A REMARK ON THE LOG MMP (PRIVATE NOTE)

OSAMU FUJINO

ABSTRACT. In this short note, we treat the log MMP without the assumption that the variety is Q-factorial.

This short note is an answer to Takagi's question. We will work over \mathbb{C} throughout this note. For simplicity, we treat only klt pairs and \mathbb{Q} -divisors in this note.

Theorem 1. Assume that the log MMP holds for \mathbb{Q} -factorial klt paris in dimension n. Then the following modified version of the log MMP works for (not necessarily \mathbb{Q} -factorial) klt pairs in dimension n.

Proof and explanation of the log MMP without \mathbb{Q} -factoriality. We start with a projective morphism $f: X \longrightarrow Y$, where $X_0 := X$ is a (not necessarily \mathbb{Q} -factorial) normal variety, and a \mathbb{Q} -divisor $D_0 := D$ on X such that (X, D) is klt. The aim is to set up a recursive procedure which creates intermediate $f_i: X_i \longrightarrow Y$ and D_i . After finitely many steps, we obtain a finial objects $\tilde{f}: \tilde{X} \longrightarrow Y$ and \tilde{D} . Assume that we already constructed $f_i: X_i \longrightarrow Y$ and D_i with the following properties:

- (i) f_i is projective,
- (ii) D_i is a \mathbb{Q} -divisor on X_i ,
- (iii) (X_i, D_i) is klt.

If $K_{X_i} + D_i$ is f_i -nef, then we set $\widetilde{X} := X_i$ and $\widetilde{D} := D_i$. Assume that $K_{X_i} + D_i$ is not f_i -nef. Then we can take a $(K_{X_i} + D_i)$ -negative extremal ray R (or, more generally, a $(K_{X_i} + D_i)$ -negative extremal face F) of $\overline{NE}(X_i/Y)$. Thus we have a contraction morphism φ_R : $X_i \longrightarrow W_i$ over Y. If dim $W_i < \dim X_i$, then we set $\widetilde{X} := X_i$ and $\widetilde{D} := D_i$ and stop the process. If φ_R is birational, then we put $X_{i+1} :=$ $\operatorname{Proj}_{W_i} \bigoplus_{m \ge 0} \varphi_{R*} \mathcal{O}_{X_i}(m(K_{X_i} + D_i)), D_{i+1} :=$ the proper transform of $\varphi_{R*}D_i$ on X_{i+1} and repeat this process. We note that (X_{i+1}, D_{i+1}) is the log canonical model of (X_i, D_i) over W_i . If $K_{W_i} + \varphi_{R*}D_i$ is \mathbb{Q} -Cartier, then $X_{i+1} \simeq W_i$. So, this process coincides with the usual one if the varieties X_i are \mathbb{Q} -factorial. It is not difficult to see that

Date: 2003/6/11.

This note was written in order to answer Takagi's question.

OSAMU FUJINO

 $X_i \longrightarrow W_i \longleftarrow X_{i+1}$ is of type (DS) or (SS) (for the definitions of (DS) and (SS), see Definition 6 in [F]). Then, this process always terminates by the same proof as in [F]. For the details, see the final part of Step 2 in the proof of Theorem 1 in [F].

References

[F] O. Fujino, On special termination, preprint, 2002.

Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp