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Abstract. We consider various definitions of non-lc ideal sheaves – generaliza-
tions of the multiplier ideal sheaf which define the non-lc (non-log canonical) locus.
We introduce the maximal non-lc ideal sheaf and intermediate non-lc ideal sheaves
and consider the restriction theorem for these ideal sheaves. We also begin the de-
velopment of the theory of a characteristic p > 0 analog of maximal non-lc ideals,
utilizing some recent work of Blickle.
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1. Motivation

In this short section, we explain our motivation for the study of non-lc ideal

sheaves.
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1.1 (Motivation). Let X be a normal variety and ∆ an effective Q-divisor on X
such that KX + ∆ is Q-Cartier. In this situation, we want to define an ideal sheaf
I(X,∆) satisfying the following properties.

(A) The pair (X,∆) is log canonical if and only if I(X,∆) = OX .
(B) (Kodaira type vanishing theorem). Assume that X is projective. Let D be

a Cartier divisor on X such that D − (KX + ∆) is ample. Then

H i(X, I(X,∆)⊗OX(D)) = 0

for every i > 0.
(C) (Bertini type theorem). Let H be a general member of a free linear system

Λ on X. Then
I(X,∆) = I(X,∆ +H).

(D) (Restriction theorem). Assume that ∆ = S + B such that S is a normal
prime Weil divisor on X, B is an effective Q-divisor, and that S and B have
no common irreducible components. Then

I(X,S +B)|S = I(S,BS),

where (KX + S +B)|S = KS +BS.

We have already known that the (minimal) non-lc ideal sheaf JNLC(X,∆) intro-
duced in [F2] satisfies all the above properties. The intermediate non-lc ideal sheaves

J ′
l (X,∆) for every negative integer l, which will be defined in Section 8 below, sat-

isfy (A), (B), and (C). However, in general, (D) does not always hold for J ′
l (X,∆)

with l = −1,−2, · · · . The maximal non-lc ideal sheaf J ′(X,∆) also satisfies (A),
(B), and (C), and we do not know if (D) holds for J ′(X,∆) or not. However, we
have some evidence that it is true. In particular, we will give partial answers to
this question in Section 12 and in Section 13. In section 13, we also mention a link
between J ′(X,∆) and ideals that appear naturally in the study of the Hodge-theory
of singular varieties. We conclude this paper by developing a characteristic p > 0
analog of J ′(X,∆), relying heavily on some recent interesting work of Blickle, see
[B].

Finally, it should be noted that, in various presentations, Sándor Kovács has
recently been discussing how the ideal J ′(X,∆) is a natural ideal to consider. His
work in this direction is independent of the authors although certainly inspired by
connections with Du Bois singularities; see Section 13.

2. Introduction

The main purpose of this paper is to consider variants of the non-lc ideal sheaf

JNLC introduced in [F2]. We also consider various non-klt ideal sheaves. We will
explain our motivation, observations, and some attempts in the study of non-lc ideal

sheaves.
Let D be an effective R-divisor on a smooth complex variety X. We put

J ′(X,D) := J (X, (1− ε)D)

for 0 < ε ≪ 1, where the right hand side is the multiplier ideal sheaf associated to
(1−ε)D and it is independent of ε for sufficiently small 0 < ε≪ 1. By the definition
of J ′(X,D), the pair (X,D) is log canonical if and only if J ′(X,D) = OX . We call
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J ′(X,D) the maximal non-lc ideal sheaf of (X,D). We will discuss the definition
and the basic properties of J ′ in Section 7. In general, J (X,D) ( J (X, (1− ε)D)
for 0 < ε ≪ 1 and the relationship between J (X,D) and J ′(X,D) is not clear.
So, we need new ideas and techniques to handle J ′(X,D). We believe that the
Kawamata–Viehweg–Nadel vanishing theorem is not powerful enough for the study
of J ′(X,D). However, the new cohomological package of the first author, explained
in Section 4, seems well suited for this task.

Let X be a smooth variety and S a smooth irreducible divisor on X. Let B be
an effective R-divisor on X such that S 6⊂ Supp B. Then we have the following
equality

J ′(S,B|S) = J ′(X,S +B)|S.

See, for example, Theorem 12.7. We call it the restriction theorem. We will par-
tially generalize it to the case of singular varieties in Section 13. In [F2], the first
author introduced the notion of (minimal) non-lc ideal sheaves JNLC and proved
the restriction theorem

JNLC(S,B|S) = JNLC(X,S +B)|S.

Both of J ′(X,D) and JNLC(X,D) define the non-lc locus of the pair (X,D).
However, in general, J ′(X,D) does not always coincide with JNLC(X,D). We note
that

J (X,D) ⊂ JNLC(X,D) ⊂ J ′(X,D)

holds by the definitions of J , JNLC , and J ′. Although JNLC(X,D) seems to be the
most natural ideal that defines the non-lc locus of (X,D) from the point of view of
the minimal model program (cf. [F4]), J ′(X,D) may be more suitable to the theory
of multiplier ideal sheaves than JNLC(X,D).

More generally, we consider a family of non-lc ideal sheaves. We define interme-

diate non-lc ideal sheaves J ′
l (X,D) for every negative integer l. By the definition

of J ′
l (X,D) (which is a sheaf that varies with each negative integer l), J ′

l (X,D)
defines the non-lc locus of (X,D) and satisfies many of the same useful properties
that the first author’s original non-lc ideal JNLC(X,D) enjoys.

Furthermore, there are natural inclusions (where again, the l vary of the negative

integers)

JNLC(X,D) ⊂ · · · ⊂ J ′
l−1(X,D)

⊂ J ′
l (X,D) ⊂ J ′

l+1(X,D) ⊂ · · · ⊂ J ′(X,D) ⊂ OX .

Similarly, we also define a family of non-klt ideal sheaves Jl(X,D) for every non-
positive integer l. These sheaves satisfy

J (X,D) ⊂ · · · ⊂ Jl−1(X,D)

⊂ Jl(X,D) ⊂ Jl+1(X,D) ⊂ · · · ⊂ J0(X,D) ⊂ OX

and put possibly different scheme structures on the non-klt locus of (X,D). We
have natural inclusions

Jl(X,D) ⊂ J ′
l (X,D)

for every negative integer l, as well as the inclusions

J (X,D) ⊂ JNLC(X,D) and J0(X,D) ⊂ J ′(X,D).
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Let W be the union of all the lc centers of (X,D) (see our slightly non-standard
definition of lc centers in Section 3) and U = X \W . Then

Jl(X,D)|U = J ′
l (X,D)|U

for every negative integer l,

J (X,D)|U = JNLC(X,D)|U and J0(X,D)|U = J ′(X,D)|U .

Because the multiplier ideal sheaf has emerged as such a fundamental tool in higher
dimensional algebraic geometry, it is natural to desire a non-lc ideal sheaf which
agrees with the multiplier ideal sheaf in as wide a setting as possible. If we as-
sume that this is a desired property, then JNLC(X,D) is the right generalization of
J (X,D).

On the other hand, with regards to condition (B) from Section 1, one way to in-
terpret the term I(X,∆) is as a correction term which mitigates for the singularities
of ∆. From this point of view, using the maximal non-lc ideal sheaf J ′(X,∆) gives
a heuristically stronger statement as it says one has to “adjust” to lesser extent.

The multiplier ideal J (X = Spec R,∆) is also very closely related to the test ideal
τb(R,∆), a notion that appears in the theory of commutative algebra in positive
characteristic, see for example [T1]. We conclude this paper with several sections
which explore a positive characteristic analog of J ′(X,∆) which we call the non-F -
pure ideal and denote it by σ(X,∆). In order to define this ideal, we rely heavily on
some recent work of Blickle, see [B]. In section 15 we then relate the characteristic
zero notion J ′(X,∆) and the characteristic p > 0 notion σ(R,∆). In the final
section, we prove a restriction theorem for σ(X,∆), including a proof that the
formation of σ(X,∆) commutes with the restriction to an arbitrary codimension
normal F -pure center (which is a characteristic p > 0 analog of a log canonical
center).

We summarize the contents of this paper. This paper is divided into two parts.
Part I, consisting of Section 3–13, is devoted to the study of variants of non-lc ideal
sheaves JNLC on complex algebraic varieties. Part II, consisting of Section 14–16, is
devoted to the study of a positive characteristic analog of the maximal non-lc ideal
sheaves. These two parts are independent to each other, except for the definition of
the maximal non-lc ideal sheaves.

In Section 3, we define lc centers, non-klt centers, and non-lc centers. It is very
important to distinguish these three notions. In Section 4, we recall Ambro’s formu-
lation of Kollár’s torsion-free and vanishing theorems for the reader’s convenience.
In Section 5, we recall the notion of non-lc ideal sheaves introduced in [F2]. In
Section 6, we discuss how to define certain non-lc ideal sheaves. We also discuss
some properties which should be satisfied by these ideal sheaves. This section is
an informal discussion. In Section 7, we will define the maximal non-lc ideal sheaf

J ′ and investigate basic properties of J ′. In Section 8, we introduce the notion
of intermediate non-lc ideal sheaves. Section 9 is a supplement to the fundamental
theorems for the log minimal model program in [F4]. In Section 10, we discuss
various non-klt ideal sheaves. In Section 11, we recall Shokurov’s differents for the
restriction theorem discussed in Section 12. Sections 12 and 13 are attempts to
prove the restriction theorem for J ′. Also in section 13, we explain how J ′(X,∆)
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appears in the study of the Hodge theory of singular varieties. In Section 14, we
introduce a characteristic p analog of the maximal non-lc-ideal J ′(X,∆), called a
non-F-pure ideal, and investigate its basic properties. In Section 15, we explore the
relationship between non-F-pure ideals and maximal non-lc ideals, which is followed
by Section 16 where we prove a restriction theorem for non-F-pure ideals.

We will work over the complex number field C throughout Part I. But we note
that by using the Lefschetz principle, we can extend everything to the case where
the base field is an algebraically closed field of characteristic zero. Also, we will use
the following notation freely.

Notation. (i) For an R-Weil divisor D =
∑r

j=1 djDj such that Dj is a prime divisor

for every j and Di 6= Dj for i 6= j, we define the round-up pDq =
∑r

j=1pdjqDj

(resp. the round-down xDy =
∑r

j=1xdjyDj), where for every real number x, pxq

(resp. xxy) is the integer defined by x ≤ pxq < x+ 1 (resp. x− 1 < xxy ≤ x). The
fractional part {D} of D denotes D − xDy. We define

D=k =
∑

dj=k

djDj = k
∑

dj=k

Dj, D≤k =
∑

dj≤k

djDj ,

D<k =
∑

dj<k

djDj , D≥k =
∑

dj≥k

djDj and D>k =
∑

dj>k

djDj

for every k ∈ R. We put
kD = Supp D=k.

We note that 0D = Supp D=0 = 0 and 1D = Supp D=1 = D=1. We call D a
boundary R-divisor if 0 ≤ dj ≤ 1 for every j. We note that ∼Q (resp. ∼R) denotes
the Q-linear (resp. R-linear) equivalence of Q-divisors (resp. R-divisors).

(ii) For a proper birational morphism f : X → Y , the exceptional locus Exc(f) ⊂
X is the locus where f is not an isomorphism.
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for Young Scientists (A) ♯20684001 from JSPS and by the Inamori Foundation. The
second author was partially supported by an NSF postdoctoral fellowship and by
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Improvement of Research Environment for Young Researchers from SCF commis-
sioned by MEXT of Japan. They would like the referee for many useful suggestions.
A part of this work was done during visits of all the authors to MSRI. They are
grateful to MSRI for its hospitality and support.

Part 1. Variants of non-lc ideals JNLC

This part is devoted to the study of variants of non-lc ideal sheaves JNLC on
complex algebraic varieties.

3. Lc centers, non-klt centers, and non-lc centers

In this section, we quickly recall the notion of lc and klt paris and define lc centers,
non-klt centers, and non-lc centers.
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3.1 (Discrepancies, lc and klt pairs, etc.). Let X be a normal variety and B an
effective R-divisor on X such that KX + B is R-Cartier. Let f : Y → X be a
resolution such that Exc(f) ∪ f−1

∗ B has a simple normal crossing support, where
f−1
∗ B is the strict transform of B on Y . We write

KY = f ∗(KX +B) +
∑

i

aiEi

and a(Ei, X,B) = ai. We say that (X,B) is
{

log canonical (lc, for short) if ai ≥ −1 for every i, and,

kawamata log terminal (klt, for short) if ai > −1 for every i.

Note that the discrepancy a(E,X,B) ∈ R can be defined for every prime divisor
E over X. By definition, there exists the largest Zariski open set U (resp. U ′) of
X such that (X,B) is lc (resp. klt) on U (resp. U ′). We put Nlc(X,B) = X \ U
(resp. Nklt(X,B) = X \ U ′) and call it the non-lc locus (resp. non-klt locus) of the
pair (X,B). We sometimes simply denote Nlc(X,B) by XNLC . We will discuss
various scheme structures on Nlc(X,B) (resp. Nklt(X,B)) in Section 9 (resp. in
Section 10).

Let E be a prime divisor over X. The closure of the image of E on X is denoted
by cX(E) and called the center of E on X.

3.2 (Lc centers, non-klt centers, and non-lc centers). Let X be a normal variety and
B an effective R-divisor on X such that KX + B is R-Cartier. Let E be a prime
divisor over X. In this paper, we use the following terminology. The center cX(E)
is 





an lc center if a(E,X,B) = −1 and cX(E) 6⊂ Nlc(X,B),

a non-klt center if a(E,X,B) ≤ −1, and

a non-lc center if a(E,X,B) < −1.

