0.1 Vanishing and injectivity theorems

bro
The main purpose of this section is to prove Ambro’s theorems (cf. %
Theorems %%%%1_%1212 for embedded simple normal crossin airs. The next
lemma (cf. [77 Proposition 1.11]) is missing in the proof of [ eorem 3.1].
It justifies the first three lines in the proof of F;_Theorem 3. 1

Lemma 0.1 (Relative vanishing lemma). Let f : Y — X be a proper mor-

phism from a simple normal crossing pair (Y, T + D) such that T + D is a
boundary R-divisor, T is reduced, and D, = 0. We assume that f is an
isomorphism at the generic point of any stratum of the pair (Y, T+ D). Let L
be a Cartier divisor on'Y such that L ~g Ky +T+ D. Then R1f.Oy(L) =0
for g > 0.

7
Proof. By Lemma b?, we can assume that D is a Q-divisor and L ~qg Ky +
T + D. We divide the proof into two steps.

ine| Step 1. We assume that Y is irreducible. In this case, L — (Ky + T + D)
s nef and log big over X with respect to the pair (Y,T + D) (see Definition
7). Therefore, R? f*Oy(Z'F‘)a:i_lQ ff_(ilé every ¢ > 0 by the vanishing theorem

(see, for example, Lemma [?

Step 2. Let Y7 be an irreducible component of Y and Y5 the union of the
other irreducible components of Y. Then we have a short exact sequence
0 — .0y (=Yaly,) — @Oy — Oy, — 0, where i : Y1 — Y is the natural
closed immersion (cf. %ﬂ,_ﬁemark 2.6]). We put L' = L|y, — Ya|y,. Then we
have a short exact sequence 0 — i.Oy, (L") — Oy (L) — Oy,(Lly,) — 0 and
L' ~g Ky, + Ty, + Dly,. On the other hand, we can check that Ll|y, ~gq
Ky, +Yily, + Ty, + lﬁlﬁe We have already known that R?f,Oy, (L") = 0 for
every q > 0 by Step T. By the induction on the number of the irreducible
components of Y, we have R?f,Oy,(L|y,) = 0 for every ¢ > 0. Therefore,
R1f,Oy (L) = 0 for every ¢ > 0 by the exact sequence:

— R'f.0y, (L) — R'f.0y(L) — R f.O0y,(Lly,) —
- 1 _1
So, we finish the proof of Lemma kr)?l — O

The following le ma is a variant of Szabd’s resolution lemma (see the
2 ~resol

resolution lemma in 77

!This is a revised version of Section 2.5 of my book. 2010/3/25 version 1.01
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(6] Lemma 0.2. Let (X, B) be an embedded simple normal crossing pair and D
a permissible Cartier divisor on X . Let M be an ambient space of X. Assume
that there exists an R-divisor A on M such that Supp(A+X) is simple normal
crossing on M and that B = A|x. Then there ezists a projective birational
morphism g : N — M from a smooth variety N with the following properties.
Let Y be the strict transform of X on N and f = gly : Y — X. Then we
have

(i) g~ YD) is a divisor on N. Exc(g)Ug, ' (A+X) is simple normal crossing
on N, where Exc(g) is the exceptional locus of g. In particular, Y is a
simple normal crossing divisor on N.

(i) g and f are isomorphisms outside D, in particular, f.Oy ~ Ox.

(iii) f*(D+ B) has a simple normal crossing support on'Y . More precisely,
there exists an R-divisor A" on N such that Supp(A’'+Y) is simple nor-
mal crossing on N, A" and' Y have no common irreducible components,
and that A'ly = f*(D + B).

