
ON TORIC FOLIATED PAIRS

OSAMU FUJINO AND HIROSHI SATO

Abstract. We discuss lengths of extremal rational curves, Fujita’s freeness, and the
Kodaira vanishing theorem for log canonical toric foliated pairs.
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1. Introduction

This paper is a continuation of [FjS2] and is obviously a generalization of [Fj1]. Through-
out this paper, we will work over C, the field of complex numbers. The following theorem
is a log canonical generalization of [FjS2, Theorem 1.3] or is a generalization of [Fj1,
Theorem 0.1] for toric foliated pairs. Note that our approach in this paper is based on
the toric Mori theory (see [R], [M, Chapter 14], [Fj1], and [FjS1]).

Theorem 1.1 (Lengths of extremal rational curves for toric foliated pairs). Let X be
a projective (not necessarily Q-factorial) toric variety and let (F ,∆) be a log canonical
toric foliated pair on X with rankF = r. Then

l(F ,∆)(R) := min
[C]∈R

{−(KF +∆) · C} ≤ r + 1

holds for every extremal ray R of the Kleiman–Mori cone NE(X) = NE(X). Moreover,
if l(F ,∆)(R) > r holds for some extremal ray R of NE(X), then the contraction morphism
φR : X → Y associated to R is a Pr-bundle over Y . In this case, F = TX/Y holds, where
TX/Y is the relative tangent sheaf of φR : X → Y , and the sum of the coefficients of ∆ is
less than one. In particular, the foliation F is locally free.

We note that we have already treated Theorem 1.1 under the extra assumption that
X is Q-factorial and ∆ = 0 in [FjS2, Theorem 1.3]. By Theorem 1.1, we have the cone
theorem for log canonical toric foliated pairs.
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Corollary 1.2 (Cone theorem for toric foliated pairs). Let (F ,∆) be a log canonical toric
foliated pair on a projective toric variety X with rankF = r. Then we have

NE(X) = NE(X) =
∑
i

R≥0[Ci]

where Ci is a torus invariant curve with −(KF + ∆) · Ci ≤ r + 1 for every i. Let R
be an extremal ray of NE(X). Then we can choose Ci such that −(KF + ∆) · Ci ≤ r
with R = R≥0[Ci] unless the associated contraction φR : X → Y is a Pr-bundle over Y ,
F = TX/Y , and the sum of the coefficients of ∆ is less than one.

Corollary 1.2 is almost obvious by Theorem 1.1. It is a generalization of the cone
theorem for toric varieties established in [Fj1, Theorem 0.1]. More precisely, if rankF =
dimX, then Theorem 1.1 and Corollary 1.2 recovers [Fj1, Theorem 0.1]. Fujita’s freeness
for log canonical toric foliated pairs is an easy consequence of the cone theorem: Corollary
1.2.

Theorem 1.3 (Fujita’s freeness for toric foliated pairs). Let (F ,∆) be a log canonical
toric foliated pair on a projective toric variety X. Let r denote the rank of F . Let H
be a Cartier divisor on X such that (H − (KF +∆)) · C ≥ r + 1 holds for every torus
invariant curve C on X. Then the complete linear system |H| is basepoint-free.

For toric foliations on smooth projective toric varieties, we have the following statement
on Fujita’s freeness.

Theorem 1.4 (Fujita’s freeness for toric foliations). Let F be a toric foliation with
rankF = r on a smooth projective toric variety X. Let A be an ample Cartier divisor on
X. Then |KF + (r+ 1)A| is basepoint-free. Moreover, |KF + rA| is basepoint-free unless
X has a Pr-bundle structure φ : X → Y , F = TX/Y , and A · ℓ = 1 for a line ℓ in a fiber
of φ : X → Y .

If rankF = dimX in Theorem 1.4, then it is nothing but the original version of Fujita’s
freeness for smooth projective toric varieties. It is natural to formulate Fujita’s freeness
conjecture for foliations.

Conjecture 1.5 (Fujita’s freeness conjecture for foliations). Let X be a smooth projective
variety and let F be a foliation on X with rankF = r. Let A be an ample Cartier divisor
on X. Then |KF + (r + 1)A| is basepoint-free.