The above terminology is slightly different from the usual one. We note that it is
very important to distinguish lc centers, non-klt centers, and non-lc centers in our
theory. In the traditional theory of multiplier ideal sheaves, we can not distinguish
among lc centers, non-klt centers, and non-lc centers. In our new framework, the
notion of lc centers plays very important roles. It is because our arguments heavily
depend on the new cohomological package reviewed in Section 4. It is much more
powerful than the Kawamata–Viehweg–Nadel vanishing theorem. We note that an
lc center is a non-klt center.

The next lemma is almost obvious by the definition of lc centers.

Lemma 3.3. The number of lc centers of (X,B) is finite even if (X,B) is not log

canonical.

We note the following elementary example.

Example 3.4. Let X = C2 = Spec C[x, y] and C = (y2 = x3). We consider the
pair (X,C). Then we can easily check that there is a prime divisor E over X such
that a(E,X,C) = −1 and cX(E) is the origin (0, 0) of C2 and that (X,C) is not
lc at (0, 0). Therefore, the center cX(E) is a non-klt center but not an lc center of
(X,C).
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4. New cohomological package

We quickly review Ambro’s formulation of torsion-free and vanishing theorems in
a simplified form. For more advanced topics and the proof, see [F3, Chapter 2]. The
paper [F1] may help the reader to understand the proof of Theorem 4.2. We think
that it is not so easy to grasp the importance of Theorem 4.2. We recommend the
reader to learn how to use Theorem 4.2 in [F2], [F3], [F4], and this paper.

4.1 (Global embedded simple normal crossing pairs). Let Y be a simple normal
crossing divisor on a smooth varietyM andD an R-divisor onM such that Supp(D+
Y ) is simple normal crossing and that D and Y have no common irreducible com-
ponents. We put B = D|Y and consider the pair (Y,B). Let ν : Y ν → Y be the
normalization. We put KY ν +Θ = ν∗(KY +B). A stratum of (Y,B) is an irreducible
component of Y or the image of some lc center of (Y ν ,Θ=1).

When Y is smooth and B is an R-divisor on Y such that Supp B is simple normal
crossing, we put M = Y ×A1 and D = B ×A1. Then (Y,B) ≃ (Y × {0}, B × {0})
satisfies the above conditions.

Theorem 4.2. Let (Y,B) be as above. Assume that B is a boundary R-divisor. Let

f : Y → X be a proper morphism and L a Cartier divisor on Y .

(1) Assume that L−(KY +B) is f -semi-ample. Let q be an arbitrary non-negative

integer. Then every non-zero local section of Rqf∗OY (L) contains in its support the

f -image of some stratum of (Y,B).
(2) Let π : X → V be a proper morphism and assume that L− (KY +B) ∼R f

∗H
for some π-ample R-Cartier R-divisor H on X. Then, Rqf∗OY (L) is π∗-acyclic,
that is, Rpπ∗R

qf∗OY (L) = 0 for every p > 0 and q ≥ 0.

Remark 4.3. It is obvious that the statement of Theorem 4.2 (1) is equivalent to
the following one.

(1′) Assume that L − (KY + B) is f -semi-ample. Let q be an arbitrary non-
negative integer. Then every associated prime of Rqf∗OY (L) is the generic point of
the f -image of some stratum of (Y,B).

For the proof of Theorem 4.2, see [F3, Theorem 2.39].

Remark 4.4. In Theorem 4.2 (2), it is sufficient to assume that H is π-nef and
π-log big. See [F3, Theorem 2.47]. We omit the technical details on nef and log big
divisors in order to keep this paper readable.

5. Non-lc ideal sheaves

Let us recall the definition of non-lc ideal sheaves (cf. [F2, Section 2] and [F4,
Section 7]).

Definition 5.1 (Non-lc ideal sheaf). Let X be a normal variety and B an R-
divisor on X such that KX + B is R-Cartier. Let f : Y → X be a resolution with
KY +BY = f ∗(KX +B) such that Supp BY is simple normal crossing. Then we put

JNLC(X,B) = f∗OY (p−(B<1
Y )q− xB>1

Y y)

= f∗OY (−xBY y +B=1
Y )
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and call it the (minimal) non-lc ideal sheaf associated to (X,B). If B is effective,
then JNLC(X,B) ⊂ OX .

The ideal sheaf JNLC(X,B) is independent of the choice of resolution, and thus
well-defined, by the following easy lemma.

Lemma 5.2. Let g : Z → Y be a proper birational morphism between smooth

varieties and BY an R-divisor on Y such that Supp BY is simple normal crossing.

Assume that KZ +BZ = g∗(KY +BY ) and that Supp BZ is simple normal crossing.

Then we have

g∗OZ(p−(B<1
Z )q− xB>1

Z y) ≃ OY (p−(B<1
Y )q− xB>1

Y y).

Proof. By KZ +BZ = g∗(KY +BY ), we obtain

KZ =g∗(KY +B=1
Y + {BY })

+ g∗(xB<1
Y y + xB>1

Y y)− (xB<1
Z y + xB>1

Z y)−B=1
Z − {BZ}.

If a(ν, Y, B=1
Y + {BY }) = −1 for a prime divisor ν over Y , then we can check that

a(ν, Y, BY ) = −1 by using [KM, Lemma 2.45]. Since g∗(xB<1
Y y+xB>1

Y y)−(xB<1
Z y+

xB>1
Z y) is Cartier, we can easily see that

g∗(xB<1
Y y + xB>1

Y y) = xB<1
Z y + xB>1

Z y + E,

where E is an effective f -exceptional Cartier divisor. Thus, we obtain

g∗OZ(p−(B<1
Z )q− xB>1

Z y) ≃ OY (p−(B<1
Y )q− xB>1

Y y).

This completes the proof. �

The next lemma is obvious by definition: Definition 5.1.

Lemma 5.3. Let X be a normal variety and B an effective R-divisor on X such

that KX +B is R-Cartier. Then (X,B) is lc if and only if JNLC(X,B) = OX .

In the following sections, we consider variants of non-lc ideal sheaves.

6. Observations towards non-lc ideal sheaves

First, we informally define J ′ as a limit of multiplier ideal sheaves. We will call
J ′(X,B) the maximal non-lc ideal sheaf of the pair (X,B). For the details, see
Section 7.

6.1. Let D be an effective R-divisor on a smooth variety X. Let f : Y → X be
a resolution such that Exc(f) ∪ Supp f−1

∗ D is simple normal crossing. Then the
multiplier ideal sheaf J (X,D) ⊂ OX associated to D was defined to be

J (X,D) = f∗OY (KY/X − xf ∗Dy),

where KY/X = KY − f
∗KX . In this situation, we put

J ′(X,D) = J (X, (1− ε)D)

for 0 < ε≪ 1. We note that the right hand side is independent of ε for 0 < ε≪ 1.
Therefore, we can write

J ′(X,D) =
⋂

0<ε

J (X, (1− ε)D)
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since
J (X, (1− ε)D) ⊂ J (X, (1− ε′)D)

for 0 < ε < ε′. We write KY + ∆Y = f ∗(KX +D). Then

J (X,D) = f∗OY (−x∆Y y),

and

J (X, (1− ε)D) = f∗OY (−x∆Y y +

∞∑

k=−∞

k∆Y )

for 0 < ε≪ 1. Since k∆Y is f -exceptional for k < 0, we can write

J ′(X,D) = f∗OY (−x∆Y y +
∞∑

k=1

k∆Y ),

This expression is very useful for generalizations.
By definition, we can easily check that

J (X, (1 + ε)D) = J (X,D)

for 0 < ε ≪ 1 and that J (X, (1 − ε)D) = J (X,D) for 0 < ε ≪ 1 if and only if
t = 1 is not a jumping number of J (X, tD). In this paper, we are mainly interested
in the case when D is a reduced divisor. In this case, t = 1 is a jumping number of
J (X, tD) and then J ′(X,D) ) J (X,D).

Next, we observe various properties which should be satisfied by non-lc ideal

sheaves.

6.2. Let X be a smooth projective variety and B an effective integral Cartier divisor
on X such that Supp B is simple normal crossing. We can write B =

∑∞
k=1 kBk,

where Bk := kB = Supp B=k. We would like to define an ideal sheaf I(X,B) ⊂ OX
such that Supp OX/I(X,B) = Nlc(X,B). Let us put

I(X,B) = OX(−
∞∑

k=2

mkBk)

for some mk ≥ 1 for every k ≥ 2. Then I(X,B) defines the non-lc locus of the pair
(X,B). Let L be a Cartier divisor on X such that A := L − (KX + B) is ample.
For various geometric applications, we think that it is natural to require

H i(X,OX(L)⊗ I(X,B)) = 0

for all i > 0. Since

OX(L)⊗ I(X,B) = OX(KX +B + A−
∞∑

k=2

mkBk)

= OX(KX +B1 +

∞∑

k=2

(k −mk)Bk + A),

In view of the Norimatsu vanishing theorem (cf. [L, Lemma 4.3.5]), if we hope for
vanishing, we should make mk equal k or k− 1 for every k ≥ 2. If mk = k for every
k ≥ 2, then

I(X,B) = JNLC(X,B).
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If mk = k − 1 for every k ≥ 2, then

I(X,B) = J ′(X,B).

Let f : Y → X be a blow-up along a stratum of Supp B, where a stratum of Supp B
means an lc center of (X, Supp B). We put KY + BY = f ∗(KX + B). Then it is
natural to require

I(Y,BY ) = OY (−
∞∑

k=2

nk
kBY )

such that nk = k or k − 1 for every k ≥ 2 and

f∗I(Y,BY ) = I(X,B).

We think that the most natural choices for non-lc ideal sheaves are

I(X,B) = JNLC(X,B) = OX(−
∞∑

k=2

kBk)

or

I(X,B) = J ′(X,B) = OX(−
∞∑

k=2

(k − 1)Bk).

The ideal sheaf JNLC(X,B) should be called minimal non-lc ideal sheaf of (X,B)
and J ′(X,B) should be called maximal non-lc ideal sheaf of (X,B).

The smaller B1+
∑∞

k=2(k−mk)Bk is, the more easily we can apply our torsion-free
theorem (cf. Theorem 4.2 (1)) to I(X,B). It is one of the main reasons why the
first author adopted JNLC(X,B) to define Nlc(X,B).

Finally, we put

I(X,B) = OX(−
1−l∑

k=2

kBk −
∞∑

k=2−l

(k − 1)Bk) =: J ′
l (X,B)

for l = 0,−1, · · · ,−∞. Then

JNLC(X,B) = J ′
−∞(X,B) ⊂ J ′

l (X,B) ⊂ J ′
0(X,B) = J ′(X,B)

and J ′
l (X,B) satisfies all the above desired properties for every l. We will discuss

J ′
l (X,B) for every negative integer l in Section 8. We do not know whether J ′

l (X,B)
with l 6= 0,−∞ is useful or not for geometric applications.

7. Maximal non-lc ideal sheaves

Let us define maximal non-lc ideal sheaves.

Definition 7.1. Let X be a normal variety and ∆ an R-divisor on X such that
KX + ∆ is R-Cartier. Let f : Y → X be a resolution with KY + ∆Y = f ∗(KX + ∆)
such that Supp ∆Y is simple normal crossing. Then we put

J ′(X,∆) = f∗OY (pKY − f
∗(KX + ∆) + εFq)

for 0 < ε≪ 1, where F = Supp ∆≥1
Y .
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It is easy to see that the right hand side does not depend on ε if 0 < ε≪ 1. We
note that

pKY − f
∗(KX + ∆) + εFq = p−∆Y + εFq

= −x∆Y y +
∞∑

k=1

k∆Y

for 0 < ε≪ 1. Therefore, we can write

J ′(X,∆) = f∗OY (p−∆Y + εFq)

= f∗OY (−x∆Y y +

∞∑

k=1

k∆Y ).

By Lemma 7.3 below, J ′(X,∆) does not depend on the resolution f : Y → X.
We note that

J (X,∆) = f∗OY (−x∆Y y)

is the multiplier ideal sheaf associated to the pair (X,∆) and that

JNLC(X,∆) = f∗OY (−x∆Y y + ∆=1
Y )

is the (minimal) non-lc ideal sheaf associated to the pair (X,∆) (cf. Definition 5.1).
It is obvious that

J (X,∆) ⊂ JNLC(X,∆) ⊂ J ′(X,∆)

by the above definitions, and it is also easy to check that the definition of J ′(X,∆)
agrees with that given in 6.1 when X is smooth and ∆ is effective.

From now on, we assume that ∆ is effective. Then J ′(X,∆) is an ideal sheaf on
X. We are mainly interested in the case when ∆ is effective due to following fact.

Lemma 7.2. Assume that ∆ is effective. Then (X,∆) is log canonical if and only

if J ′(X,∆) = OX.

Lemma 7.3. Let X be a smooth variety and ∆ an R-divisor on X such that Supp ∆
is simple normal crossing. Let f : Y → X be a proper birational morphism such that

Exc(f) ∪ Supp f−1
∗ ∆ is simple normal crossing. We put KY + ∆Y = f ∗(KX + ∆).

Then

f∗OY (p−∆Y + ε′F ′
q) ≃ OX(p−∆ + εFq)

for 0 < ε, ε′ ≪ 1, where F = Supp ∆≥1 and F ′ = Supp ∆≥1
Y .