Proof. First, we take a blow-up M; — M along D. Apply Hironaka’s desin-
gularization theorem to M; and obtain a projective birational morphism
My — M from a smooth variety Ms. Let F' be the reduced divisor that
coincides with the support of the inverse image of D on Ms. Apply S Pg)—c,ll’essol
esolution lemma to Suppo™(A + X) U F on M, (see, for example, 77 or
%TL&;T Resolution lemma|), where o : My — M. Then, we obtain desired
projective birational morphisms g : N — M from a smooth variety N, and
f=gly:Y — X, where Y is the strict transform of X on N, such that Y is
a simple normal crossing divisor on /N, g and f are isomorphisms outside D,
and f*(D + B) has a simple normal crossing support on Y. Since f is an iso-
morphism outside D and D is permissible on X, f is an isomorphism at the
generic point of any stratum of Y. Therefore, every fiber of f is connected
and then f,0Oy ~ Ox. O

6
Remark 0.3. In Lemma b.2, we can directly check that f.Oy (Ky) ~ Ox(Kx).
By Lemma 5.1, R1f,Oy(Ky) = 0 for ¢ > 0. Therefore, we obtain f,Oy ~
Ox and R?f,Oy = 0 for every ¢ > 0 by the Grothendieck duality.

Here, we treat the compactification prohlem. It is because we can use the
same technique as in the proof of Lemma 0.2. This lemma plays important
roles in this section.



comp

Lemma 0.4. Let f : Z — X be a proper morphism from an embedded simple
normal crossing pair (Z,B). Let M be the ambient space of Z. Assume
that there is an R-divisor A on M such that Supp(A + Z) is simple normal
crossing on M and that B = A|y. Let X be a projective variety such that
X contains X as a Zariski open set. Then there exist a proper embedded
simple normal crossing pair (Z, B) that is a compactification of (Z, B) and
a proper morphism f : Z — X that compactifies f : Z — X. Moreover,
SuppBUSupp(Z\ Z) is a simple normal crossing divisor on Z, and Z\ Z has
no common irreducible components with B. We note that B is R-Cartier. Let
M, which is a compactification of M, be the ambient space of (Z,B). Then,
by the construction, we can find an R-divisor A on M such that Supp(A+Z)
is simple normal crossing on M and that B = Al.

Proof. Let Z,A C M be any compactification. By blowing up M inside
Z\ Z, we can assume that f : Z — X extends to f : Z — X. By Hironaka’s
desingularization and the resolution lemma, we can assume that M is smooth
and Supp(Z + A) U Supp(M \ M) is a simple normal crossing divisor on
M. It is not difficult to see that the above compactification has the desired
properties. O]

Remark 0.5. There exists a big trouble to compactify normal crossing vari-

eties. When we treat normal lgoisiio%g varieties, we can not directly compact-
ify them. For the details, see Z , %go Whitney umbrella], especially, Corollary

3.%.1« 100 and Remark 3.6.11 in [7] 11 erefore, the first two lines in the proof of

.;, Theorem 3.2] is nonsense.

bro
It is the time to state the main injectivity theorem (cf. f?m,_T'heorem 3.1])
for embedded simple normal crossing pairs. For appli atg(lggs, this formulation
seems to be sufﬁcient%#e note that we will recoverjﬁ,_ﬂeorem 3.1] in full
generality in Section [77 (see Theorem 77).

bro
Theorem 0.6 (cf. }f‘f’n,_Theorem 3.1]). Let (X, S+ B) be an embedded simple
normal crossing pair such that X is proper, S+ B is a boundary R-divisor, S
is reduced, and _.B1 = 0. Let L be a Cartier divisor on X and D an effective
Cartier divisor that is permissible with respect to (X, S + B). Assume the
following conditions.

(i) L~g Kx +S+ B+ H,

(ii) H is a semi-ample R-Cartier R-divisor, and
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(iii) tH ~g D+ D' for some positive real number t, where D' is an effective
R-Cartier R-divisor that is permissible with respect to (X, S + B).

Then the homomorphisms
HY(X,0x(L)) — HY(X,Ox(L+ D)),

which are induced by the natural inclusion Ox — Ox (D), are injective for
all q.