Since any ample Cartier divisor on a smooth projective toric variety is very ample, we
have the following statement on Fujita’s very ampleness.

Theorem 1.6 (Fujita’s very ampleness for toric foliations). Let F be a toric foliation
with rankF = r on a smooth projective toric variety X. Let A be an ample Cartier divisor
on X. Then |KF + (r + 2)A| is very ample. Moreover, |KF + (r + 1)A| is very ample
unless X has a Pr-bundle structure φ : X → Y , F = TX/Y , and A · ℓ = 1 for a line ℓ in
a fiber of φ : X → Y .

Finally, although we do not treat any applications in this paper, we show that the
Kodaira vanishing theorem holds for log canonical toric foliated pairs.

Theorem 1.7 (Kodaira’s vanishing theorem for toric foliated pairs). Let (F ,∆) be a log
canonical toric foliated pair on a projective toric variety X. Let L be a Q-Cartier Weil
divisor on X such that L− (KF +∆) is ample. Then H i(X,OX(L)) = 0 holds for every
positive integer i.
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It is a special case of the vanishing theorems established in [Fj2].

Acknowledgments. The first author was partially supported by JSPS KAKENHI Grant
Numbers JP20H00111, JP21H04994, JP23K20787. The second author was partially sup-
ported by JSPS KAKENHI Grant Number JP24K06679.

In this paper, we will use the same notation as in [FjS2]. We will freely use the basic
definitions and results in [FjS2]. For the details of toric varieties, see [O1], [O2], [Fl], and
[CLS]. For basic definitions and results of the theory of minimal models, see [Fj3] and
[Fj4].

2. Preliminaries

In this section, we collect some definitions and results for the reader’s convenience. Let
us start with the definition of foliations on normal algebraic varieties.

Definition 2.1 (Foliations and toric foliations). A foliation on a normal algebraic variety
X is a nonzero saturated subsheaf F ⊂ TX that is closed under the Lie bracket, where
TX is the tangent sheaf of X. We note that the rank of the foliation F means the rank
of the coherent sheaf F .
We further assume that X is toric. Then a foliation F on X is called toric if the sheaf

F is torus equivariant.

The following result on toric foliations is a starting point of [FjS2] and this paper.

Theorem 2.2 (see [Pn]). Let X = X(Σ) be a Q-factorial toric variety with its fan Σ
in the lattice N ' Zn. Then there exists a one-to-one correspondence between the set of
toric foliations on X and the set of complex vector subspaces V ⊂ NC := N ⊗Z C ' Cn.
Let FV be the toric foliation associated to a complex vector subspace V ⊂ NC. Then

KFV
:= −c1(FV ) = −

∑
ρ⊂V

Dρ

holds, that is, the first Chern class of FV is
∑

ρ⊂V Dρ, where Dρ is the torus invariant
prime divisor corresponding to the one-dimensional cone ρ in Σ. In particular, we have

KFV
= KX +

∑
ρ ̸⊂V

Dρ.

We note that rankF = dimC V .

For the details, see [Pn], [W] and [CC]. Although we do not need it in this paper, we
make a remark for the reader’s convenience.

Remark 2.3 (see [CC, Proposition 1.12 (2)]). Let FV be the toric foliation associated
to a complex vector subspace V ⊂ NC. Then Dρ is FV -invariant if and only if ρ 6⊂ V .

Let us recall the definition of log canonical toric foliated pairs. We note that if rankF =
dimX in Definition 2.4 then it is nothing but the usual definition of toric log canonical
pairs.