Proof. Since KY + ∆Y = f ∗(KX + ∆), we can write

KY = f ∗(KX + {∆− εF}+ εF ) + f ∗
x∆− εFy−∆Y .

We note that {∆−εF}+εF is a boundary R-divisor whose support is simple normal
crossing for 0 < ε≪ 1 and that (X, {∆−εF}) is klt. Thus, a(ν,X, {∆−εF}+εF ) ≥
−1 for every ν (assuming again 0 < ε≪ 1). We can easily check that a(ν,X, F ) =
−1 if a(ν,X, {∆−εF}+εF ) = −1 and that a(ν,X, F ) = −1 induces a(ν,X,∆) ≤ −1
(cf. [KM, Lemma 2.45]). Therefore, the round-up of f ∗

x∆ − εFy − ∆Y + ε′F ′ is
effective. So, we can write

f ∗
x∆− εFy− x∆Y − ε

′F ′
y = E,
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where E is an effective Cartier divisor on Y . We can easily check that E is f -
exceptional for 0 < ε, ε′ ≪ 1. Thus, we obtain

f∗OY (p−∆Y + ε′F ′
q) ≃ OX(p−∆ + εFq)

since p−∆Y + ε′F ′
q = f ∗(p−∆ + εFq) + E. �

We can also define J ′ for ideal sheaves.

Definition 7.4. Let X be a normal variety and ∆ an R-divisor on X such that
KX + ∆ is R-Cartier. Let a ⊂ OX be a non-zero ideal sheaf on X and c a real
number. Let f : Y → X be a resolution such that KY + ∆Y = f ∗(KX + ∆) and
f−1

a = OY (−E), where Supp ∆Y ∪ Supp E has a simple normal crossing support.
We put

J ′((X,∆); ac) = f∗OY (−x∆Y + cEy +
∞∑

k=1

k(∆Y + cE)).

We sometime write

J ′((X,∆); c · a) = J ′((X,∆); ac).

Of course, J ′((X,∆); ac) dose not depend on f : Y → X by Lemma 7.3. We
recall that

J ((X,∆); ac) = f∗OY (−x∆Y + cEy).

Lemma 7.5. Let X be a normal variety and ∆ an effective R-divisor on X such

that KX + ∆ is R-Cartier. Then we have

J ′(X,∆) = J ((X,∆);J (X,∆)−ε)

for 0 < ε≪ 1. In particular,

J ′(X,∆) =
⋂

0<ε

J ((X,∆);J (X,∆)−ε).

Although we will not use Lemma 7.5 in the proof of the restriction theorem
(cf. Theorem 12.7), this lemma may help us understand J ′.

Proof. Let f : Y → X be a resolution with f−1J (X,∆) = OY (−E) such that
Exc(f), Supp f−1

∗ ∆, Supp E, and Exc(f)∪ Supp f−1
∗ ∆∪ Supp E are simple normal

crossing divisors. We put KY + ∆Y = f ∗(KX + ∆). Then

J ((X,∆);J (X,∆)−ε) = f∗OY (−x∆Y − εEy)

by definition. Since Supp ∆≥1
Y ⊂ Supp E and ∆<0

Y is f -exceptional, we can easily
check that

f∗OY (−x∆Y − εEy) = f∗OY (p−∆Y + εEq) = J ′(X,∆).

This completes the proof. �

By this lemma, J ′(X,∆) itself is a multiplier ideal sheaf. The vanishing theorem
holds for J ′.
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Theorem 7.6 (Vanishing theorem). Let X be a normal variety and ∆ an R-divisor

on X such that KX +∆ is R-Cartier. Let π : X → S be a projective morphism onto

an algebraic variety S and L a Cartier divisor on X. Assume that L− (KX + ∆) is

π-ample. Then we have

Riπ∗(J
′(X,∆)⊗OX(L)) = 0

for all i > 0.

Proof. Let f : Y → X be a resolution of X with KY + ∆Y = f ∗(KX + ∆) such that
Supp ∆Y is simple normal crossing. Then

A−N +G+ f ∗L− (KY + ∆=1
Y + {∆Y }+G) = f ∗(L− (KX + ∆)),

where A = p−(∆<1
Y )q, N = x∆>1

Y y, and G =
∑∞

k=2
k∆Y . Therefore, Riπ∗(f∗OY (A−

N + G + f ∗L)) = 0 for all i > 0 by Theorem 4.2 (2). Thus, we obtain the desired
vanishing theorem since

f∗OY (A−N +G+ f ∗L) ≃ J ′(X,∆)⊗OX(L).

We finish the proof. �

Remark 7.7. When ∆ is effective in Theorem 7.6, the assumption that L−(KX+∆)
is π-ample can be replaced by the following weaker assumption: π is only proper,
L − (KX + ∆) is π-nef and π-big, (L − (KX + ∆))|Nlc(X,∆) is π-ample, and (L −
(KX + ∆))|C is π-big for every lc center C of (X,∆). For details, see [F3, Theorem
2.47] and Remark 4.4.

We close this section with the following simple example. Here, we use the notation
in [L, 9.3.C Monomial Ideals].

Theorem 7.8. Let a be a monomial ideal on X = Cn. Then J ′(c·a) = J ′((X, 0); c·
a) is the monomial ideal generated by all monomials xv whose exponent vectors

satisfy the condition that

v + 1 ∈ P (c · a),

where P (c · a) is the Newton polyhedron of c · a.

Proof. It is obvious by Howald’s theorem (cf. [L, Theorem 9.3.27]) since J ′(X, c·a) =
J (X, (1− ε)c · a) for 0 < ε≪ 1. �

8. Intermediate non-lc ideal sheaves

This section is a continuation of Section 6.

8.1. Let X be a normal variety and ∆ an R-divisor on X such that KX + ∆ is
R-Cartier. Let f : Y → X be a resolution with KY + ∆Y = f ∗(KX + ∆) such that
Supp ∆Y is simple normal crossing. Then we set

J ′
l (X,∆) = f∗OY (−x∆Y y + ∆=1

Y +
∞∑

k=2−l

k∆Y )

for l = 0,−1, · · · ,−∞. We have the natural inclusions

JNLC(X,∆) =J ′
−∞(X,∆) ⊂ · · · ⊂ J ′

l (X,∆)

⊂ J ′
l+1(X,∆) ⊂ · · · ⊂ J ′

0(X,∆) = J ′(X,∆).
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Of course, it is obvious that there are only finitely many distinct ideals in the set
{J ′

l (X,∆)}l=0,−1,··· ,−∞.
We note that

p−∆Y + ∆=1
Y + εFq = −x∆Y y + ∆=1

Y +
∞∑

k=2−l

k∆Y

when F = Supp ∆≥2−l and 0 < ε ≪ 1. Thus, J ′
l (X,∆) is well-defined by the

following lemma.

Lemma 8.2. Let X be a smooth variety and ∆ an R-divisor on X such that Supp ∆
is simple normal crossing. Let f : Y → X be a proper birational morphism such that

Exc(f) ∪ Supp f−1
∗ ∆ is simple normal crossing. We put KY + ∆Y = f ∗(KX + ∆).

Then

f∗OY (p−∆Y + ∆=1
Y + ε′F ′

q) ≃ OX(p−∆ + ∆=1 + εFq)

for 0 < ε, ε′ ≪ 1, where F = Supp ∆≥m and F ′ = Supp ∆≥m
Y for every positive

integer m ≥ 2.

Proof. Since KY + ∆Y = f ∗(KX + ∆), we can write

KY = f ∗(KX + {∆−∆=1 − εF}+ ∆=1 + εF ) + f ∗
x∆−∆=1 − εFy−∆Y .

We note that {∆−∆=1 − εF}+ ∆=1 + εF is a boundary R-divisor whose support
is simple normal crossing. Thus,

a(ν,X, {∆−∆=1 − εF}+ ∆=1 + εF ) ≥ −1

for every ν. We can easily check that a(ν,X,∆=1 + F ) = −1 if a(ν,X, {∆−∆=1 −
εF} + ∆=1 + εF ) = −1 and that a(ν,X,∆=1 + F ) = −1 induces a(ν,X,∆) = −1
or a(ν,X,∆) ≤ −m (cf. [KM, Lemma 2.45]). Therefore, the round-up of f ∗

x∆ −
∆=1 − εFy−∆Y + ∆=1

Y + ε′F ′ is effective. So, we can write

f ∗
x∆−∆=1 − εFy− x∆Y −∆=1

Y − ε
′F ′

y = E,

where E is an effective Cartier divisor on Y . We can easily check that E is f -
exceptional for 0 < ε, ε′ ≪ 1. Thus, we obtain

f∗OY (p−∆Y + ∆=1
Y + ε′F ′

q) ≃ OX(p−∆ + ∆=1 + εFq)

since p−∆Y + ∆=1
Y + ε′F ′

q = f ∗(p−∆ + ∆=1 + εFq) + E. �

The next property is obvious by the definition of J ′
l .

Lemma 8.3. Let X be a normal variety and ∆ an effective R-divisor on X such

that KX + ∆ is R-Cartier. Then, for every l, (X,∆) is log canonical if and only if

J ′
l (X,∆) = OX .

We note the following Bertini type theorem.

Lemma 8.4. Let X be a normal variety and ∆ an effective R-divisor on X such

that KX + ∆ is R-Cartier. Let Λ be a linear system on X and D ∈ Λ a general

member of Λ. Then

J ′
l (X,∆) = J ′

l (X,∆ + tD)

outside the base locus BsΛ of Λ for all 0 ≤ t ≤ 1 and l.
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Proof. By replacing X with X \BsΛ, we can assume that BsΛ = ∅. Let f : Y → X
be a resolution as in 8.1. Since D is a general member of Λ, f ∗D = f−1

∗ D is a smooth
divisor on Y such that Supp f ∗D ∪ Supp ∆Y is simple normal crossing. Therefore,
we can check that

J ′
l (X,∆ + tD) = J ′

l (X,∆)

for all 0 ≤ t ≤ 1 and l. �

The vanishing theorem also holds for J ′
l .

Theorem 8.5 (Vanishing theorem). Let X be a normal variety and ∆ an R-divisor

on X such that KX +∆ is R-Cartier. Let π : X → S be a projective morphism onto

an algebraic variety S and L a Cartier divisor on X. Assume that L− (KX + ∆) is

π-ample. Then we have

Riπ∗(J
′
l (X,∆)⊗OX(L)) = 0

for all i > 0 and every l.

Proof. We put G =
∑∞

k=2−l
k∆Y . Then the proof of Theorem 7.6 works without any

changes. �

Note that Remark 7.7 works for every l. We also note that the restriction theorem
does not necessarily hold for l 6= 0,−∞.

Example 8.6. Let X = C2 = Spec C[x, y], S = (x = 0), C = (y2 = x3) and
B = 2C. We put KS +BS = (KX +S+B)|S, and we will compare the intermediate
non-lc ideals of (X,S +B) and of (S,BS).

We consider the following sequence of blow-ups:

X
f1
←− X1

f2
←− X2

f3
←− X3.

We denote by Ei the exceptional curve of fi (and we use the same letter for its strict
transform). Let f1 : X1 → X be the blow-up at the origin, f2 : X2 → X1 be the blow-
up at the intersection point of E1 and C and f3 : X3 → X2 be the blow-up at the
intersection point of E1, E2 and C. Then π := f3◦f2◦f1 : X3 → X is a log resolution
of (X,S +B), and we have KX3/X = E1 + 2E2 + 4E3, π

∗B = 4E1 + 6E2 + 12E3 +B
and π∗S = E1 + E2 + 2E3 + S. By the projection formula, we obtain

J ′
−1(X,S +B) = π∗OX3

(−3E1 − 4E2 − 9E3 −B)

= π∗(OX3
(E1 + 2E2 + 3E3)⊗ π

∗OX(−B))

= OX(−B).

On the other hand, since BS = (y4 = 0) in S, one can easily see that

J ′
−1(S,BS) = m

3,

where m is the maximal ideal corresponding to 0 ∈ S. Of course, we have

J ′
−1(X,S +B)|S = OX(−B)|S = m

4.

Thus, we obtain

J ′
−1(X,S +B)|S ( J ′

−1(S,BS).
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9. Supplementary remarks

This section is a supplement to [F4]. We consider various scheme structures on
the non-lc locus of the pair (X,B).

Definition 9.1. Let X be a normal variety and B an effective R-divisor on X such
that KX +B is R-Cartier. We put

ONlc(X,B)l
= OX/J

′
l (X,B)

for every l = −∞, · · · , 0. We simply write

ONlc(X,B) = ONlc(X,B)−∞
= OX/JNLC(X,B)

and

ONlc(X,B)′ = ONlc(X,B)0 = OX/J
′
0(X,B) = OX/J

′(X,B).

We note that there exists natural surjection

ONlc(X,B)l
→ ONlc(X,B)k

for every l < k.

The following theorem is a slight generalization of [F4, Theorem 8.1]. The proof
of [F4, Theorem 8.1] works without any modifications.

Theorem 9.2. Let l be an arbitrary non-positive integer or −∞. Let X be a normal

variety and B an effective R-divisor on X such that KX +B is R-Cartier. Let D be

a Cartier divisor on X. Assume that D − (KX +B) is π-ample, where π : X → S
is a projective morphism onto a variety S. Let {Ci} be any set of lc centers of the

pair (X,B). We put W =
⋃
Ci with the reduced scheme structure. Assume that W

is disjoint from Nlc(X,B).
Then we have

Riπ∗(J ⊗OX(D)) = 0

for every i > 0, where J = IW · J
′
l (X,B) ⊂ OX and IW is the defining ideal sheaf

of W on X. Therefore, the restriction map

π∗OX(D)→ π∗OW (D)⊕ π∗ONlc(X,B)l
(D)

is surjective and

Riπ∗OW (D) = 0

for every i > 0. In particular, the restriction maps

π∗OX(D)→ π∗OW (D)

and

π∗OX(D)→ π∗ONlc(X,B)l
(D)

are surjective.