Proof. First, we use Lemma %l’%@'ll_llfﬁe can assume that there exists a
divisor A on M, where M is the ambient space of X, such that Supp(A+ X)
is simple normal crossing on M and that A|y = S. Apply Lemma 0.2 to an
embedded simple normal crossing pair (X, .S) and a divisor Supp(D+ D'+ B)
on X. Then we obtain a projective birational morphism f : Y — X from an
embedded simple normal crossing variety Y such that f is an isomorphism
outside Supp(D + D’ + B), and that the union of the support of f*(S + B +
D + D') and the exceptional locus of f has a simple normal crossing support
on Y. Let B’ be the strict transform of B on Y. We can assume that SuppB’
is disjoint from any strata of Y that are not irreducible components of Y by
taking blow-ups. We write Ky + 58"+ B’ = f*(Kx + S + B) + E, where
S’ is the strict transform of S, and F is f-exceptional. By the construction
of f:Y — X, 5 is Cartier and B’ is R-Cartier. Therefore, E is also R-
Cartier. It is easy to see that £, = "TE" > 0. We put L' = f*L + E,
and £ = E;, — E > 0. We note that F, is Cartier and F_ is R-Cartier
because SuppF is simple normal crossing on Y. Since f*H is an Ry-linear
combination of semi-ample Cartier divisors, we can write f*H ~g >, a,H;,
where 0 < a; < 1 and H; is a general Cartier divisor on Y for every 7. We
put B" = B'+E_+:f*(D+D")+(1—¢) ), a; H; for some 0 < ¢ < 1. Then
L' ~g Ky + 5 + B”. By the construction, . B”_ = 0, the support of S’ + B”
ﬁ%s simple normal crossing on Y, and SuppB” D Suppf*D. So, Proposition
7?7 implies that the homomorphisms (Y, Qy (L)) — H(Y,Oy (L' + f*D))
are injective for all ¢q. By Lemma %WY(L’ ) = 0 for any ¢ > 0 and
it is easy to see that f.Oy (L) ~ Ox(L). By the Leray spectral sequence,
the homomorphisms H?(X,Ox (L)) — HY(X,Ox(L + D)) are injective for
all q. O

The following theore bis another main theorem of this section. It is
essentially the same as [7, Theorem 3.2]. We note that we assume that
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(Y,S + B) is a simple normal crossing pair. It is a sma 2but technically
important difference. For the full statement, see Theorem 77 below.

bro
Theorem 0.7 (cf. H,_T’heorem 3.2]). Let (Y,S + B) be an embedded simple
normal crossing pair such that S+ B is a boundary R-divisor, S is reduced,
and LB1=0. Let f:Y — X be a proper morphism and L a Cartier divisor
onY such that H ~g L — (Ky + S + B) is f-semi-ample.

(i) every non-zero local section of RIf,Oy (L) contains in its support the
f-image of some stratum of (Y, S + B).

(ii) let m: X — V be a projective morphism and assume that H ~g f*H'
for some w-ample R-Cartier R-divisor H' on X. Then RIf.Oy(L) is
me-acyclic, that is, RPm,.RIf.Oy (L) =0 for every p > 0 and ¢ > 0.

8
Remark 0.8. It is obvious that the statement of Theorem b.? (i) is equivalent
to the following one.

(") every associated prime of R?f.Oy (L) is the generic point of the f-image
of some stratum of (Y, S + B).

ful-1
Proof. Let M be the ambient space of Y. Then, by Lemma use, We can.
assume that there exists an R-divisor D on M such that Supp(D + Y) is
simple ngglgnal crossg% on M and th%tiD]y = S + B. Therefore, we can use
Lemma 0.4 1n Step 2 of (i) and Step B of (ii) below. .
. . . re-vani-lem
(i) We have already proved a very spacial case in Lemma k). -