Definition 2.4 (Log canonical toric foliated pairs, [CC, Definition 2.1]). A toric foliated
pair (F ,∆) on a toric variety X consists of a toric foliation F and an effective torus

invariant R-divisor ∆ on X such that KF +∆ is R-Cartier. Let π : X̃ → X be a proper
toric birational morphism of toric varieties. Then we can write

KF̃ + π−1
∗ ∆ = π∗(KF +∆) +

∑
E

a(E,F ,∆)E



4 OSAMU FUJINO AND HIROSHI SATO

where F̃ is the induced foliation on X̃ and the sum is over all π-exceptional divisors E.
We call a(E,F ,∆) the discrepancy of E with respect to (F ,∆). We put ι(E) = 0 if E

is F̃ -invariant and ι(E) = 1 otherwise. We say that the pair (F ,∆) is log canonical if

a(E,F ,∆) ≥ −ι(E) for any proper birational toric morphism π : X̃ → X and for any

π-exceptional prime divisor E on X̃.

Although the following lemma is easy to prove, it is very important.

Lemma 2.5 ([CC, Proposition 3.8 (1)]). A toric foliated pair (F ,∆) is log canonical if
and only if Supp∆ ⊂ SuppKF and the coefficients of ∆ are in [0, 1].

We prove Lemma 2.5 for the sake of completeness.

Proof. We assume that F is the toric foliation associated to a complex vector subspace
V ⊂ NC. Then we have

KF = KX +
∑
ρ ̸⊂V

Dρ

by Theorem 2.2. We put

∆ =
∑
ρ

bρDρ

with bρ ≥ 0. Hence we have

(2.1) KF +∆ = KX +
∑
ρ ̸⊂V

Dρ +
∑
ρ

bρDρ.

By definition, we can easily see that (F ,∆) is log canonical if and only if(
X,
∑
ρ ̸⊂V

Dρ +
∑
ρ

bρDρ

)
is log canonical in the usual sense. Thus the pair (F ,∆) is log canonical if and only if
Supp∆ ⊂ SuppKF and the coefficients of ∆ are in [0, 1]. □
We close this section with a remark on the minimal model program.

Remark 2.6. Let (F ,∆) be a log canonical toric foliated pair on a projective Q-factorial
toric variety X. Then we can run the minimal model program with respect to KF + ∆
(see, for example, [R], [M], [Fj1], and [FjS1]). By (2.1) in the proof of Lemma 2.5, we see
that the log canonicity of (F ,∆) is preserved by the above minimal model program.

3. Lemmas on projective bundles

In this section, we prepare some lemmas on projective bundles over curves for the proof
of Theorem 1.1. Let us start with an easy lemma on projective bundles over a smooth
rational curve.

Lemma 3.1. Let π : X → Y be a Pr-bundle over P1. We write

π : X = PP1(OP1 ⊕OP1(c1)⊕ · · · ⊕ OP1(cr)) → P1

with c1 ≤ · · · ≤ cr. Note that π : X → Y is toric. If there exists an extremal ray R of
NE(X) such that KX/Y ·R = 0, then c1 = · · · = cr = 0, that is, X = Pr ×P1 and π is the
second projection.



ON TORIC FOLIATED PAIRS 5

Proof. Since π : X → Y is a Pr-bundle, we have

OX(KX/Y ) = π∗OP1

(
r∑
i=1

ci

)
⊗OX(−(r + 1)).

Note that NE(X) is spanned by two extremal rays. One extremal ray corresponds to the
projection π : X → Y . Therefore, KX/Y is negative on it. By assumption, KX/Y · C ≤ 0
holds for every horizontal torus invariant curve C on X. This implies c1 = · · · = cr = 0.
Thus X = Pr × P1 and π : X → Y is the second projection. We finish the proof. □

Lemma 3.2 is a slight generalization of Lemma 3.1.

Lemma 3.2. Let π : X → Y be a Pr-bundle over P1 and let ∆ be a torus invariant
horizontal effective R-divisor on X such that every coefficient of ∆ is less than one. If
there exists an extremal ray R of NE(X) such that (KX/Y +∆) ·R = 0, then X = Pr×P1

and π is the second projection.

Proof. As in the proof of Lemma 3.1, we write

π : X = PP1(OP1(c0)⊕OP1(c1)⊕ · · · ⊕ OP1(cr)) → P1

with 0 = c0 ≤ c1 ≤ · · · ≤ cr. By assumption, we can write

∆ =
r∑
i=0

biHi

with bi ∈ [0, 1) such that

OX(Hi) ' OX(1)⊗ π∗OP1(−ci)

for every i. Let P be a point of Y = P1. Then KX/Y +∆ is R-linearly equivalent to

π∗

(
r∑
i=0

(1− bi)ciP

)
+

(
−(r + 1) +

r∑
i=0

bi

)
H0.