We close this section with the next supplementary result. The proof is obvious.
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Proposition 9.3. In the non-vanishing theorem (cf. [F4, Theorem 12.1]) and the

base point free theorem (cf. [F4, Theorem 13.1]), we assumed that ONlc(X,B)(mL)
is π|Nlc(X,B)-generated for every m ≫ 0. However, it is sufficient to assume that

ONlc(X,B)l
(mL) is π|Nlc(X,B)l

-generated for every m≫ 0, where l is any non-positive

integer. We note that, for every l,

π∗OX(mL)→ π∗ONlc(X,B)l
(mL)

is surjective for m ≥ a by the vanishing theorem (cf. Theorem 9.2).

Therefore, in [F4], we can adopt J ′
l (X,B) for any l instead of JNLC(X,B).

However, from the point of view of the minimal model program, we believe that
JNLC(X,B) is the most natural defining ideal sheaf of the non-lc locus Nlc(X,B)
of (X,B). Also see Remark 10.7 below.

10. Non-klt ideal sheaves

In this section, we consider non-klt ideal sheaves.

10.1. Let X be a normal variety and ∆ an R-divisor on X such that KX + ∆ is
R-Cartier. Let f : Y → X be a resolution with KY + ∆Y = f ∗(KX + ∆) such that
Supp ∆Y is simple normal crossing. Then we put

Jl(X,∆) = f∗OY (−x∆Y y +
∞∑

k=2−l

k∆Y )

for l = 0,−1, · · · ,−∞. We have the natural inclusions

J (X,∆) =J−∞(X,∆) ⊂ · · · ⊂ Jl(X,∆)

⊂ Jl+1(X,∆) ⊂ · · · ⊂ J0(X,∆).

We note that J (X,∆) = J−∞(X,∆) is the usual multiplier ideal sheaf associated
to the pair (X,∆). Of course, it is obvious that there are only finite numbers of
different ideals in {Jl(X,∆)}l=0,−1,··· ,−∞. It is also obvious that

Jl(X,∆) ⊂ J ′
l (X,∆)

for every l. It is easy to check that Jl(X,∆) is well-defined, that is, it does not
depend on the resolution f : Y → X (cf. Lemma 8.2). We note that Jl(X,∆) ⊂ OX
when ∆ is effective.

Lemma 10.2. Assume that ∆ is effective. Then we have

Jl(X,∆)|U = J ′
l (X,∆)|U

for every l, where U = X \W and W is the union of all the lc centers of (X,∆).

Proof. By shrinking X, we can assume that U = X. In this case, f(∆=1
Y ) ⊂

Nlc(X,∆). Therefore, we see that Jl(X,∆) = J ′
l (X,∆) for every l. �

Lemma 10.3. Let X be a normal variety and ∆ an effective R-divisor on X such

that KX + ∆ is R-Cartier. Then, for every l, (X,∆) is kawamata log terminal if

and only if Jl(X,∆) = OX .

We obtain the following vanishing theorem without any difficulties as an applica-
tion of Theorem 4.2 (2).



18 OSAMU FUJINO, KARL SCHWEDE AND SHUNSUKE TAKAGI

Theorem 10.4 (Vanishing theorem). Let X be a normal variety and ∆ an R-divisor

on X such that KX +∆ is R-Cartier. Let π : X → S be a projective morphism onto

an algebraic variety S and L a Cartier divisor on X. Assume that L− (KX + ∆) is

π-ample. Then we have

Riπ∗(Jl(X,∆)⊗OX(L)) = 0

for all i > 0 and every l.

Proof. See the proof of Theorem 7.6. �

Remark 10.5. When ∆ is effective in Theorem 10.4, the assumption that L −
(KX + ∆) is π-ample can be replaced by the following weaker assumption: π is
only proper, L − (KX + ∆) is π-nef and π-big, and (L − (KX + ∆))|Nlc(X,∆) is π-
ample (cf. [F3, Theorem 2.47] and Remark 4.4). It is well known that it is sufficient
to assume L − (KX + ∆) is π-nef and π-big for l = −∞. It is nothing but the
Kawamata–Viehweg–Nadel vanishing theorem.

10.6. We close this section with the following very important remark.

Remark 10.7. Let D be an effective Q-divisor on a smooth variety X. Definition
9.3.9 in [L] says that the pair (X,D) is log canonical if J (X, (1− ε)D) = OX for all
0 < ε < 1.

Again note that J ′(X,D)|U does not always coincide with J (X,D)|U , where
U = X \W and W is the union of all the lc centers of (X,D). This may be a desir-
able property in certain circumstances, and so the scheme structure on Nlc(X,D)
induced by J ′(X,D) = J (X, (1− ε)D) for 0 < ε≪ 1 may be less suitable in some
applications than the scheme structure induced by JNLC(X,D).

11. Differents

Let us recall the definition and the basic properties of Shokurov’s differents fol-
lowing [Sh, §3] and [A, 9.2.1]. See also [F4, Section 14].

11.1 (Differents). Let X be a normal variety and S + B an R-divisor on X such
that KX + S + B is R-Cartier. Assume that S is reduced and that S and B have
no common irreducible components. Let f : Y → X be a resolution such that

KY + SY +BY = f ∗(KX + S +B)

and that Supp(SY + BY ) is simple normal crossing and SY is smooth, where SY
is the strict transform of S on Y . Let ν : Sν → S be the normalization. Then
f : SY → S can be decomposed as

f : SY
π
−→ Sν

ν
−→ S.

We define BSY
= BY |SY

. Then we obtain

(KY + SY +BY )|SY
= KSY

+BSY

by adjunction. We put BSν = π∗BSY
. Then we obtain that

KSν +BSν = ν∗(KX + S +B).
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The R-divisor BSν on Sν is called the different of (X,S +B) on Sν . We can easily
check that BSν is independent of the resolution f : Y → X. So, BSν is a well-defined
R-divisor on Sν . We can check the following properties.

(i) KSν +BSν is R-Cartier and KSν +BSν = ν∗(KX + S +B).
(ii) If B is a Q-divisor, then so is BSν .
(iii) BSν is effective if B is effective in a neighborhood of S.
(iv) (Sν , BSν) is log canonical if (X,S +B) is log canonical in a neighborhood of

S.
(v) Let D be an R-Cartier divisor on X such that S and D have no common

irreducible components. Then we have

(B +D)Sν = BSν + ν∗D.

We sometimes write D|Sν = ν∗D for simplicity.

The properties except (iii) follow directly from the definition. We give a proof of
(iii) for the reader’s convenience.

Proof of (iii). By shrinking X, we can assume that X is quasi-projective and B is
effective. By taking hyperplane cuts, we can also assume that X is a surface. Run
the log minimal model program over X with respect to KY + SY . Let C be a
curve on Y such that (KY + SY ) · C < 0 and f(C) is a point. Then KY · C < 0
because SY is the strict transform of S. Therefore, each step of the log minimal
model program over X with respect to KY + SY is the contraction of a (−1)-curve
E with (KY + SY ) · E < 0. So, by replacing (Y, SY ) with the output of the above
log minimal model program, we can assume that Y is smooth, (Y, SY ) is plt, and
KY + SY is f -nef. We note that SY is a smooth curve since (Y, SY ) is plt. By the
negativity lemma and the assumption that B is effective, BY is effective. We note
the following equality

−BY = KY + SY − f
∗(KX + S +B).

By adjunction, we obtain

(KY + SY +BY )|SY
= KSY

+BY |SY
.

It is obvious that BY |SY
is effective. This implies that BSν = BY |SY

is effective. �

When X is singular, BSν is not necessarily zero even if B = 0.

11.2 (Inversion of adjunction). Let us recall Kawakita’s inversion of adjunction on
log canonicity (see [Kk]).

Theorem 11.3. Let X be a normal variety, S a reduced divisor on X, and B an

effective R-divisor on X such that KX + S + B is R-Cartier. Assume that S has

no common irreducible component with the support of B. Let ν : Sν → S be the

normalization and BSν the different on Sν such that KSν +BSν = ν∗(KX + S +B).
Then (X,S + B) is log canonical in a neighborhood of S if and only if (Sν , BSν) is

log canonical.

By adjunction, it is obvious that (Sν , BSν) is log canonical if (X,S + B) is log
canonical in a neighborhood of S. It is the property (iv) above. So, the above
theorem is usually called the inversion of adjunction on log canonicity. We used



20 OSAMU FUJINO, KARL SCHWEDE AND SHUNSUKE TAKAGI

Theorem 11.3 in the proof of the restriction theorem for JNLC : Theorem 12.1 (see
[F2]).

12. Restriction theorems

In this section, we consider the restriction theorem for J ′. First, let us recall the
restriction theorem for JNLC . It is the main theorem of [F2].

Theorem 12.1 (Restriction theorem). Let X be a normal variety and S + B an

effective R-divisor on X such that S is reduced and normal and that S and B have

no common irreducible components. Assume that KX +S +B is R-Cartier. Let BS

be the different on S such that KS +BS = (KX + S +B)|S. Then we obtain

JNLC(S,BS) = JNLC(X,S +B)|S.

In particular, (S,BS) is log canonical if and only if (X,S +B) is log canonical in a

neighborhood of S.

There is a natural question on J ′.

Question 12.2. Let X be a normal variety and S +B an effective R-divisor on X
such that S is reduced and normal and that S and B have no common irreducible
components. Assume that KX + S + B is R-Cartier. Let BS be the different on S
such that KS +BS = (KX + S +B)|S. Is the following equality

J ′(S,BS) = J ′(X,S +B)|S.

true?

In this section, we will give partial answers to Question 12.2.

12.3. We prove the restriction theorem for J ′ under the assumption that X is
smooth and B = 0. The following theorem is contained in the main theorem from
the next section, but the proof in this special case is sufficiently simple that we
reproduce it here.

Theorem 12.4. Let X be a smooth variety and S a reduced normal divisor on X.

Then we have

0→ OX(−S)→ J ′(X,S)→ J ′(S, 0)→ 0.

In particular, we obtain

J ′(X,S)|S = J ′(S, 0)

We note that KS = (KX + S)|S by adjunction.

Proof. Let f : Y → X be a resolution of S such that f is an isomorphism outside
the singular locus of S. We put E = Exc(f). We can assume that f is a composition
of blow-ups. Each step can be assumed to be the blow-up described in Proposition
12.5 below. We note that the codimension of the singular locus of S in X is ≥ 3
since S is normal. Therefore, we have R1f∗OY (KY + E) = 0 by Proposition 12.5
and the Leray spectral sequence. We consider the following short exact sequence

0→ OY (KY + E)→ OY (KY + SY + E)→ OSY
(KSY

+ E|SY
)→ 0,

where SY = f−1
∗ S. By taking ⊗OY (−f ∗(KX + S)) and applying f∗, we obtain

0→ OX(−S)→ J ′(X,S)→ J ′(S, 0)→ 0.
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In particular, we have

J ′(X,S)|S = J ′(S, 0).

We finish the proof. �

Proposition 12.5 (Vanishing lemma). Let V be a smooth variety and D a simple

normal crossing divisor on V . Let f : W → V be the blow-up along C such that C is

smooth, irreducible, and has simple normal crossings with D. We put F = f−1
∗ D+E,

where E is the exceptional divisor of f . We further assume that, if C 6⊂ D, then the

codimension of C is ≥ 3. We then obtain

f∗OW (KW + F ) ≃ OV (KV +D)

and

R1f∗OW (KW + F ) = 0.

Note that W is smooth and F is a simple normal crossing divisor on W .

We provide two proofs, the first relies on more standard methods while the second
relies on the theory of Du Bois singularities.

Proof #1. First, we can easily check that

KW + F = f ∗(KV +D) +G,

where G is an effective f -exceptional Cartier divisor. Therefore, we obtain

f∗OW (KW + F ) ≃ OV (KV +D).

Next, we consider the following short exact sequence

0→ OW (KW + f−1
∗ D)→ OW (KW + F )→ OE(KE + f−1

∗ D|E)→ 0.

It is sufficient to prove

R1f∗OW (KW + f−1
∗ D) = R1f∗OE(KE + f−1

∗ D|E) = 0.

Assume that C 6⊂ D. Then f−1
∗ D = f ∗D. In this case, R1f∗OW (KW + f ∗D) = 0

by the Grauert–Riemenschneider vanishing theorem and R1f∗OE(KE + f ∗D|E) = 0
since f : E → C is a Pm-bundle with m ≥ 2. Here, we used the assumption that
the codimension of C in V is ≥ 3. So, we can assume that C ⊂ D. In this case,
R1f∗OW (KW + f−1

∗ D) = 0 by the vanishing theorem of Reid–Fukuda type (cf. [Fk,
Lemma]). On the other hand, R1f∗OE(KE + f−1

∗ D|E) = 0 by the relative Kodaira
vanishing theorem. We note that π = f |E : E → C is a Pm-bundle for some m ≥ 1
and π(f−1

∗ D) = C. Thus, f−1
∗ D|E is π-ample.