Step 1. First, we assume that X is projective. We can assume that H is
semi-ample by replacing L (resp. H) with L+ f*A’ (resp. H+ f*A’), where A’
is a very ample Cartier divisor. Assume that R?f,Oy (L) has a local section
whose support does not contain the f-images of any strata of (Y, S+B). More
precisely, let U be a non-empty Zariski open set and s € I'(U, R1f.Oy (L)) a
non-zero section of RYf,Oy (L) on U whose support V' C U does not contain
the f-images of any strata of (Y, S + B). Let V be the closure of V in X
We note that V'\ V may contain the f-image of some stratum of (Y, S + B).
Let Y7 be the union of the irreducible components of Y that are mapped into
V' \ V and let Y3 be the union of the other irreducible components of Y. We
put
Ky, + S1+ By = (Ky + S+ B)ly;

such that Sj is reduced and that _By1 = 0. By replacing Y, S, B, L,
and H with Yy, Sy, By, L|y,, and H|y,, we can assume that no irreducible
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components of Y are mapped into V' \ V. Let C be a stratum of (Y, S + B)
that is mapped into V' \ V. %e{_q :QM’ — M be the blow-up along C' and
Y’ =0o7'(Y) as in Lemma P We cail write Y/ = YUY, where Yy = o7 1(C).
We put

Ky +S + B ' =0*(Ky + S+ B)

such that S’ is reduced and L B’J = 0. We define
Ky: 4+ S+ By = (Ky' + 5"+ B')|y;
such that S} is reduced and L Bj 1 = 0. Thus,
o*H ~g 0L — (Ky: + 5"+ B’)

and

0" Hly; ~r 0" Lly; = Y3ly; — (Ky; + (5] = Y3lyy) + By).
We note that S7 — Yj|y, is effective. We replace Y, H, L, S, and B with
Y/, 0*Hly:, 0*Llys, S1 — Y;|ys, and Bj. By repeating this process finitely
many times, we can assume that V does not contain f-images of any strata

of (Y, S + B). Then we can find a very ample Cartier divisor A with the
following properties.

(a) f*A is permissible with respect to (Y, S + B), and
(b) R1f.Oy(L) — R1f.Oy(L) ® Ox(A) is not injective.

We can assume that H — f*A is semi-ample by replacing L (resp. H) with
L+ f*A (resp. H+ f*A). If necessary, we replace L (resp. H) with L+ f*A”
(resp. H + f*A"), where A” is a very ample Cartier divisor. Then, we have
HO(X, qu*Oy(L)) ~ Hq(}/, Oy(L)) and HO(X, qu*Oy(L) & OX(A)) ~
HI(Y,Oy(L+ f*A)). We obtain that

H(X, R1f,0y (L)) — H°(X, R1f.Oy (L) ® Ox(A))

is not injective by (b) if A” is sufficiently ample. So, HY g/,lOy(L)) —

HI(Y,Oy(L+ f*A)) is not injective. It contradicts Theorem 0.6. We finish
the proof when X is projective.

Step 2. Next, we assume that X is not projective. Note that the problem
is local. So, we can shrink X and assume that X is affine. By the argument
similar to the one in Step 1 in the proof of (ii) below, we can assume that H is
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a semi-ample Q-Cartier Q-divisor. We compactify X and apply Lemma 5.4
Then we obtain a compactification f:Y — X of f: Y — X. Let H be the
closure of H on Y. If H is not a semi-ample Q-Cartier Q-divisor, then we take
blowing-ups of Y inside Y \ Y and obtain a semi-ample Q-Cartier Q-divisor
H on Y such that H|y = H. Let L (resp. B, S) be the closure of L (resp. B,
S)onY. We note that H ~g L— (Ky+S+ B) does not necessarily hold. We
can write H + ). a;(f;) = L — (Ky + S + B), where q; is a real number and
fi € T(Y, %) for every i. Weput E=H + Y, a;(f;) — (L — (Ky+ S + B)).
We replace L (resp. B) with L+"E™ (resp. B+ {—FE}). Then we obtain the
desired property of R?f,O3(L) since X is projective. We note that SuppFE
isin Y \ Y. So, we finish the whole proof.

(ii) We divide the proof into three steps.