As in the proof of Lemma 3.1, (KX/Y +∆)·C ≤ 0 holds for every horizontal torus invariant
curve C on X. This implies that

r∑
i=0

(1− bi)ci ≤ 0

holds. Hence we obtain c0 = c1 = · · · = cr = 0. This is what we wanted. □

The final lemma in this section is similar to Lemma 3.2 above. However, we note that
π : X → Y is not toric when Y 6= P1.

Lemma 3.3. Let Y be a smooth projective curve and let Li be a line bundle on Y for
every i. We consider a Pr-bundle π : X := PY (L0 ⊕ · · · ⊕ Lr) → Y over Y . Let Hi be the
horizontal divisor on X corresponding to

r⊕
j=0

Lj →
⊕
j ̸=i

Lj

for every i. We put ∆ =
∑r

i=0 biHi such that bi ∈ [0, 1) for every i. Assume that there

exists an extremal ray R of NE(X) such that (KX/Y +∆) ·R = 0. Then degLi = degL0
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holds for every i. In particular, if degL0 = 0, then degLi = 0 holds for every i. Let Ci
be the section of π : X → Y corresponding to

r⊕
j=0

Lj → Li

for every i. Then the numerical equivalence class of Ci is in R for every i.

Proof. Note that

OX(Hi) ' OX(1)⊗ π∗L⊗−1
i

holds for every i and that

OX(KX/Y ) ' π∗

(
r⊗
i=0

Li

)
⊗OX(−(r + 1)).

Hence we can easily check this lemma by modifying the proof of Lemma 3.2 suitably. □

4. Proof of Theorem 1.1

This section is the main part of this paper. Here we give a proof of Theorem 1.1.

Proof of Theorem 1.1. In Step 1, we will prove Theorem 1.1 under the extra assumption
that X is Q-factorial. Step 1 is essentially the same as the proof of [FjS2, Theorem 1.3].
Hence we will only explain how to modify it. Then, in Step 2, we will treat the case where
X is not Q-factorial. Step 2 is completely new. In our proof in Step 2, we have to treat
non-toric varieties.

Step 1. We assume that F is the toric foliation associated to a complex vector subspace
V ⊂ NC. Then we can write

∆ =
∑
ρ⊂V

bρDρ

with bρ ∈ [0, 1] and

KF +∆ = KX +
∑
ρ ̸⊂V

Dρ +
∑
ρ⊂V

bρDρ

since (F ,∆) is log canonical (see Lemma 2.5). We assume that l(F ,∆)(R) > r holds. From
now, we will only explain how to modify the proof of [FjS2, Theorem 1.3]. Hence we will
freely use the same notation as in the proof of [FjS2, Theorem 1.3]. We put bρ = 1 for
ρ 6⊂ V and bi := bρi with ρi := R≥0vi for every i. By changing the order, we may assume
that

(1− b1)a1 ≤ · · · ≤ (1− bn)an ≤ (1− bn+1)an+1.

Then we have

−(KF +∆) · C =
∑
vi∈V

(1− bi)V (〈vi〉) · C > r.

By the same argument as in the proof of [FjS2, Theorem 1.3], we obtain

an−r+1vn−r+1 + · · ·+ an+1vn+1 = 0.
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Then we see that

r < −(KF +∆) · V (µk,n+1) ≤
1

an+1

(
n+1∑

i=n−r+1

(1− bi)ai

)
mult(µk,n+1)

mult(σk)

≤ (r + 1)
mult(µk,n+1)

mult(σk)

holds for every n − r + 1 ≤ k ≤ n. Then the argument in the proof of [FjS2, Theorem
1.3] works without any changes. Thus we obtain that φR : X → Y is a Pr-bundle and
F = TX/Y . In this case, we can easily check that the sum of the coefficients of ∆ is less
than one by l(F ,∆)(R) > r.