We have now proved that R1f∗OW (KW + F ) = 0. �

Proof #2. Note that the map f is a log resolution of the scheme D∪C. The scheme
D ∪ C is in simple normal crossings so it has Du Bois singularities. It follows that
Rf∗OF ≃qis OD∪C by [Sc1]. Thus Grothendieck duality implies that

(1) Rf∗ω
q

F ≃qis ω
q

D∪C .

We can map the isomorphism from Equation (1) into the isomorphism Rf∗ω
q

W ≃qis

ω
q

V , and then, from the resulting exact triangle, obtain Rf∗OW (KW+F )[dimW ] ≃qis

Rf∗ω
q

W (F ) ≃qis RH om
q

W (ID∪C , ω
q

V ).
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We assume that C 6⊆ D (as the other case is even easier). The dualizing complex
of D ∪ C has zero cohomology for i between the degrees − dimD and − dimC. To
see this, simply take cohomology and form the long exact sequence from the triangle

ω
q

D∩C
// ω

q

D ⊕ ω
q

C
// ω

q

D∪C
+1

//

noting that Hi(ω
q

Z ) = 0 for all i < − dimZ. Thus

0 ∼= R− dimD+1f∗ω
q

F
∼= R−dimDf∗OW (KW + F )[dimW ] = R1f∗OW (KW + F )

and we have proven the vanishing. For the isomorphism, simply notice that

f∗OW (KW + F ) ∼= H−dimV (RH om
q

V (ID∪C , ω
q

V ))
∼= H omW (ID∪C , ωV )
∼= OV (KV +D)

since the last two sheaves are reflexive and agree outside of C. �

12.6. We prove the restriction theorem for J ′ on the assumption that X has only
mild singularities. Theorem 12.7 is an easy corollary of Theorem 12.1 and is not
covered by the main result of the next section.

Theorem 12.7. Let X be a normal variety and S +B an effective R-divisor on X
such that S is reduced and normal and that S and B have no common irreducible

components. Assume that B = B1 + B2 such that both B1 and B2 are effective

R-divisors around S, (X,S +B1) is log canonical in a neighborhood of S. Then we

obtain

J ′(X,S +B)|S = J ′(S,BS),

where BS is the different on S such that (KX + S +B)|S = KS +BS.

Lemma 12.8. With the same notation and assumptions as in Theorem 12.7, we

have

J ′(X,S +B) = JNLC(X,S +B1 + (1− ε)B2)

in a neighborhood of S for 0 < ε≪ 1, and

J ′(S,BS) = J ′(S,B1S +B2|S) = JNLC(S,B1S + (1− ε)B2|S)

for 0 < ε≪ 1.

Proof. By shrinking X around S, we can assume that (X,S + B1) is log canonical
and B2 is effective. By the definitions of J ′ and JNLC, it is almost obvious that

J ′(X,S +B) = JNLC(X,S +B1 + (1− ε)B2)

for 0 < ε ≪ 1. By the assumption, (S,B1S) is log canonical, where B1S is the
different such that (KX +S+B1)|S = KS +B1S. Thus, J ′(S,BS) = JNLC(S,B1S +
(1− ε)B2|S) holds for 0 < ε≪ 1. �
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Proof of Theorem 12.7. We have the following equalities.

J ′(X,S +B)|S = JNLC(X,S +B1 + (1− ε)B2)|S

= JNLC(S,B1S + (1− ε)B2|S)

= J ′(S,B1S +B2|S)

= J ′(S,BS)

by Lemma 12.8 and Theorem 12.1. �

We close this section with the following nontrivial example.

Example 12.9. Let X = C2 = Spec C[x, y], S = (x = 0), and C = (y2 = x3). We
put KS +CS = (KX +S+C)|S. We use the same notation as in Example 8.6. Then
we have

JNLC(X,S + C) = π∗OX3
(−2E1 − 2E2 − 4E3)

= f1∗OX1
(−2E1)

= n
2,

J ′(X,S + C) = π∗OX3
(−E1 − E2 − 3E3)

= π∗OX3
(−E1 − 2E2 − 3E3)

= f1∗(f2∗OX2
(−E2)⊗OX1

(−E1))

= (x2, y),

where n is the maximal ideal corresponding to (0, 0) ∈ X. On the other hand, by
easy calculations, we obtain

JNLC(S,CS) = m
2, J ′(S,CS) = m,

where m is the maximal ideal corresponding to 0 ∈ S. Hence we can check the both
restriction theorems (cf. Theorem 12.7)

JNLC(S,CS) = JNLC(X,S + C)|S,

J ′(S,CS) = J ′(X,S + C)|S

in this case.

13. The restriction theorem for complete intersections

In this section we prove a restriction theorem, Theorem 13.13, for maximal non-lc
ideals J ′(X,D) in a complete intersection. It is important to note that we do not
use Kawakita’s proof of inversion of adjunction for log canonicity [Kk]. We also only
use fairly mundane vanishing theorems – Kawamata–Viehweg vanishing in the form
of local vanishing for multiplier ideals, see [Km], [V], and [L].

Our method is related to techniques used to study Du Bois singularities, and so
some of the auxiliary notation we use draws from this perspective, for an introduction
to Du Bois singularities, see [KS]. We briefly recall why one might expect to use
techniques from Du Bois singularities to study non-lc ideal sheaves.

Suppose that X is a reduced scheme of finite type over a field k of characteristic
zero. One can then associate an object Ω0

X in the bounded derived category with
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coherent cohomology (this object has its origin in Deligne’s mixed Hodge theory
for singular varieties). This object Ω0

X is used to determine whether or not X has
Du Bois singularities (recalling that Du Bois singularities are very closely related to
log canonical singularities, see [KK]). Furthermore, in the case that X is normal and
KX is Cartier, it follows from [KSS] that the most interesting cohomology (− dimX)
of the Grothendieck dual of Ω0

X is equal to J ′(X, 0). This suggests that two things:

• J ′(X, 0) is natural object from the point of view of Du Bois singularities
(or more generally, from the point of view of the Hodge theory of singular
varieties), and
• some of the ideas from Du Bois singularities might be useful in proving

restriction theorems for J ′(X,∆).

We will take advantage of the second idea in this section.
Now we begin our main definitions.
Suppose that Y is a smooth affine variety and X ⊂ Y is a reduced closed sub-

scheme with ideal sheaf IX . Let a be an ideal on Y and t > 0 a real number.
Let π : Ỹ → Y be a log resolution of (Y,X, at) and set aOeY = OeY (−G) and

IXOeY = OeY (−X).
Consider the following short exact sequence:

0→ OeY (⌊tG− ǫX⌋)→ OeY (⌊tG⌋)→MX,at → 0,

where ǫ > 0 is arbitrarily small. Furthermore, one can replace X with the reduced
pre-image of X, and assuming ǫ was chosen to be sufficiently small, the sequence
does not change.

Definition 13.1. We define Ω0
X,at to be Rπ∗MX,at.

Remark 13.2. The object Ω0
X,at is purely an auxiliary object from the point of

view of this paper. However, in the case that a = OY , it agrees with Ω0
X , the zeroth

graded piece of the Deligne–Du Bois complex, see [D], [Es] and [Sc1].

Lemma 13.3. The object Ω0
X,at is independent of the choice of π (assuming ǫ is

chosen sufficiently small).

Proof. Suppose that ρ : Y ′ → Ỹ is a further log resolution. Set aOY ′ = OY ′(−G′)
and IXOY ′ = OY ′(−X ′). It is sufficient to show that Rρ∗OY ′(⌊tG′ − ǫX ′⌋) ≃qis

OeY (⌊tG− ǫX⌋). Therefore, by Grothendieck duality, it is sufficient to show that

Rρ∗OY ′(⌈KY ′ − tG′ + ǫX ′⌉)→ OeY (⌈KeY − tG + ǫX⌉)

is an isomorphism. Twisting by OeY (−KeY −X), it is sufficient to show that

Rρ∗OY ′(⌈KY ′/eY − tG
′ − (1− ǫ)X ′⌉)→ OeY (⌈−tG− (1− ǫ)X⌉)

is an isomorphism. But this is just the independence of the choice of resolution for
multiplier ideals. �

Instead of computing a full log resolution, it will be convenient only to compute a
log resolution of (Y, at) which is an embedded resolution of X. In our next lemma,
we show that our auxiliary object Ω0

X,at can be computed via such a resolution. But
first a definition:
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Definition 13.4. Given a closed subvariety X in a smooth variety Y , a factorizing

embedded resolution of X in Y is a proper birational morphism π : Ỹ → Y such
that

(1) Ỹ is smooth and π is an isomorphism at every generic point of X ⊆ Y ,
(2) the exceptional locus exc(π) is a simple normal crossings divisor,

(3) the strict transform X̃ of X in Ỹ is smooth and has simple normal crossings
with exc(π),

(4) IXOeY = I eXOeY (−E) where IX (resp. I eX) is the ideal sheaf of X (resp.

X̃) and E is a π-exceptional divisor on Ỹ .

Such resolutions always exist, see [BEV] or [W].

Lemma 13.5. Suppose that X, Y and a are as above and suppose that no component

of X is contained in V (a). Further suppose that π : Ỹ → Y is a log resolution of

(Y, at) that is simultaneously a factorizing embedded resolution of X in Y (and so

that the pullbacks of the various objects we were working with are in simple normal

crossings, see [BEV] or [W]). Set X̃ to be the strict transform of X in Ỹ so that we

can write IXOeY = I eXOeY (−E). Then if we let M be the cokernel of

OeY (⌊tG− ǫE⌋)⊗I eX → OeY (⌊tG⌋)

we have that Rπ∗M ≃qis Ω0
X,at. (Note the statement does not change if we replace

E by Ered.)

Proof. We note that by blowing up X̃ (which is smooth), we can obtain an actual
log resolution η : Y ′ → Y of (Y,X, at) as pictured in the diagram below:

Y ′
ρ

//

η
��

@@
@@

@@
@@

Ỹ

π
����

��
��

��

Y

Set I eXOY ′ = OY ′(−X ′), set OY ′(−E ′) = ρ∗OeY (−E) and set aOY ′ = OY ′(−G′) =
ρ∗OeY (−G). Note that ρ induces a bijection between the components (and coeffi-
cients) of E with those of E ′ (and also of G with those of G′ since no component of
X is contained in V (a)). It is sufficient to show that

Rρ∗OY ′(⌊tG′ − ǫ(E ′ +X ′)⌋) ≃qis OeY (⌊tG− ǫE⌋)⊗I eX .

Now twist by OeY (−⌊tG− ǫE⌋), it is thus sufficient to show that

Rρ∗OY ′(⌊tG′ − ǫ(E ′ +X ′)⌋ − ρ∗⌊tG− ǫE⌋)) ≃qis I eX .

Note that, over each component of X̃, there is exactly one new divisor created by
ρ, they are all disjoint, and ⌊tG− ǫE⌋ does not contain I eX in its support, thus the

left side is just Rρ∗OY ′(⌊−ǫX ′⌋) which is isomorphic to I eX since X̃ is smooth. �

In what follows, we use the symbol D to denote the Grothendieck dual of a
complex in Db

coh, for example D(Ω0
X) ∼= RH om

q

Y (Ω0
X , ω

q

Y ). See [Ha].
We now make a transition in concept. Instead of simply looking at Ω0

X,at, we

consider Ω0
X,at−ǫ′ . In particular, viewing ǫ′ as a very small positive number. It
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is straightforward to verify that OeY (⌊(t − ǫ′)G − ǫX⌋) is constant for sufficiently
small positive ǫ′ and ǫ, and therefore so is Ω0

X,at−ǫ′ . Furthermore, because we are

subtracting (and not adding) ǫ′ from t, we may in fact choose ǫ′ = ǫ (as long as they
are both sufficiently small). Therefore, we conflate the two ǫ’s and write Ω0

X,at−ǫ to

denote this object for ǫ = ǫ′ sufficiently small.

Proposition 13.6. With the notation above, HiD
(
Ω0
X,at−ǫ

)
= 0 for i < − dimX.

Proof. We first note that we may assume that no irreducible component of X is
contained in V (a). To see this, suppose X = X1∪X2 where X1 is the union of those
irreducible components of X that are not contained in V (a) and X2 is the union of
the remaining components. Then notice that

⌊(t− ǫ)G− ǫX⌋ = ⌊(t− ǫ)G− ǫ(X1 ∪X2)⌋ = ⌊(t− ǫ)G− ǫX1⌋

since we choose ǫ arbitrarily small. It follows that Ω0
X,at−ǫ = Ω0

X1,at−ǫ. In particular,

note that if X ⊂ V (a), then Ω0
X,at−ǫ ≃qis 0. Therefore if HiD

(
Ω0
X1,at−ǫ

)
= 0 for

i < − dimX1, then for all i < − dimX ≤ − dimX1, we have HiD
(
Ω0
X,at−ǫ

)
= 0.

We proceed by induction on the dimension of X. If dimX = 0, then X is disjoint
from the support a and the result follows from the theory of Du Bois singularities
since HiD(Ω0

X) = 0 for i < − dimX, see [KSS, Lemma 3.6].
For the induction step, define Γ ⊂ Y to be the reduced scheme

Γ := (SingX) ∪ V (a),

where SingX is the singular locus of X. In particular Γ contains V (a). Decompose
Γ = Γa ∪ Σ× where Γa is the union of components of Γ that are contained in V (a)
and Σ× is the union of the components of Γ that are not contained in V (a).