Step 1. We assume that dimV = 0. The following arguments are well
known and standard. We describe them for the reader’s convenience. In
this case, we can write H ~g Hj + Hj, where H] (resp. H}) is a m-ample
Q-Cartier Q-divisor (resp. m-ample R-Cartier R-divisor) on X. So, we can
write H) ~r > .a;H;, where 0 < a; < 1 and H; is a general very ample
Cartier divisor on X for every i. Replacing B (resp. H') with B+ . a,f*H;
(resp. H}), we can assume that H' is a m-ample Q-Cartier Q-divisor. We take
a general member A € |mH’|, where m is a sufficiently large and divisible
integer, such that A" = f*A and RIf,Oy(L + A') is m.-acyclic for all ¢q. By
(i), we have the following short exact sequences,

0— Rf,Oy(L) — RUf,Oy(L+ A") = RIf,.On(L+ A") — 0.

for every g. Note that R7f.O4 (L + A’) is m.-acyclic by induction on dim X
and RIf,Oy(L+ A’) is also m.-acyclic by the above assumption. Thus, E? =
0 for p > 2 in the following commutative diagram of spectral sequences.

EY = RPr,R1f,Oy (L) ———= R (7 o [),.Oy(L)

Sz,zvql <pp+q l

By = R'mRUf.Oy (L + A') == R*i(m o f).0y (L + A')

44 iq injecti B—é lg 1+
We note that ¢' ™7 is injective by Theorem 0.6. We have that £, — R'™(7o
1)«Oy (L) is injective by the fact that E5? = 0 for p > 2. We also have that

E;q = 0 by the above assumption. Therefore, we obtain Eglq = 0 since the
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injection F,? — R4(mw o f),Oy(L + A’) factors through E;q = 0. This
implies that RPm, R1f,Oy (L) = 0 for every p > 0.

Step 2. We assume that V' is projective. By replacing H' (resp. L) with
H' 4+ 7*G (resp. L + (m o f)*G), where G is a very ample Cartier divisor
on V, we can assume that H’ is an ample R-Cartier R-divisor. By the
same argument as in Step 1, we can assume that H' is ample Q-Cartier Q-

divisor and H ~g f*H'. If G is a sufficiently ample Cartier divisor on V/,
HY(V, RPmr,RIf,Oy (L) ® G) = 0 for every k > 1,

H(V, RPm,R1f,0y (L) @ Oy (Q)) ~ H?(X, R1f,Oy (L) ® Ox(1*Q))
~ H?(X, Rf.Oy (L + f*7*Q)),

and RPm,RIf,Oy (L) ® Oy(G) is generated by its global sections. Since

H+ f*r"G ~g L+ f*'1"G — (Ky + S+ B),
H+ f*1*°G ~q f*(H +7°G),
and H' + 7*G is ample, we can apply Step 1 and obtain H?(X, R1f.Oy (L +

f**@G)) = 0 for every p > 0. Thus, RPm,.RIf,Oy (L) = 0 for every p > 0 by
the above arguments.

Step 3. When V is not projective, we shrink V' and assume that V' is affine.
By the same argument as in Step 1 above, we can assume that H' is Q-Cartier.
We com %gtify V and X, and can assume that V' and X are projective. By

Lemma 0.4] we can reduce it to the case when V' is projective. This step is
essentially the same as Step 2 in the proof of (i). So, we omit the details
here.
We finish the whole proof of (ii). O
5.1 1
Remark 0.9. In Theore b}ﬁ if X is smooth, then Propgsition 7 i enough
for the proof o - 1heorem . In the proof of Theorem b 1f Y 1s moo"ghIhp
then Theorem for a smooth X is sufficient. Lemmas U 1 U z and 0.4

are easy and Well known for gmooth varieties. Therefore, the reader can find
that our proof of Theorem 0.7 becomes much easier if we assume that Y
is smooth. Ambro’s original proof of Fheorem 3.2 (ii)] used embedded
imple normal crossing pairs even when Y is smooth (see (b) in the proof of
%’_T'heorem 3.2 (ii)]). It may be a technically important difference. I could
not follow Ambro’s original argument in (a) in the proof of [7, Theorem 3.2

(i)



5.1
9-1| Remark 0.10. It is easy to see that 8Theorem b_ﬁ is a generalization of
Kollar’s injectivity theorem. Theorem 0.7 (i) (resp. (ii)) is a generalization
of Kollar’s torsion-free (resp. vanishing) theorem.