From now, we may assume that X is not Q-factorial. It is sufficient to prove that
φR : X → Y is a Pr-bundle with F = TX/Y under the assumption that l(F ,∆)(R) > r.

Step 2. We take a small projective Q-factorialization ψ : X ′ → X (see [Fj1, Corollary
5.9]). Let ∆′ be the strict transform of ∆ and let F ′ be the induced foliation on X ′.
By construction, we have KF ′ +∆′ = ψ∗(KF +∆). Let φR : X → Y be the contraction
morphism associated to R. By considering φR ◦ ψ : X ′ → Y , we can find an extremal
ray R′ of NE(X ′) such that ψ∗R

′ = R and l(F ′,∆′)(R
′) > r. Since X ′ is Q-factorial, the

associated contraction φR′ : X ′ → Y ′ is a Pr-bundle, F ′ is the relative tangent sheaf
TX′/Y ′ , and the sum of the coefficients of ∆′ is less than one by Step 1. Note that we can
write

φR′ : X ′ = PY ′(L0 ⊕ L1 ⊕ · · · ⊕ Lr) → Y ′

with L0 = OY ′ since φR′ : X ′ → Y ′ is toric (see Lemma 6.1 below). We put E := Exc(ψ),
that is, the exceptional locus of ψ. Then E is a torus invariant closed subset of X ′ with
codimX′E ≥ 2.

Claim. E = φ−1
R′ (φR′(E)).

Proof of Claim. Let Z ′ be the section of φR′ : X ′ → Y ′ corresponding to
r⊕
i=0

Li → L0.

We consider ψZ′ := ψ|Z′ : Z ′ → Z := ψ(Z ′). Then any positive-dimensional fiber of ψZ′

is rationally chain connected since ψZ′ : Z ′ → Z is toric. Let C be a rational curve in a
fiber of ψZ′ . Let C ′ be the normalization of φR′(C). By applying Lemma 3.2 to the base
change of φR′ : X ′ → Y ′ by C ′ → Y ′, we can check that φ−1

R′ (φR′(C)) ⊂ E. Therefore, we
obtain

φ−1
R′ (φR′(Exc(ψZ′))) ⊂ E.

In particular, ψZ′ : Z ′ → Z is birational. If φ−1
R′ (φR′(Exc(ψZ′))) ⊊ E, then we can take a

curve C such that ψ(C) is a point with

C 6⊂ φ−1
R′ (φR′(Exc(ψZ′))).

Let C ′ be the normalization of φR′(C). We apply Lemma 3.3 to the base change of
φR′ : X ′ → Y ′ by C ′ → Y ′. Then

φ−1
R′ (φR′(C)) ∩ Z ′ ⊂ Exc(ψZ′) ⊂ φ−1

R′ (φR′(Exc(ψZ′))).
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Hence we have

C ⊂ φ−1
R′ (φR′(Exc(ψZ′))).

This is a contradiction. This implies that

E = φ−1
R′ (φR′(Exc(ψZ′))).

Hence, we have the desired equality E = φ−1
R′ (φR′(E)). We finish the proof of Claim. □

We put Li,Z′ := (φ∗
R′Li)|Z′ for every i. Let C be any curve on Z ′ such that ψZ′(C) is a

point. Then, by applying Lemma 3.3 as before, we can check that Li,Z′ · C = 0 holds for
every i. This implies that there exists a line bundle Li,Z on Z such that Li,Z′ = ψ∗

Z′Li,Z
holds for every i since ψZ′ : Z ′ → Z is a projective toric birational morphism. Hence,
Li,Z′ |C is a trivial line bundle for every i. Let C ′ be the normalization of φR′(C). Then
the base change of φR′ : X ′ → Y ′ by C ′ → Y ′ is the second projection

Pr × C ′ = PC′(OC′ ⊕ · · · ⊕ OC′) → C ′

by Lemma 3.3. In particular, we obtain that ∆′ · C† = 0 holds for every curve C† on X ′

such that ψ(C†) is a point.
We consider ψZ′ ◦ (φR′ |Z′)−1 : Y ′ → Z. By the above observation, for any point x ∈ X,

we see that (ψZ′ ◦ (φR′ |Z′)−1 ◦φR′)(ψ−1(x)) is a point. Therefore, there exists a morphism
X → Z and we have the following commutative diagram.

