). If necessary, we replace L (resp. H) with L+f∗A′′

(resp. H + f ∗A′′), where A′′ is a very ample Cartier divisor. Then, we have
H0(X, Rqf∗OY (L)) ' Hq(Y,OY (L)) and H0(X, Rqf∗OY (L) ⊗ OX(A)) '
Hq(Y,OY (L + f∗A)). We obtain that

H0(X, Rqf∗OY (L)) → H0(X,Rqf∗OY (L) ⊗OX(A))

is not injective by (b) if A′′ is sufficiently ample. So, Hq(Y,OY (L)) →
Hq(Y,OY (L + f∗A)) is not injective. It contradicts Theorem

5.1
0.6. We finish

the proof when X is projective.

8-2 Step 2. Next, we assume that X is not projective. Note that the problem
is local. So, we can shrink X and assume that X is affine. By the argument
similar to the one in Step 1 in the proof of (ii) below, we can assume that H is
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a semi-ample Q-Cartier Q-divisor. We compactify X and apply Lemma
comp
0.4.

Then we obtain a compactification f : Y → X of f : Y → X. Let H be the
closure of H on Y . If H is not a semi-ample Q-Cartier Q-divisor, then we take
blowing-ups of Y inside Y \ Y and obtain a semi-ample Q-Cartier Q-divisor
H on Y such that H|Y = H. Let L (resp. B, S) be the closure of L (resp. B,
S) on Y . We note that H ∼R L−(KY +S+B) does not necessarily hold. We
can write H +

∑
i ai(fi) = L− (KY + S + B), where ai is a real number and

fi ∈ Γ(Y,K∗
Y ) for every i. We put E = H +

∑
i ai(fi)− (L− (KY + S + B)).

We replace L (resp. B) with L+pEq (resp. B +{−E}). Then we obtain the
desired property of Rqf∗OY (L) since X is projective. We note that SuppE
is in Y \ Y . So, we finish the whole proof.

(ii) We divide the proof into three steps.

Step 1. We assume that dim V = 0. The following arguments are well
known and standard. We describe them for the reader’s convenience. In
this case, we can write H ′ ∼R H ′

1 + H ′
2, where H ′

1 (resp. H ′
2) is a π-ample

Q-Cartier Q-divisor (resp. π-ample R-Cartier R-divisor) on X. So, we can
write H ′

2 ∼R
∑

i aiHi, where 0 < ai < 1 and Hi is a general very ample
Cartier divisor on X for every i. Replacing B (resp. H ′) with B +

∑
i aif

∗Hi

(resp. H ′
1), we can assume that H ′ is a π-ample Q-Cartier Q-divisor. We take

a general member A ∈ |mH ′|, where m is a sufficiently large and divisible
integer, such that A′ = f∗A and Rqf∗OY (L + A′) is π∗-acyclic for all q. By
(i), we have the following short exact sequences,

0 → Rqf∗OY (L) → Rqf∗OY (L + A′) → Rqf∗OA′(L + A′) → 0.

for every q. Note that Rqf∗OA′(L + A′) is π∗-acyclic by induction on dim X
and Rqf∗OY (L+A′) is also π∗-acyclic by the above assumption. Thus, Epq

2 =
0 for p ≥ 2 in the following commutative diagram of spectral sequences.

Epq
2 = Rpπ∗R

qf∗OY (L)

ϕpq

��

+3 Rp+q(π ◦ f)∗OY (L)

ϕp+q

��
E

pq

2 = Rpπ∗R
qf∗OY (L + A′) +3 Rp+q(π ◦ f)∗OY (L + A′)

We note that ϕ1+q is injective by Theorem
5.1
0.6. We have that E1q

2 → R1+q(π◦
f)∗OY (L) is injective by the fact that Epq

2 = 0 for p ≥ 2. We also have that

E
1q

2 = 0 by the above assumption. Therefore, we obtain E1q
2 = 0 since the
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injection E1q
2 → R1+q(π ◦ f)∗OY (L + A′) factors through E

1q

2 = 0. This
implies that Rpπ∗R

qf∗OY (L) = 0 for every p > 0.

o2 Step 2. We assume that V is projective. By replacing H ′ (resp. L) with
H ′ + π∗G (resp. L + (π ◦ f)∗G), where G is a very ample Cartier divisor
on V , we can assume that H ′ is an ample R-Cartier R-divisor. By the
same argument as in Step 1, we can assume that H ′ is ample Q-Cartier Q-
divisor and H ∼Q f∗H ′. If G is a sufficiently ample Cartier divisor on V ,
Hk(V, Rpπ∗R

qf∗OY (L) ⊗ G) = 0 for every k ≥ 1,

H0(V, Rpπ∗R
qf∗OY (L) ⊗OV (G)) ' Hp(X,Rqf∗OY (L) ⊗OX(π∗G))

' Hp(X,Rqf∗OY (L + f∗π∗G)),

and Rpπ∗R
qf∗OY (L) ⊗OV (G) is generated by its global sections. Since

H + f∗π∗G ∼R L + f∗π∗G − (KY + S + B),

H + f∗π∗G ∼Q f∗(H ′ + π∗G),

and H ′ + π∗G is ample, we can apply Step 1 and obtain Hp(X, Rqf∗OY (L +
f∗π∗G)) = 0 for every p > 0. Thus, Rpπ∗R

qf∗OY (L) = 0 for every p > 0 by
the above arguments.

o3 Step 3. When V is not projective, we shrink V and assume that V is affine.
By the same argument as in Step 1 above, we can assume that H ′ is Q-Cartier.
We compactify V and X, and can assume that V and X are projective. By
Lemma

comp
0.4, we can reduce it to the case when V is projective. This step is

essentially the same as Step 2 in the proof of (i). So, we omit the details
here.