We treat an easy vanishing theorem for lcbpoairs as an application of
Theorem 0.7 (ii). It seems to be buried in [7].~ We note that we do not
%_]ed the notion of embet(lided simple normal crossing pairs to prove Theorem

1. See Remark h] 9.

Theorem 0.11 (Kodaira vanishing theorem for lc pairs). Let (X, B) be an
le pair such that B is a boundary R-divisor. Let L be a Q-Cartier Weil
divisor on X such that L — (Kx + B) is m-ample, where 7 : X — V is a
projective morphism. Then Rim.Ox(L) =0 for every g > 0.

Proof. Let f:Y — X be alog resolution of (X, B) such that Ky = f*(Kx+
B)+>",a;E; with a; > —1 for every i. We can assume that ), F;USuppf*L
is a simple normal crossing divisor on Y. We put £ = ) . q;E; and F =
> a;=—1(1—=b;)E;, where b; = multg,{f*L}. We note that A = L—(Kx +B)
is m-ample by the assumption. So, we have f*A = f*L — f*(Kx + B) =
"fFL+E+F"—(Ky+F+{—(f*L+ E+ F)}). We can easily check that
[0y (Tf*L+ E+F7) ~ Ox(L) and that F+{—(f*L+ E+F)} has a sim
normal crossing support and is a boundary R-divisor on Y. By Theorem %
(ii), we obtain that Ox (L) is m.-acyclic. Thus, we have Rim,Ox (L) = 0 for
every q > 0. O]

We note that Theorem b_ll contains a complete form of 7,V Theorem 0.3]
as a corollary. For the related topics, see H?Corollary 1.3].

Corollary 0.12 (Kodaira vanishing theorem for lc varieties). Let X be a pro-
jective lc variety and L an ample Cartier divisor on X. Then

HY(X,Ox(Kx+L))=0
for every g > 0. Furthermore, if we assume that X is Cohen—Macaulay, then
HY(X,0x(—L)) =0 for every ¢ < dim X.
lcvar, . . ujino-high

Remark 0.13. We can see that Corollary h). [2 ig contained in [[7] €o-
rem 2.6, 1ch is a very sp ia%n%a_%el %f Theorem 0.7 (ii). I forgot to state
Corollary }) 15 exphc1tly in 7. ere, we do not need embedde usilglll}gl%i N
normal crossing pairs. We note that there are typos in the proof of [7; The-
orem 2.6]. In the commutative diagram, R’ f,wx(D)’s should be replaced by

R fuwx(D)'s.



We close this section with an easy example.

Example 0.14. Let X be a projective lc threefold which has the following
properties: (i) there exists a projective birational morphism f : Y — X from
a smooth projective threefold, and (ii) the exceptional locus E of f is an
Abelian surface with Ky = f*Kx — E. For example, X is a cone over a
normally projective Abelian surface in PY and f : Y — X is the blow-up
at the vertex of X. Let L be an ample Cartier divisor on X. By the Leray
spectral sequence, we have

0— Hl(Xa f*f*OX<_L)) - HI(K f*OX(_L)) - HO(Xv le*f*OX(_L))
— H*(X, fof*Ox(=L)) — H*(Y, f*Ox(=L)) — -+ .

Therefore, we obtain
H2<X7 OX<_L>> = HO(X7 OX(_L) ® le*OY>7

because H'(Y, f*Ox(—L)) = H*(Y, f*Ox(—L)) = 0 by the Kawamata—
Viehweg vanishing theorem. On the other hand, we have R?f, Oy ~ HY(FE, OF)
for every ¢ > 0 since R?f,Oy(—FE) = 0 for every ¢ > 0. Thus, H*(X,Ox(—L)) ~
C% In particular, H*(X,Ox(—L)) # 0. We note that X is not Cohen—
Macaulay. In the above example, if we assume that F is a K 3-surface, then
HY(X,0x(-L)) =9,for ¢ < 3 and X is {johen-Macaulay. For the details,
see the subsection 77 especially, Lemma %‘7_
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