X ′

φR′

��

ψ // X

����
Y ′ ≃ // Z ′

ψZ′
// Z

By this commutative diagram and the observation before, we see that every fiber of
X → Z is contracted to a point by φR. Thus φR : X → Y factors through Z. Since the
relative Picard number of φR : X → Y is one, Z is isomorphic to Y . Hence we have the
following commutative diagram

X ′

φR′

��

ψ // X

φR

��
Y ′

ψY ′
// Y

and we see that Li = ψ∗
Y ′Mi holds for some line bundle Mi on Y for every i.

We put X ′′ := PY (M0⊕ · · ·⊕Mr). Then φR′ : X ′ → Y ′ is the base change of X ′′ → Y
by ψY ′ : Y ′ → Y . We put ρ : X ′ → X ′′. Then KX′/Y ′ + ∆′ = ρ∗(KX′′/Y + ∆′′) with
∆′′ := ρ∗∆

′. By construction, KX′/Y ′ + ∆′ = ψ∗(KX/Y + ∆). Note that X ′′ and X are
isomorphic in codimension one. By construction again, −(KX/Y + ∆) is ample over Y
and −(KX′′/Y +∆′′) is also ample over Y . Hence, X is isomorphic to X ′′ over Y . This is
what we wanted.

We finish the proof of Theorem 1.1. □

We close this section with an example, which shows that the estimate in Theorem 1.1
is sharp.
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Example 4.1. We consider N = Z2. We put

v1 =

(
1
0

)
, v2 =

(
1
1

)
, v3 =

(
0
1

)
, and v4 =

(
−1
−1

)
.

Let us consider the fan Σ consisting of R≥0v1 + R≥0v2, R≥0v2 + R≥0v3, R≥0v3 + R≥0v4,
R≥0v4 + R≥0v1, and their faces.

v1

v3 v2

v4

Then the toric variety X := X(Σ) is a P1-bundle PP1(OP1 ⊕ OP1(1)) over P1. We put
ρi := R≥0vi and Di := Dρi for every i. Then the Kleiman–Mori cone is spanned by [D2]
and [D1] = [D3], that is,

NE(X) = R≥0[D2] + R≥0[D3].

Let V be the complex vector subspace of NC spanned by v2. Let FV be the associated
toric foliation on X. Then rankFV = 1 and KFV

= −D2 − D4 (see Theorem 2.2).
Similarly, let W be the complex vector subspace of NC spanned by v1 and let FW be the
associated toric foliation on X. Then KFW

= −D1 and rankFW = 1 (see Theorem 2.2).
We can directly check that {

−KFV
·D2 = −1

−KFV
·D3 = 2

and {
−KFW

·D2 = 1

−KFW
·D3 = 0.

Note that R≥0[D3] corresponds to the P1-bundle structure of X and that R≥0[D2] gives a
blow-down X = PP1(OP1 ⊕OP1(1)) → P2.

5. Proofs of Corollary 1.2, Theorems 1.3, 1.4, 1.6, and 1.7

In this section, we prove the results in Section 1.

Proof of Corollary 1.2. It is well known that NE(X) is spanned by torus invariant curves
onX (see, for example, [R], [M], [Fj1], and [FjS1]). In particular, it is a rational polyhedral
cone. The statement on lengths of extremal rational curves follows from Theorem 1.1.
We finish the proof. □
Theorems 1.3 and 1.4 are easy consequences of the cone theorem: Corollary 1.2.