Let π : Ỹ → Y be an embedded log resolution of X and log resolution of (Y, at−ǫ)

as in Lemma 13.5. Set Ea to be the reduced pre-image of Γa in Ỹ , E× to be the

reduced pre-image of Σ× in Ỹ , aOeY = OeY (−G) and set X̃ to be the strict transform
of X. We may assume that π is an isomorphism outside of V (a) and Σ×. Now write
IXOeY = I eXOeY (−E) and note that

(2) ⌊(t− ǫ)G− ǫ(E× + Ea)⌋ = ⌊(t− ǫ)G− ǫE⌋ = ⌊(t− ǫ)G− ǫE×⌋

since we pick ǫ > 0 to be arbitrarily small.
Notice we have the following short exact sequence.

0 // OeY
(⌊(t− ǫ)G− ǫE⌋)⊗I eX

// OeY
(⌊(t− ǫ)G− ǫE×⌋) // O eX

(⌊(t− ǫ)G− ǫE×⌋| eX
) // 0.
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By pushing forward, it follows that there exists the following commutative diagram
of exact triangles:

Rπ∗O eX
(⌊(t− ǫ)G− ǫE×⌋| eX

)[−1]

��

// 0

��

// Rπ∗O eX
(⌊(t− ǫ)G− ǫE×⌋| eX

)

��

+1
//

Rπ∗OeY
(⌊(t− ǫ)G− ǫE⌋)⊗I eX

��

// Rπ∗OeY
(⌊(t− ǫ)G⌋)

∼

��

// Ω0
X,at−ǫ

��

+1
//

Rπ∗OeY
(⌊(t− ǫ)G− ǫE×⌋)

+1
��

// Rπ∗OeY
(⌊(t− ǫ)G⌋) //

+1
��

Ω0
Σ×,at−ǫ

+1
//

+1
��

While in general, restricting divisors does not commute with round-downs, in our
case we do have ⌊(t−ǫ)G−ǫE×⌋| eX = ⌊(t−ǫ)G| eX−ǫE×| eX⌋ because the divisors and
the object we are restricting them to are in simple normal crossings. We dualize the
right vertical column and obtain

D
(
Ω0

Σ×,at−ǫ

)
// D

(
Ω0
X,at−ǫ

)
// Rπ∗ω

q

eX
(⌈−(t− ǫ)G| eX + ǫE×| eX⌉)

+1
// .

By taking cohomology, and using the inductive hypothesis on D
(
Ω0

Σ×,at−ǫ

)
, we

obtain our desired result. �

The following corollary is a key application of what we have proven so far. It allows
us to relate the auxiliary objects Ω0

X,at−ǫ with the maximal non-lc ideals J ′(X; at).

Corollary 13.7. Assume that X is normal and equidimensional, a is an ideal sheaf

on X and that no component of X is contained inside V (a). Let π′ : X̃ → X be a

log resolution, let F be the exceptional divisor of π and set aO eX = O eX(−H) then

(3) H− dimXD
(
Ω0
X,at−ǫ

)
= π′

∗O eX(⌈K eX − (t− ǫ)H + ǫF ⌉)

for all sufficiently small ǫ and any embedding of X ⊆ Y into a smooth variety. In

particular, H− dimXD
(
Ω0
X,at−ǫ

)
is independent of the choice of embedding of X into

Y .

Proof. Since the right side is independent of the choice of resolution by Lemma 7.3,
we assume that π′ := π| eX is induced as in Lemma 13.5 and furthermore that π is
an isomorphism outside of V (a) and SingX. The result follows immediately from
the final exact triangle used in the proof of Proposition 13.6 when one notes that
dim Σ× ≤ dimX−2 (since X is normal). Note that while there may be components
of F and H which coincide, choosing small enough epsilon allows us to ignore such
complication as in Equation (2). �

In the case that X is a complete intersection, we will show thatHiD
(
Ω0
X,at−ǫ

)
= 0

for i > − dimX. First however, we need the following lemma which will be a key
point in an inductive argument, the proof is similar to that of Proposition 13.6.

Lemma 13.8. Suppose that Y , a and X are as above and suppose that no component

of X is contained inside V (a). Suppose further that X is a codimension 1 subset

of a reduced equidimensional scheme Z ⊆ Y also such that no component of Z is
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contained inside V (a). Let π : Ỹ → Y be a log resolution of (Y,X ∪ (SingZ), at)
that is simultaneously an embedded resolution of Z as in Lemma 13.5. Furthermore,

we assume that π is an isomorphism outside of (SingZ) ∪X ∪ V (a).

Set Z̃ to be the strict transform of Z, set aOeY = OeY (−G), set IXOeY = OeY (−X)

and set EZ to be the divisor on Ỹ such that IZOeY = I eZOeY (−EZ). Finally, let Σ
denote the union of components of SingZ which are not contained in V (a). Then

there is an exact triangle

Rπ∗O eZ(⌊(t− ǫ)G| eZ − ǫ(EZ +X)| eZ⌋)
// Ω0

Z,at−ǫ
// Ω0

X∪Σ,at−ǫ

+1
// .

Proof. We begin with the following short exact sequence:

0→ OeY (⌊(t− ǫ)G− ǫ(EZ +X)⌋)⊗I eZ → OeY (⌊(t− ǫ)G− ǫ(EZ +X)⌋)

→ O eZ(⌊(t− ǫ)G− ǫ(EZ +X)⌋| eZ)→ 0.

We set E× to be the union of the components of Supp(EZ ∪ X) whose images
in Y are contained in X ∪ Σ so that π(E×) = X ∪ Σ. Furthermore, notice that
Supp(EZ ∪X) \ E× ⊆ Supp G so that

⌊(t− ǫ)G− ǫ((EZ)red ∪Xred)⌋ = ⌊(t− ǫ)G− ǫ(EZ +X)⌋ = ⌊(t− ǫ)G− ǫ(E×)⌋

again because ǫ is sufficiently small.
We now form a diagram with exact triangles as columns and rows as in the proof

of Proposition 13.6:

Rπ∗O eZ
(⌊(t − ǫ)G − ǫ(EZ + X)⌋| eZ

)[−1]

��

// 0

��

// Rπ∗O eZ
(⌊(t − ǫ)G − ǫ(EZ + X)⌋| eZ

)

��

Rπ∗OeY
(⌊(t − ǫ)G − ǫ(EZ + X)⌋) ⊗ I eZ

��

// Rπ∗OeY
(⌊(t − ǫ)G⌋)

∼

��

// Ω0

Z,at−ǫ

��

Rπ∗OeY
(⌊(t − ǫ)G − ǫE×⌋) // Rπ∗OeY

(⌊(t − ǫ)G⌋) // Ω0

X∪Σ,at−ǫ

Our desired exact triangle is the right vertical column. �

Theorem 13.9. With the notation as in Proposition 13.6, suppose that X is a

complete intersection variety in Y , and no component of X is contained inside V (a),

then HiD
(
Ω0
X,at−ǫ

)
= 0 for i > − dimX.

Proof. We proceed by induction on the codimension of X in Y . We begin with the
case where X is a hypersurface. We have the following exact triangle:

Rπ∗OeY (⌊(t− ǫ)G− ǫX⌋) // Rπ∗OeY (⌊(t− ǫ)G⌋) // Ω0
X,at−ǫ

+1
// ,

where X is the pullback of X (if one takes X to be the reduced pre-image of X, you
get the same result since ǫ is arbitrarily small). Dualizing gives us:

D
(
Ω0
X,at−ǫ

)
// Rπ∗ω

q

eY
(⌈−(t− ǫ)G⌉) // Rπ∗ω

q

eY
(⌈−(t− ǫ)G + ǫX⌉)

+1
// .

Taking cohomology gives us the claimed vanishing since the cohomology of the right-
most two terms vanish for i > − dimY = − dimX − 1. To see this explicitly, note
that the middle term vanishes due to Kawamata–Viehweg vanishing in the form of
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local vanishing for multiplier ideals. The right most term also vanishes for the same
reason once one notices that

Rπ∗ω
q

eY
(⌈−(t− ǫ)G+ ǫX⌉)⊗OY (−X) ≃qis Rπ∗ω

q

eY
(⌈−(t− ǫ)G− (1− ǫ)π∗X⌉).

Now we assume that X is a complete intersection in Y . Choose hypersurfaces
H1, . . . , Hl to be general hypersurfaces containing X such that X = H1 ∩ · · · ∩Hl.
Let Z be an intersection of the first l−1 = (dimY −dimX)−1 such hypersurfaces.
In this way, X is a Cartier divisor in Z and Z \ X is smooth. Notice also that Z
is certainly S2 and it is smooth at all points where X is smooth (which includes all
the generic points of X). In particular, Z is smooth in codimension 1 and thus it

is normal. Let π : Ỹ → Y be a log resolution of (Y,X, at) that is simultaneously
a factorizing embedded resolution of Z, as in Lemma 13.8. Dualizing the triangle
from Lemma 13.8, we obtain a triangle:

(4) D
(
Ω0
X,at−ǫ

)
// D

(
Ω0
Z,at−ǫ

)
// Rπ∗ω

q

eZ
(⌈−(t− ǫ)G| eZ + ǫ(EZ +X)⌉| eZ)

+1
// .

Since Z \X is smooth, observe that

HiRπ∗ω
q

eZ
(⌈−(t− ǫ)G+ ǫ(EZ +X)⌉| eZ)⊗OZ(−X)

=HiRπ∗ω
q

eZ
(⌈−(t− ǫ)G| eZ + ǫ(X)| eZ⌉)⊗OZ(−X)

which vanishes for i > − dimZ using the projection formula and local vanishing

for multiplier ideals. Furthermore, HiD
(
Ω0
Z,at−ǫ

)
= 0 for i > −(dimX + 1) =

− dimZ by the induction hypothesis. Thus taking cohomology of Equation (4) for
i > − dimZ gives us the desired result. �

Corollary 13.10. If Z is a normal complete intersection, X is a Weil divisor in

Z and V (a) doesn’t contain any component of X or Z, then there is a short exact

sequence

0 → H−dimZD
(
Ω0
Z,at−ǫ

)

→ π∗O eZ(⌈K eZ − (t− ǫ)G| eZ + ǫ(EZ +X)| eZ⌉)

→ H−dimXD
(
Ω0
X∪Σ,at−ǫ

)

→ 0

where Σ and the remaining notation comes from Lemma 13.8.

Proof. Simply dualize the sequence from Lemma 13.8. Then take cohomology and
apply the vanishing results Proposition 13.6 and Theorem 13.9. �

Lemma 13.11. With the notation from Corollary 13.10, further assume that X

is normal and Cartier. Then H− dimXD
(
Ω0
X∪Σ,at−ǫ

)
∼= H− dimXD

(
Ω0
X,at−ǫ

)
. In

particular, we have a short exact sequence

0 → H−dimZD
(
Ω0
Z,at−ǫ

)

→ π∗O eZ(⌈K eZ − (t− ǫ)G| eZ + ǫ(EZ +X)| eZ⌉)

→ H−dimXD
(
Ω0
X,at−ǫ

)

→ 0
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Proof. We will need the following:

Claim. There is a triangle

Ω0
X∪Σ,at−ǫ

// Ω0
X,at−ǫ ⊕ Ω0

Σ,at−ǫ
// Ω0

Σ∩X,at−ǫ

+1
// .

Proof of Claim 13. We fix π : Ỹ → Y to be an embedded resolution of Z which is
also a log resolution of X, Σ, X ∩ Σ and a and write a · OeY = OeY (−G). Let E1

(respectively E2) denote the reduced pre-image of X in Ỹ (respectively, of Σ in Ỹ )
and note that E1 ∩ E2 is the reduced pre-image of X ∩ Σ (which we assumed was
also a divisor). Furthermore, let

• E ′
1 denote the union of the components of E1 which are not components of

G, and let
• E ′

2 denote the union of the components of E2 which are not components of
G.

Consider E ′
1 ∩ E

′
2. I claim that this is a divisor and thus is equal to the union of

the components of E1 ∩ E2 which are not contained in G. Suppose that L is an
irreducible component of E ′

1 ∩ E
′
2 and suppose L is not a divisor. On the other

hand, L ⊆ π−1(X ∩Σ) by construction, and so it must be contained in some divisor
H lying over X ∩Σ. Since L is an irreducible component of E ′

1 ∩E
′
2, we must have

that H is not a component of E ′
1 ∩ E

′
2, and so in particular, H is contained in G.

Therefore L is contained in G.
Since L is not a divisor, it must be codimension 2 (since it is a component of the

the intersection of two divisors in a smooth space). Suppose L is in the intersection
of a component F1 ⊆ E ′

1 and a component F2 of E ′
2 (neither F1 or F2 are in G by

construction). But then F1, F2 and H would not be in simple normal crossings at
the generic point of L (because the generic point of L is a two dimensional regular
local ring). Therefore L is not contained in G, a contradiction.

It follows that we have the following short exact sequence

0 // OeY (−(E ′
1 ∪ E

′
2)) // OeY (−E ′

1)⊕OeY (−E ′
2)

−
// OeY (−(E ′

1 ∩ E
′
2)) // 0

0 // OeY (⌊−ǫ(E ′
1 ∪E

′
2)⌋) // OeY (⌊−ǫE ′

1⌋)⊕OeY (⌊−ǫE ′
2⌋)

−
// OeY (⌊−ǫ(E ′

1 ∩ E
′
2)⌋) // 0

where the third horizontal map sends (a, b) to a − b. We tensor this short exact
sequence with OeY (⌊(t− ǫ)G⌋) and then map the result into

0 // OeY (⌊(t− ǫ)G⌋) // OeY (⌊(t− ǫ)G⌋)⊕OeY (⌊(t− ǫ)G⌋)
−

// OeY (⌊(t− ǫ)G⌋) // 0.

