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Abstract. If a toric foliation on a projective Q-factorial toric variety has an extremal
ray whose length is longer than the rank of the foliation, then the associated extremal
contraction is a projective space bundle and the foliation is the relative tangent sheaf of
the extremal contraction.
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1. Introduction

Let us start with the definition of foliations on normal algebraic varieties.

Definition 1.1 (Foliations and toric foliations). A foliation on a normal algebraic variety
X is a nonzero saturated subsheaf F ⊂ TX that is closed under the Lie bracket, where
TX is the tangent sheaf of X. We note that the rank of the foliation F means the rank
of the coherent sheaf F .
We further assume that X is toric. Then a foliation F on X is called toric if the sheaf

F is torus equivariant.

The following result on toric foliations is a starting point of this paper.

Theorem 1.2 (see [P]). Let X = X(Σ) be a Q-factorial toric variety with its fan Σ in
the lattice N ≃ Zn. Then there exists a one-to-one correspondence between the set of toric
foliations on X and the set of complex vector subspaces V ⊂ NC := N ⊗Z C ≃ Cn.
Let FV be the toric foliation associated to a complex vector subspace V ⊂ NC (here, we

should remark that the rank of FV is dimC V ). Then

KFV
:= −c1(FV ) = −

∑
ρ⊂V

Dρ

holds, that is, the first Chern class of FV is
∑

ρ⊂V Dρ, where Dρ is the torus invariant
prime divisor corresponding to the one-dimensional cone ρ in Σ. In particular, we have

KFV
= KX +

∑
ρ ̸⊂V

Dρ.
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For the basics of toric foliations, see also [CC] and [W]. By [FjS], we see that we can
run the minimal model program with respect to KF for any foliation F on a projective
Q-factorial toric variety X. For more details on the toric foliated minimal model program,
see [CC] and [W]. In this paper, we establish:

Theorem 1.3 (Main Theorem). Let X be a projective Q-factorial toric variety and let
F be a toric foliation of rank r on X. Then

lF (R) := min
[C]∈R

{−KF · C} ≤ r + 1

holds for every extremal ray R of NE(X) = NE(X). Moreover, if lF (R) > r holds for
some extremal ray R of NE(X), then the contraction morphism φR : X → Y associated
to R is a Pr-bundle over Y . In this case, F = TX/Y holds, where TX/Y is the relative
tangent sheaf of φR : X → Y . In particular, F is locally free.

We note that we call lF (R) the length of an extremal ray R with respect to the foliation
F . We will use Reid’s description of the toric extremal contraction morphisms in [R]
(see also [M, Chapter 14]) for the proof of Theorem 1.3. This paper can be seen as a
continuation of [Fj1] (see also [Fj2]).
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2. Preliminaries on toric varieties

Let N ≃ Zn be a lattice of rank n. A toric variety X(Σ) is associated to a fan Σ, a
collection of convex cones σ ⊂ NR := N ⊗Z R satisfying:

• Each convex cone σ is a rational polyhedral cone in the sense that there are finitely
many n1, . . . , ns ∈ N ⊂ NR such that

σ = {r1n1 + · · ·+ rsns; ri ≥ 0} =: ⟨n1, . . . , ns⟩,
and it is strongly convex in the sense that

σ ∩ −σ = {0}.
• Each face τ of a convex cone σ ∈ Σ is again an element in Σ.
• The intersection of two cones in Σ is a face of each.

The dimension dim σ of a cone σ is the dimension of the linear space Rσ = σ + (−σ)
spanned by σ. We define the sublattice Nσ of N generated (as a subgroup) by σ ∩N as
follows:

Nσ := σ ∩N + (−σ ∩N).

If σ is a k-dimensional simplicial cone, and v1, . . . , vk are the first lattice points along the
edges of σ, then σ = ⟨v1, . . . , vk⟩ holds. The multiplicity of σ is defined to be the index of
the lattice generated by the {v1, . . . , vk} in the lattice Nσ;

mult(σ) := [Nσ : Zv1 + · · ·+ Zvk].
We note that the affine toric variety X(σ) associated to the cone σ is smooth if and only
if mult(σ) = 1. We also note that a toric variety X(Σ) is Q-factorial if and only if each
cone σ ∈ Σ is simplicial (see e.g. [M, Lemma 14-1-1]).
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The star of a cone τ ∈ Σ can be defined abstractly as the set of cones σ in Σ that
contain τ as a face. Such cones σ are determined by their images in N(τ) := N/Nτ , that
is, by

σ := (σ + (Nτ )R) /(Nτ )R ⊂ N(τ)R.

These cones {σ; τ ≺ σ} form a fan in N(τ), and we denote this fan by Star(τ). We
set V (τ) = X(Star(τ)), that is, the toric variety associated to the fan Star(τ). It is
well known that V (τ) is an (n − k)-dimensional closed toric subvariety of X(Σ), where
dim τ = k. If dim V (τ) = 1 (resp. n − 1), then we call V (τ) a torus invariant curve
(resp. torus invariant divisor). For the details about the correspondence between τ and
V (τ), see [Fl, 3.1 Orbits].

3. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3.