Proof of Theorem 1.3. By Corollary 1.2, H · R ≥ 0 for every extremal ray R of NE(X),
that is, H is a nef Cartier divisor on X. This implies that |H| is basepoint-free. □
Proof of Theorem 1.4. This follows from Corollary 1.2. More precisely, we can check the
nefness of KF + (r + 1)A and KF + rA under the given assumptions as in the proof of
Theorem 1.3. □
Theorem 1.6 is obvious by Theorem 1.4.
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Proof of Theorem 1.6. Since A is an ample Cartier divisor on a smooth projective toric
variety X, A is very ample (see, for example, [O2, Corollary 2.15]). Hence we have the
desired statement by Theorem 1.4. □

We finally prove the Kodaira vanishing theorem for log canonial toric foliated pairs.

Proof of Theorem 1.7. We assume that F is the toric foliation associated to a complex
vector subspace V ⊂ NC. Then we can write

∆ =
∑
ρ⊂V

bρDρ

with bρ ∈ [0, 1] and

KF +∆ = KX +
∑
ρ ̸⊂V

Dρ +
∑
ρ⊂V

bρDρ

since (F ,∆) is log canonical (see Lemma 2.5). By assumption,

L− (KF +∆) = L−

(
KX +

∑
ρ ̸⊂V

Dρ +
∑
ρ⊂V

bρDρ

)
is ample. By perturbing the coefficients, we can construct an effective Q-divisor ∆′ on X
such that

Supp∆′ = Supp

(∑
ρ ̸⊂V

Dρ +
∑
ρ⊂V

bρDρ

)
,

every coefficient of ∆′ is less than one, and L− (KX +∆′) is still ample. In this setting,
by [Fj2, Corollary 1.7], we obtain

0 = H i(X,OX(KX + dL− (KX +∆′)e)) = H i(X,OX(L))

for every positive integer i. This is what we wanted. □

6. Appendix: Toric projective bundles

In this appendix, we give a proof of the following well-known result (see [O1, p.41
Remark]) for the sake of completeness. To the best knowledge of the authors, we do not
find it in the standard literature.

Lemma 6.1 (Toric projective bundles, [O1, p.41 Remark]). Let φ : X → Y be a toric
morphism of toric varieties such that φ : X → Y is a Pr-bundle. Then X ' PY (L0⊕· · ·⊕
Lr) for some line bundles L0, . . . ,Lr on Y and φ : X → Y is isomorphic to the projection
π : PY (L0 ⊕ · · · ⊕ Lr) → Y .

Proof. Since X is a Pr-bundle over Y , we can write X = PY (E) for some vector bundle E
on Y . We take a torus invariant Cartier divisor H on X such that OX(H) ' OPY (E)(1).
Then we have φ∗OX(H) ' E . Thus, by replacing E with φ∗OX(H), we may assume
that E is a toric vector bundle on Y , that is, the torus action on Y lifts to an action on
E and it is linear on the fibers. Let U be any affine toric open subset U of Y . Then
it is not difficult to see that E|U is isomorphic to O⊕r+1

U as a toric vector bundle on U
(see, for example, [Py, Proposition 2.2]). Therefore, the restriction of φ : X → Y to U
is isomorphic to the second projection Pr × U → U . Let h : (N,Σ) → (N ′,Σ′) be a map
of fans corresponding to φ : X → Y . Let N ′′ be the kernel of h : N → N ′. Without loss
of generality, we may assume that N = N ′ ⊕ N ′′. We fix a Z-basis {n′′

1, . . . , n
′′
r} of N ′′.
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Since φ : X → Y is isomorphic to the second projection Pr × U → U for any affine toric
open subset U of Y , we can lift any cone σ′ ∈ Σ′ to a cone σ ∈ Σ. Hence we can find
Σ′-linear support functions h1, . . . , hr such that the map N ′

R → NR = N ′
R ⊕N ′′

R given by
y 7→ (y,−

∑r
i=1 hi(y)n

′′
i ) defines the desired lifts of cones. Let Li be the line bundle on Y

defined by the Σ′-linear support function hi for every i. Then, by construction, we can
check that X ' PY (OY ⊕ L1 ⊕ · · · ⊕ Lr) and φ : X → Y is isomorphic to the projection
π : PY (OY ⊕ L1 ⊕ · · · ⊕ Lr) → Y . We finish the proof. □
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