A REMARK ON THE LOG MMP (PRIVATE NOTE)

OSAMU FUJINO

Abstract

In this short note, we treat the log MMP without the assumption that the variety is \mathbb{Q}-factorial.

This short note is an answer to Takagi's question. We will work over \mathbb{C} throughout this note. For simplicity, we treat only klt pairs and \mathbb{Q}-divisors in this note.

Theorem 1. Assume that the log MMP holds for \mathbb{Q}-factorial klt paris in dimension n. Then the following modified version of the \log MMP works for (not necessarily \mathbb{Q}-factorial) klt pairs in dimension n.
Proof and explanation of the log MMP without \mathbb{Q}-factoriality. We start with a projective morphism $f: X \longrightarrow Y$, where $X_{0}:=X$ is a (not necessarily \mathbb{Q}-factorial) normal variety, and a \mathbb{Q}-divisor $D_{0}:=D$ on X such that (X, D) is klt. The aim is to set up a recursive procedure which creates intermediate $f_{i}: X_{i} \longrightarrow Y$ and D_{i}. After finitely many steps, we obtain a finial objects $\widetilde{f}: \widetilde{X} \longrightarrow Y$ and \widetilde{D}. Assume that we already constructed $f_{i}: X_{i} \longrightarrow Y$ and D_{i} with the following properties:
(i) f_{i} is projective,
(ii) D_{i} is a \mathbb{Q}-divisor on X_{i},
(iii) $\left(X_{i}, D_{i}\right)$ is klt.

If $K_{X_{i}}+D_{i}$ is f_{i}-nef, then we set $\widetilde{X}:=X_{i}$ and $\widetilde{D}:=D_{i}$. Assume that $K_{X_{i}}+D_{i}$ is not f_{i}-nef. Then we can take a $\left(K_{X_{i}}+D_{i}\right)$-negative extremal ray R (or, more generally, a ($K_{X_{i}}+D_{i}$)-negative extremal face F) of $\overline{N E}\left(X_{i} / Y\right)$. Thus we have a contraction morphism φ_{R} : $X_{i} \longrightarrow W_{i}$ over Y. If $\operatorname{dim} W_{i}<\operatorname{dim} X_{i}$, then we set $\widetilde{X}:=X_{i}$ and $\widetilde{D}:=D_{i}$ and stop the process. If φ_{R} is birational, then we put $X_{i+1}:=$ $\operatorname{Proj}_{W_{i}} \bigoplus_{m>0} \varphi_{R *} \mathcal{O}_{X_{i}}\left(m\left(K_{X_{i}}+D_{i}\right)\right), D_{i+1}:=$ the proper transform of $\varphi_{R *} D_{i}$ on \bar{X}_{i+1} and repeat this process. We note that $\left(X_{i+1}, D_{i+1}\right)$ is the \log canonical model of $\left(X_{i}, D_{i}\right)$ over W_{i}. If $K_{W_{i}}+\varphi_{R *} D_{i}$ is \mathbb{Q} Cartier, then $X_{i+1} \simeq W_{i}$. So, this process coincides with the usual one if the varieties X_{i} are \mathbb{Q}-factorial. It is not difficult to see that

[^0]$X_{i} \longrightarrow W_{i} \longleftarrow X_{i+1}$ is of type $(D S)$ or ($S S$) (for the definitions of $(D S)$ and $(S S)$, see Definition 6 in $[\mathrm{F}])$. Then, this process always terminates by the same proof as in $[\mathrm{F}]$. For the details, see the final part of Step 2 in the proof of Theorem 1 in $[F]$.

References

[F] O. Fujino, On special termination, preprint, 2002.
Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp

[^0]: Date: 2003/6/11.
 This note was written in order to answer Takagi's question.