Proof of Theorem 1.3. We assume that the toric variety X is associated to a fan Σ, which
is a collection of convex cones in N ≃ Zn as explained in Section 2. In particular,
dimX = n. It is well known that every extremal ray of NE(X) = NE(X) is spanned
by a torus invariant curve (see e.g. [M, Theorem 14-1-4]). Let R be an extremal ray
of NE(X). If lF (R) ≤ r holds, then there is nothing to prove. Therefore, we assume
that −KF · C > r holds for every torus invariant curve C with [C] ∈ R. We further
assume that C corresponds to an (n−1)-dimensional cone W = ⟨v1, . . . , vn−1⟩ ∈ Σ, where
v1, . . . , vn−1 are primitive vectors. Let vn, vn+1 ∈ N be the two primitive vectors such that
they together with W generate the two n-dimensional cones σ, σ′ ∈ Σ, respectively. As
usual, we can write

(3.1) a1v1 + · · ·+ an−1vn−1 + anvn + an+1vn+1 = 0

such that ai is an integer for every i with gcd(a1, . . . , an+1) = 1 and an, an+1 > 0. We
should remark that for a 1-dimensional cone ⟨v⟩ ∈ Σ, where v ∈ N is a primitive vector,
we have the following formula for the intersection number of Dv := V (⟨v⟩) with C (see
e.g. [CLS, Proposition 6.4.4]):

Dv · C =


0 · · · v ̸∈ {v1, . . . , vn+1}

aimult(W )

anmult(σ)
· · · v = vi for 1 ≤ i ≤ n

mult(W )

mult(σ′)
· · · v = vn+1

In this setting, [M, Proposition 14-1-5 (i)] says that for 1 ≤ i ≤ n − 1 with ai > 0, we
have

⟨{v1, . . . , vn} \ {vi}⟩ ∈ Σ

and
[V (⟨{v1, . . . , vn} \ {vi}⟩)] ∈ R.

Thus, we may assume that

a1 ≤ · · · ≤ an ≤ an+1

by changing the order. In particular, the above formula tells us that D · C ≤ 1 for any
torus invariant divisor D on X. Since we have

−KF · C =
∑
vi∈V

V (⟨vi⟩) · C > r,
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we obtain 1 ≤ i1 < i2 < · · · < ir < ir+1 ≤ n+ 1 such that

vi1 , vi2 , . . . , vir , vir+1 ∈ V.

Since the rank of F is r, we obtain dimC V = r and

V = R⟨vi1 , vi2 , . . . , vir , vir+1⟩ ⊗R C
= R⟨vi1 , vi2 , . . . , vir⟩ ⊗R C.

In particular, we have vi ̸∈ V for every i ̸∈ {i1, i2, . . . , ir, ir+1}. Then ai = 0 holds in
(3.1) for every i ̸∈ {i1, i2, . . . , ir, ir+1}. Thus, {i1, i2, . . . , ir, ir+1} = {n − r + 1, n − r +
2, . . . , n, n + 1} holds and (3.1) becomes

(3.2) an−r+1vn−r+1 + · · ·+ an+1vn+1 = 0.

We define n-dimensional cones

σi := ⟨v1, . . . , vi−1, vi+1, . . . , vn+1⟩ ∈ Σ

for n− r + 1 ≤ i ≤ n+ 1. We put µi,j = σi ∩ σj ∈ Σ for i ̸= j. We note that

r < −KF · V (µk,n+1) ≤
1

an+1

(
n+1∑

i=n−r+1

ai

)
mult(µk,n+1)

mult(σk)

≤ (r + 1)
mult(µk,n+1)

mult(σk)

(3.3)

holds for every n− r + 1 ≤ k ≤ n. By definition, we know that

mult(σk)

mult(µk,n+1)

is a positive integer. Hence (3.3) implies that

mult(µk,n+1) = mult(σk)

holds for every n− r+1 ≤ k ≤ n. Therefore, ak divides an+1 for every n− r+1 ≤ k ≤ n.
By (3.3), we obtain the following claim. Though the proof is completely similar to the
proof of the claim in [Fj1, Proposition 2.9], we describe it for the sake of completeness.

Claim.

an−r+1 = · · · = an+1 = 1.

Proof of Claim. Suppose that an−r+1 ̸= an+1. Since

vn−r+1 = − 1

an−r+1

n+1∑
i=n−r+2

aivn+1

is a primitive vector, an−r+2 ̸= an+1 also holds. Namely,

an−r+1

an+1

,
an−r+2

an+1

≤ 1

2
,

and this contradicts (3.3). □

Thus, (3.2) is nothing but

vn−r+1 + · · ·+ vn+1 = 0.
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Since this equality says that vi = −vn+1 in N/Nµi,n+1
for every n − r + 1 ≤ i ≤ n, vi

generates N/Nµi,n+1
, that is, we have an isomorphism

(3.4) Zvi
∼−→ N/Nµi,n+1

.

Let v be any element of N . Then, by (3.4), we can find bn−r+1, . . . , bn ∈ Z such that

v − (bn−r+1vn−r+1 + · · ·+ bnvn) ∈ N⟨v1,...,vn−r⟩.

This implies that {vn−r+1, . . . , vn} spans N⟨vn−r+1,...,vn⟩ and that there exists a splitting
N = N⟨vn−r+1,...,vn⟩ ⊕N⟨v1,...,vn−r⟩. The natural projection map

N → N/N⟨vn−r+1,...,vn⟩

and the fan Σ define a fan ΣY in N/N⟨vn−r+1,...,vn⟩. Then we obtain a toric extremal
contraction morphism of fibering type

φR : X = X(Σ) → Y := Y (ΣY ).

For the details of the above description of toric extremal contractions, see e.g. [M, Corol-
lary 14-2-2]. Since {vn−r+1, . . . , vn} spans N⟨vn−r+1,...,vn⟩,

vn−r+1 + · · ·+ vn+1 = 0,

and there exists a splitting

N = N⟨vn−r+1,...,vn⟩ ⊕N⟨v1,...,vn−r⟩,

the extremal contraction φR : X → Y is a Pr-bundle (see e.g. [Fl, Exercise. (Fiber bundles)
on page 41]). Hence, we can easily check that F = TX/Y (see e.g. [P, Proposition 3.1.6])
and that lF (R) = r + 1 holds under the assumption that lF (R) > r. Thus we obtain all
the desired properties. We finish the proof. □
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