We finish the whole proof of (ii).

smooth-ne Remark 0.9. In Theorem
5.1
0.6, if X is smooth, then Proposition

1
?? is enough

for the proof of Theorem
5.1
0.6. In the proof of Theorem

8
0.7, if Y is smooth,

then Theorem
5.1
0.6 for a smooth X is sufficient. Lemmas

re-vani-lem
0.1,

6
0.2, and

comp
0.4

are easy and well known for smooth varieties. Therefore, the reader can find
that our proof of Theorem

8
0.7 becomes much easier if we assume that Y

is smooth. Ambro’s original proof of
ambro
[?, Theorem 3.2 (ii)] used embedded

simple normal crossing pairs even when Y is smooth (see (b) in the proof of
ambro
[?, Theorem 3.2 (ii)]). It may be a technically important difference. I could
not follow Ambro’s original argument in (a) in the proof of

ambro
[?, Theorem 3.2

(ii)].
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9-1 Remark 0.10. It is easy to see that Theorem
5.1
0.6 is a generalization of

Kollár’s injectivity theorem. Theorem
8
0.7 (i) (resp. (ii)) is a generalization

of Kollár’s torsion-free (resp. vanishing) theorem.

We treat an easy vanishing theorem for lc pairs as an application of
Theorem

8
0.7 (ii). It seems to be buried in

ambro
[?]. We note that we do not

need the notion of embedded simple normal crossing pairs to prove Theorem
lc
0.11. See Remark

smooth-ne
0.9.

lc Theorem 0.11 (Kodaira vanishing theorem for lc pairs). Let (X,B) be an
lc pair such that B is a boundary R-divisor. Let L be a Q-Cartier Weil
divisor on X such that L − (KX + B) is π-ample, where π : X → V is a
projective morphism. Then Rqπ∗OX(L) = 0 for every q > 0.

Proof. Let f : Y → X be a log resolution of (X,B) such that KY = f ∗(KX +
B)+

∑
i aiEi with ai ≥ −1 for every i. We can assume that

∑
i Ei∪Suppf∗L

is a simple normal crossing divisor on Y . We put E =
∑

i aiEi and F =∑
aj=−1(1−bj)Ej, where bj = multEj

{f ∗L}. We note that A = L−(KX +B)

is π-ample by the assumption. So, we have f∗A = f∗L − f∗(KX + B) =
pf ∗L + E + Fq − (KY + F + {−(f ∗L + E + F )}). We can easily check that
f∗OY (pf ∗L+E +Fq) ' OX(L) and that F +{−(f ∗L+E +F )} has a simple
normal crossing support and is a boundary R-divisor on Y . By Theorem

8
0.7

(ii), we obtain that OX(L) is π∗-acyclic. Thus, we have Rqπ∗OX(L) = 0 for
every q > 0.

We note that Theorem
lc
0.11 contains a complete form of

kovacs
[?, Theorem 0.3]

as a corollary. For the related topics, see
kss
[?, Corollary 1.3].

lcvar Corollary 0.12 (Kodaira vanishing theorem for lc varieties). Let X be a pro-
jective lc variety and L an ample Cartier divisor on X. Then

Hq(X,OX(KX + L)) = 0

for every q > 0. Furthermore, if we assume that X is Cohen–Macaulay, then
Hq(X,OX(−L)) = 0 for every q < dim X.

Remark 0.13. We can see that Corollary
lcvar
0.12 is contained in

fujino-high
[?, Theo-

rem 2.6], which is a very special case of Theorem
8
0.7 (ii). I forgot to state

Corollary
lcvar
0.12 explicitly in

fujino-high
[?]. There, we do not need embedded simple

normal crossing pairs. We note that there are typos in the proof of
fujino-high
[?, The-

orem 2.6]. In the commutative diagram, Rif∗ωX(D)’s should be replaced by
Rjf∗ωX(D)’s.
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We close this section with an easy example.

Example 0.14. Let X be a projective lc threefold which has the following
properties: (i) there exists a projective birational morphism f : Y → X from
a smooth projective threefold, and (ii) the exceptional locus E of f is an
Abelian surface with KY = f ∗KX − E. For example, X is a cone over a
normally projective Abelian surface in PN and f : Y → X is the blow-up
at the vertex of X. Let L be an ample Cartier divisor on X. By the Leray
spectral sequence, we have

0 → H1(X, f∗f
∗OX(−L)) → H1(Y, f ∗OX(−L)) → H0(X, R1f∗f

∗OX(−L))

→ H2(X, f∗f
∗OX(−L)) → H2(Y, f ∗OX(−L)) → · · · .

Therefore, we obtain

H2(X,OX(−L)) ' H0(X,OX(−L) ⊗ R1f∗OY ),

because H1(Y, f ∗OX(−L)) = H2(Y, f ∗OX(−L)) = 0 by the Kawamata–
Viehweg vanishing theorem. On the other hand, we have Rqf∗OY ' Hq(E,OE)
for every q > 0 since Rqf∗OY (−E) = 0 for every q > 0. Thus, H2(X,OX(−L)) '
C2. In particular, H2(X,OX(−L)) 6= 0. We note that X is not Cohen–
Macaulay. In the above example, if we assume that E is a K3-surface, then
Hq(X,OX(−L)) = 0 for q < 3 and X is Cohen–Macaulay. For the details,
see the subsection

431sss
??, especially, Lemma

437lem
??.
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