By taking the cokernel, we obtain a short exact sequence from the nine-lemma,

0 // MX∪Σ,at−ǫ // MX,at−ǫ ⊕MΣ,at−ǫ
−

// MX∩Σ,at−ǫ // 0.

Pushing forward completes the proof of the claim. �

Dualizing the triangle from the claim, we obtain

D
(
Ω0

Σ∩X,at−ǫ

)
// D

(
Ω0
X,at−ǫ

)
⊕D

(
Ω0

Σ,at−ǫ

)
// D

(
Ω0
X∪Σ,at−ǫ

)
+1

// .
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We then take cohomology. Notice that Σ ∩ X ⊆ (SingZ) ∩ X ⊆ SingX since X
is Cartier. The result follows by Proposition 13.6 since dim(Σ ∩ X) ≤ dimX − 2
(since X is normal) and dim Σ ≤ dimZ − 2 = dimX − 1 (since Z is normal). �

When we combine Lemma 13.11 with Corollary 13.7, we obtain

Corollary 13.12. Suppose that X is a normal irreducible Cartier divisor in Z
which itself is a normal irreducible complete intersection and suppose that a is a

non-zero ideal sheaf on Z such that V (a) does not contain X. Let π : Z̃ → Z be

a log resolution of Z, X and a, and let X̃ denote the strict transform of X. Set

E to be the exceptional set of π, F to be the exceptional set of (π| eX), and write

a · O eZ = O eZ(−G). Then we have a short exact sequence

0 → π∗O eZ(⌈K eZ − (t− ǫ)G + ǫE⌉)
→ π∗O eZ(⌈K eZ − (t− ǫ)G + ǫ(E + π∗X)⌉)
→ π∗O eX(⌈K eX − (t− ǫ)G| eX + ǫF ⌉)
→ 0

Proof. This follows from an application of Corollary 13.7 to the short exact sequence
of Lemma 13.11. �

Theorem 13.13. If Z is a normal complete intersection, X ⊂ Z is a normal Cartier

divisor and a is an ideal sheaf on Z such that V (a) does not contain any component

of Z or X, then there is a short exact sequence:

0 // J ′(Z; at)⊗OZ(−X) // J ′((Z,X); at) //// J ′(X; at) // 0.

Proof. Tensor the exact sequence from Corollary 13.12 with OZ(−KZ−X) noticing
that

π∗O eX(⌈K eX − (t− ǫ)G| eX + ǫF ⌉)⊗OZ(−KZ −X)
∼= π∗O eX(⌈K eX − (t− ǫ)G| eX + ǫF ⌉)⊗OX ⊗OZ(−KZ −X)
∼= π∗O eX(⌈K eX − (t− ǫ)G| eX + ǫF ⌉)⊗OX(−KX)
⊆ OX .

�

Part 2. A characteristic p analog of maximal non-lc ideals

This part is devoted to the study of a positive characteristic analog of the maximal
non-lc ideal sheaves. As mentioned earlier, this is independent of the previous part,
except for the definition of the maximal non-lc ideal sheaves. We should also mention
that this is a first attempt. The authors expect that further refinements of the
definition may be necessary, in particular see Remark 14.7.

14. Non-F-pure ideals

In this section, we introduce a characteristic p analog of maximal non-lc ideals,
called non-F-pure ideals, and study their basic properties.

From this point forward, all rings are Noetherian commutative rings with identity.
For a reduced ring R, we denote by R◦ the set of elements of R that are not in any
minimal prime.
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Let R be a reduced ring of characteristic p > 0. For an ideal I of R and a power q
of p, we denote by I [q] the ideal generated by the qth powers of elements of I. Given
an R-module M and an integer e ≥ 1, we will use F e

∗M to denote the R-module
which agrees with M as an additive group, but where the multiplication is defined
by r ·m = rp

e

m. For example, I · F e
∗M
∼= F e

∗ (I [pe]M). We say that R is F -finite if
F 1
∗R is a finitely generated R-module. For example, a field k is F -finite if and only

if [k : kp] < ∞, and any algebra essentially of finite type over an F -finite field is
F -finite.

Definition 14.1. A triple (R,∆, at) is the combined information of

(i) an F -finite reduced ring R,
(ii) an ideal a ⊆ R such that a ∩ R◦ 6= ∅,
(iii) a real number t > 0.

Furthermore, if R is a normal domain, then we also consider

(iv) an effective R-divisor ∆ on X = Spec R.

If a = R (resp., ∆ = 0) then we call the triple (R,∆, at) a pair and denote it by
(R,∆) (resp., (R, at)).

First we recall the definitions of generalized test ideals, F-purity and F-regularity
for triples.

Definition 14.2. Let (R,∆, at) be a triple.

(i) (cf. [BSTZ, Definition-Proposition 3.3], [HT, Lemma 2.1], [HY, Definition-
Theorem 6.5], [T1, Definition 2.6]) The big generalized test ideal τb((R,∆); at)
is defined to be

τb((R,∆); at) =
∑

e≥n

∑

ϕ

ϕ(F e
∗ (a⌈tpe⌉d)),

where n is an arbitrary positive integer and ϕ ranges over all elements of
HomR(F e

∗R(⌈pe∆⌉), R) ⊆ HomR(F e
∗R,R), and where d ∈ R◦ is a big test

element for R. We do not give the definition of big test elements here (see
[Ho] for the definition of big test elements), but, for example, if the localized
ring Rd is regular, then some power dn is a big test element for R by [Ho,
p.63, Theorem].

(ii) ([Sc5, Definition 3.2] cf. [HW, Definition 2.1], [Sc2, Definition 3.1], [T2, Def-

inition 3.1]) Let a⌈t•⌉ := {am}m∈N be a graded family of ideals defined by

am = a⌈t(m−1)⌉, where b is the integral closure of an ideal b ⊆ R. We say

that (R,∆, a⌈t•⌉) is sharply F-pure if there exist an integer e ≥ 1 and a map

ϕ ∈ HomR(F e
∗R(⌈(pe − 1)∆⌉), R) · F e

∗ape−1

such that ϕ(1) = 1.
(iii) ([Sc5, Definition 3.2] cf. [HW, Definition 2.1], [T2, Definition 3.1]) We say

that (R,∆, at) is strongly F-regular if for every d ∈ R◦, there exist an integer
e ≥ 1 and a map

ϕ ∈ HomR(F e
∗R(⌈(pe − 1)∆⌉), R) · F e

∗ (a⌈t(pe−1)⌉d)

such that ϕ(1) = 1.
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Remark 14.3. (1) Considering the case where d = 1, one can easily see that if

(R,∆, at) is strongly F-regular, then (R,∆, a⌈t•⌉) is sharply F-pure. Also, it fol-
lows from [Sc5, Corollary 5.7] that (R,∆, at) is strongly F-regular if and only if
τb((R,∆); at) = R.

(2) In the case where ∆ = 0 and a = 0, (R,∆, a⌈t•⌉) is sharply F-pure (resp.
(R,∆, at) is strongly F-regular) if and only if the ring R is F-pure (resp. strongly
F-regular), and τb((R,∆); at) = τb(R) is the big test ideal. Refer to [HR], [HH] and
[Ho] for basic properties of F-pure rings, strongly F-regular rings and the big test
ideal, respectively.

Thanks to [HY] and [T1], the generalized test ideal can be viewed as a charac-
teristic p analog of the multiplier ideal. In particular, a strongly F-regular triple
(X = Spec R,∆, at) corresponds to a klt triple under the condition that KX + ∆
is Q-Cartier. Also, a sharply F-pure triple is expected to correspond to a lc triple
under the same condition. Employing this philosophy, we introduce a characteristic
p analog of maximal non-lc ideals.

Definition 14.4 (cf. [B, Corollary 2.14]). Let (R,∆, at) be a triple. We denote
the integral closure of an ideal b of R by b. We then define the family of ideals
{σn((R,∆); at)}n∈N inductively as follows1:

σ1((R,∆); at) =
∑

e≥1

∑

ϕ

ϕ(F e
∗a⌈t(pe−1)⌉),

σ2((R,∆); at) =
∑

e≥1

∑

ϕ

ϕ(F e
∗ (σ1((R,∆); at)a⌈t(pe−1)⌉)),

σn((R,∆); at) =
∑

e≥1

∑

ϕ

ϕ(F e
∗ (σn−1((R,∆); at)a⌈t(pe−1)⌉)),

where ϕ runs through all elements of HomR(F e
∗R(⌈(pe−1)∆⌉), R) ⊆ HomR(F e

∗R,R).
Just for the convenience, we decree that σ0((R,∆); at) = R. It follows from [B,
Proposition 2.13] that the descending chain

R ⊇ σ1((R,∆); at) ⊇ σ2((R,∆); at) ⊇ σ3((R,∆); at) ⊇ · · ·

stabilizes at some n ∈ N. Then the non-F-pure ideal σ((R,∆); at) is defined to be

σ((R,∆); at) = σn((R,∆); at) = σn+1((R,∆); at) = · · · .

When a = R (resp. ∆ = 0), we simply denote this ideal by σ(R,∆) (resp. σ(R, at)).

Remark 14.5. (1) If ∆ = 0 and a = R, then σ((R,∆); at) = σ(R) is just the image
of the map HomR(F e

∗R,R) → R which sends φ to φ(1), at least for e ≫ 0. In the
case that R is local and Gorenstein with perfect residue field, this image is stable for
e≫ 0 by the Matlis dual of a celebrated result of Hartshorne and Speiser, see [HS,
Proposition 1.11]. Thus, Blickle’s stabilization result [B, Proposition 2.13] should
be viewed as a large generalization of Hartshorne and Speiser’s result.

(2) The real exponent t on the ideal a in the definition of big generalized test ideals
(Definition 14.2 (i)) is just a formal notation, but it is compatible with “real” powers

1This definition of σn((R, ∆); at) is slightly different from the one given in a previous version.
We changed the definition because the proof of Theorem 15.1 didn’t work for the previous one.
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of a. That is, setting b = a
n for n ∈ N, one has τb((R,∆); bt) = τb((R,∆); ant).

However, in the case of non-F-pure ideals, it is not compatible in general. For
example, if R = k[x] is the one-dimensional polynomial ring over an F -finite field k
of characteristic p > 0, then σ(R, (x)) = R but σ(R, (xp)1/p) = x.

Remark 14.6. Classically, the test ideal is defined as the annihilator ideal of some
submodule of the injective hull. We can define the non-F-pure ideal in a similar way.

Let (R,m) be an F -finite reduced local ring of characteristic p > 0, and denote
by E = ER(R/m) the injective hull of the residue field R/m. For each integer e ≥ 1,
we denote Fe,∆(E) := F e

∗R(⌈(pe − 1)∆⌉) ⊗R E and regard it as an R-module by
the action of F e

∗R
∼= R from the left. Then the eth iteration of the Frobenius map

induces a map F e : E → Fe,∆(E). The image of z ∈ E via this map is denoted by
zp

e

:= 1⊗ z = F e(z) ∈ Fe,∆(E).
N1((R,∆); at) is defined to be the submodule of E consisting of all elements

z ∈ E such that a⌈t(pe−1)⌉zp
e

= 0 in Fe,∆(E) for all e ∈ N. N2((R,∆); at) is
defined to be the submodule of E consisting of all elements z ∈ E such that

AnnR(N1((R,∆); at))a⌈t(pe−1)⌉zp
e

= 0 in Fe,∆(E) for all e ∈ N. Inductively we
define Nn((R,∆); at) to be the submodule of E consisting of all elements z ∈ E

such that AnnR(Nn−1((R,∆); at))a⌈t(pe−1)⌉zp
e

= 0 in Fe,∆(E) for all e ∈ N. Then
the ascending chain

N1((R,∆); at) ⊆ N2((R,∆); at) ⊆ N3((R,∆); at) ⊆ · · · ⊆ E

stabilizes at some n ∈ N and σ((R,∆); at) = AnnR(Nn((R,∆); at)).

Remark 14.7. There are numerous other non-F -pure ideals that one can define.
The ideal σ((R,∆); at) is the largest ideal that we know of that both commutes with
localization and seems naturally determined.

We briefly enumerate some of the other potential non-F -pure ideals and describe
some of their advantages and disadvantages. All of these ideals define the non-F -
pure locus of (R,∆, at) (if they stabilize in the right way).

(1) σ1((R,∆); at). This ideal still defines the non-F -pure locus and its formation
commutes with localization. However, we do not believe that Theorem 15.2
holds for this ideal. The same comments also hold for the other σi.

(2) For any fixed n, consider the ideal σ′
n((R,∆); at) =

∑
e≥n

∑
ϕ ϕ(F e

∗a⌈t(pe−1)⌉).

This ideal is non-canonically determined, because of the choice of n (for
various reasons, it is desirable to choose n sufficiently large). It may be that
σ′((R,∆), at) := ∩σ′

n((R,∆); at) is a good alternative, but we do not know if
this intersection stabilizes for sufficiently large n (if it does, then σ′((R,∆, at)
also commutes with localization). If it does, then the ideal σ′((R,∆); at)
defines the non-F -pure locus and is a priori larger than σ((R,∆); at), see
Lemma 14.8 below. If R is local with injective hull E of the residue field,
∆ = 0 and a = R, then σ′((R,∆); at) = σ′(R) also coincides with

AnnR 0FE = AnnR{z ∈ E | z
pe

= 0 for e≫ 0},

the annihilator ideal of the Frobenius closure 0FE of the zero submodule in
the injective hull E.



SUPPLEMENTS TO NON-LC IDEAL SHEAVES 35

(3) Suppose now that R is local and that (pe0 − 1)(KR +∆) is Cartier (for some

e0). Then consider the ideal
∑

e=ne0,n>0

∑
ϕ ϕ(F e

∗ a⌈t(pe−1)⌉). This ideal suffers

from the same issue that (2) does, but it is even smaller. If it can be shown
to stabilize for sufficiently large and divisible e0, then it would be useful.
In particular, one could prove versions of the restriction theorem (Theorem
16.7) for triples (R,∆, at).

(4) Associated to a triple (R,∆, at), one can define a Cartier-algebra on R,
see [B] for the definition and details. The ideal σ((R,∆); at) is a natural
object associated to this algebra. If one replaces this Cartier-algebra by a
Veronese sub-algebra, one obtains a different non-F -pure ideal. If there is
some stabilization of these non-F -pure ideals for sufficiently fine Veronese
sub-algebras, then this could be very useful.

Suppose that R is Q-Gorenstein with index not divisible by p > 0. Further
suppose that ∆ = 0 and a = R. Then σ(R) coincides with σ′

n(R) from (2) for n≫ 0.
This ideal also coincides with the ideal from (3) for sufficiently large and divisible
e0 and coincides with ideal from (4) for a sufficiently fine Veronese subalgebra.

To see that σ′
n(R) = σ(R) for n≫ 0, first assume without loss of generality that

R is local. Then, notice that the evaluation-at-1 map HomR(F e+1
∗ R,R)→ R factors

through HomR(F e
∗R,R). Thus σ′

n(R) is simply the image of HomR(F n
∗ R,R) → R.

If R is Q-Gorenstein and (pe0−1)KR is Cartier, then it follows from [Sc4, Corollary
3.10] that the image of HomR(Fme0

∗ R,R)→ R is contained in σm(R). This implies
that σ′

n(R) ⊆ σ(R) for n ≫ 0. The reverse containment is done (in much greater
generality) in Lemma 14.8 below.

The equality with the ideals from (3) and (4) follow similarly.

Before discussing the basic properties of non-F-pure ideals, we start with the
following technical lemma.

Lemma 14.8. Let (R,∆, at) be a triple. Then for each n ∈ N and i ∈ Z≥0, one has

σn+i((R,∆); at) ⊆
∑

e≥i+1

∑

ϕ

ϕ(F e
∗ (σn−1((R,∆); at)a⌈t(pe−1)⌉))

where ϕ ranges over all elements of HomR(F e
∗R(⌈(pe− 1)∆⌉), R). In particular, for

all n ∈ N, the ideal σn((R,∆); at) is contained in
∑

e≥n

∑

ϕ

ϕ(F e
∗a⌈t(pe−1)⌉) = σ′

n((R,∆); at).

Proof. From the point of view of Blickle’s theory of Cartier algebras, this statement
is essentially obvious. We write down a proof in detail however.

For all integers i ≥ 0, set

σi,n((R,∆); at) :=
∑

e≥i+1

∑

ϕ

ϕ(F e
∗ (σn−1((R,∆); at)a⌈t(pe−1)⌉)).

We will prove the assertion by induction on i. Obviously we may assume that i ≥ 1.

Let e ≥ 1 be an integer, and fix any ϕ ∈ HomR(F e
∗R(⌈(pe−1)∆⌉), R), a ∈ F e

∗a⌈t(pe−1)⌉

and b ∈ F e
∗σn+i−1((R,∆); at). It then suffices to show that ϕ(ab) ∈ σi,n((R,∆); at).
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It follows from the induction hypothesis that b ∈ F e
∗σi−1,n((R,∆); at), that is,

b ∈
∑

l≥i

∑

ψ

ψ(F e+l
∗ (σn−1((R,∆); at)a⌈t(pl−1)⌉)),

where ψ ranges over all elements of HomF e
∗
R(F e+l

∗ R(⌈(pl−1)∆⌉), F e
∗R). Since pl⌈(pe−

1)∆⌉+ ⌈(pl−1)∆⌉ ≥ ⌈(pe+l−1)∆⌉, the map ϕ◦ψ can be regarded as an element of
HomR(F e+l

∗ R(⌈(pe+l−1)∆⌉), R). Also, since pl⌈t(pe−1)⌉+⌈t(pl−1)⌉ ≥ ⌈t(pe+l−1)⌉,

we have (F e
∗ a⌈t(pe−1)⌉)(F e+l

∗ a⌈t(pl−1)⌉) ⊆ F e+l
∗ a⌈t(pe+l−1)⌉. Thus,

ϕ(ab) ∈
∑

l≥i

∑

ψ

(ϕ ◦ ψ)(F e
∗ a⌈t(pe−1)⌉F e+l

∗ (σn−1((R,∆); at)a⌈t(pl−1)⌉))

⊆
∑

l≥i

∑

ψ

(ϕ ◦ ψ)(F e+l
∗ (σn−1((R,∆); at)a⌈t(pe+l−1)⌉))

⊆σi,n((R,∆); at).

�

Question 14.9. Let the notation be the same as in Lemma 14.8. If n is sufficiently
large, then does σ((R,∆); at) coincide with σ′

n((R,∆); at)?

We list basic properties of non-F-pure ideals.

Proposition 14.10. Let (R,∆, at) be a triple.

(1) For any effective R-divisor ∆′ ≤ ∆ on Spec R, for any ideal a ⊆ b ⊆ R and

for any real number s ≤ t, one has

σ((R,∆); at) ⊆ σ((R,∆′); bs).

If a ⊆ b ⊆ a, then

σ((R,∆); at) = σ((R,∆); bt).

(2) σ((R,∆); at)a ⊆ σ((R,∆); at+1).
(3) Let W be a multiplicatively closed subset of R, and let ∆W and aW be the

images of ∆ and a in RW , respectively. Then

σ((RW ,∆W ); atW ) = σ((R,∆); at)RW .

(4) If R is locally an integral domain and if the non-strongly-F-regular locus of

Spec R is contained in V (a), then for any ǫ > 0,

σ((R,∆); at) ⊆ τb((R, (1− ǫ)∆); at−ǫ).

(5) (R,∆, a⌈t•⌉) is sharply F-pure if and only if σ((R,∆); at) = R.

Proof. (1) It is obvious, also see [B, Proposition 3.2].
(2) By the definition of σ1((R,∆); at), we have

σ1((R,∆); at)a =
∑

e≥1

∑

ϕ

ϕ(F e
∗ (a⌈t(pe−1)⌉a

[pe]))

⊆
∑

e≥1

∑

ϕ

ϕ(F e
∗a⌈(t+1)(pe−1)⌉)

= σ1((R,∆); at+1).
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Applying this inclusion to the definition of σ2((R,∆); at), we have

σ2((R,∆); at)a =
∑

e≥1

∑

ϕ

ϕ(F e
∗ (σ1((R,∆); at)a⌈t(pe−1)⌉a

[pe]))

⊆
∑

e≥1

∑

ϕ

ϕ(F e
∗ (σ1((R,∆); at+1)a⌈(t+1)(pe−1)⌉))

= σ2((R,∆); at+1).

Inductively we have σn((R,∆); at)a ⊆ σn((R,∆); at+1) for all integers n ≥ 1, so that
σ((R,∆); at)a ⊆ σ((R,∆); at+1).

(3) It is immediate from [B, Lemma 2.18].
(4) We may assume that R is a local domain and set X = Spec R. It follows from

[Ho, p.63, Theorem] that there exists an integer m ≥ 1 such that every nonzero
element of a

m is a big test element for R. Then τb((R, (1 − ǫ)∆); at−ǫ) is equal to∑
e≥n

∑
ψ ψ(F e

∗ a
⌈(t−ǫ)pe⌉+m), where n is an arbitrary positive integer and ψ ranges

over all the elements of HomR(F e
∗R(⌈pe(1−ǫ)∆⌉), R). By [Hu], there exists a positive

integer k such that an+k ⊆ a
n for all n ≥ 0. We take a sufficiently large n such that

for all e ≥ n, ⌈t(pe − 1)⌉ ≥ ⌈(t − ǫ)pe⌉ + m + k, ⌈(pe − 1)∆⌉ ≥ ⌈pe(1 − ǫ)∆⌉ and

that σ((R,∆); at) is contained in
∑

e≥n

∑
ϕ ϕ(F e

∗ a⌈t(pe−1)⌉), where ϕ ranges over all

the elements of HomR(F e
∗R(⌈(pe − 1)∆⌉), R). Then

σ((R,∆); at) ⊆
∑

e≥n

∑

ϕ

ϕ(F e
∗a⌈t(pe−1)⌉)

⊆
∑

e≥n

∑

ψ

ψ(F e
∗a⌈(t−ǫ)pe⌉+m+k)

⊆
∑

e≥n

∑

ψ

ψ(F e
∗a

⌈(t−ǫ)pe⌉+m)

= τb((R, (1− ǫ)∆); at−ǫ).

(5) By the definition of sharp F-purity, (R,∆, a⌈t•⌉) is sharply F-pure if and only
if σ1((R,∆); at) = R. However, σ1((R,∆); at) = R if and only if σn((R,∆); at) = R
for all integers n ≥ 1. �

Remark 14.11 (Compare with 6.1). Even if R is regular, the equality

σ((R,∆); at) = τb((R, (1− ǫ)∆); at−ǫ)

does not hold for any ǫ > 0 in general. We give two easy examples.

(1) Let R = k[x] be the one-dimensional polynomial ring over an F -finite field

k of characteristic p > 0 and let a = (xp). Then σ(R, a
1

p ) = x, while

τb(R, a
1

p
−ǫ) = R for any ǫ > 0.

(2) Let R = k[x, y] be the two-dimensional polynomial ring over an F -finite field
k of characteristic p > 0 and let ∆ = div(x3 − y2). If p ≡ 2 mod 3, then
σ(R, 5p−1

6p
∆) = (x, y), while τb(R, (

5p−1
6p
− ǫ)∆) = R for any ǫ > 0.

The first example is also a counterexample to Theorem 15.1 below when the denom-
inator of t is divisible by p.



38 OSAMU FUJINO, KARL SCHWEDE AND SHUNSUKE TAKAGI

15. Non-F-pure ideals vs. non-lc ideal sheaves

In this section, we explore the relationship between non-F-pure ideals and non-lc
ideal sheaves.

In Theorem 7.8, we gave a combinatorial description of the non-lc ideal sheaf
J ′(X, at) associated to a monomial ideal a on X = Cn. We show that the non-
F-pure ideal σ(R, at) has a similar description when a is a monomial ideal of the
polynomial ring R = k[x1, . . . , xn] over an F -finite field k.

Theorem 15.1 (Compare with Theorem 7.8). Let a be a monomial ideal of the

polynomial ring R := k[x1, . . . , xn] over an F -finite field k of characteristic p > 0.
Let t > 0 be a rational number whose denominator is not divisible by p. Then the

non-F-pure ideal σ(R, at) is the monomial ideal generated by all monomials xv whose

exponent vectors satisfy the condition that

v + 1 ∈ P (t · a),

where P (t · a) is the Newton polyhedron of t · a.

Proof. We denote by I(R, at) the monomial ideal generated by all monomials xv

whose exponent vectors satisfy the condition that v + 1 ∈ P (t · a). It follows from
[HY, Theorem 4.8] that for sufficiently small 1 ≫ ǫ > 0, the generalized test ideal
τb(R, a

t−ǫ) coincides with I(R, at). By Proposition 14.10 (4), σ(R, at) is contained
in I(R, at).

Hence, we will prove the converse inclusion. For each integer e ≥ 1, let φe :
F e
∗R→ R be the R-linear map such that

φe(xl11 x
l2
2 . . . x

ln
n ) =

{
1 if l1 = l2 = . . . = ln = pe − 1
0 whenever li ≤ pe − 1 for all i and li < pe − 1 for some i.

Then the ideal φe(F e
∗ a⌈t(pe−1)⌉) is generated by monomials, because everything in-

volved is Zn-graded. The monomial xv is in the ideal φe(F e
∗ a⌈t(pe−1)⌉) if and only

if

(5) pev ∈ P (⌈t(pe − 1)⌉ · a)− (pe − 1)1.

Since the denominator of t is not divisible by p, there are infinitely many e ∈ N such
that t(pe − 1) is an integer. For such e, dividing out by pe − 1, we can rephrase (5)
into the condition that pe

pe−1
v + 1 ∈ P (t · a). By taking a sufficiently large e, this is

equivalent to saying that v + 1 ∈ P (t · a). Thus, by the definition of σ1(R, a
t), the

ideal I(R, at) is contained in σ1(R, a
t).

Similarly, for each e ≥ 1, the monomial xv is in φe(F e
∗ (σ1(R, a

t)a⌈t(pe−1)⌉)) if it is

in φe(F e
∗ (I(R, at)a⌈t(pe−1)⌉)) which happens if and only if

(6) pev ∈ (P (t · a)− 1) ∩ Zn
≥0 + P (⌈t(pe − 1)⌉ · a)− (pe − 1)1.

We will show that for all sufficiently large e such that also t(pe − 1) is an integer,
Equation (6) is equivalent to the condition that v+1 ∈ P (t·a), that is, xv ∈ I(R, at).
First suppose that (6) holds for such e. In particular,

pev ∈ (P (t · a)− 1) + P (t(pe − 1) · a)− (pe − 1)1 = peP (t · a)− pe1.
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Dividing out by pe, we see that v + 1 ∈ P (t · a). Conversely, suppose that v + 1 ∈
P (t · a). Since v is in Zn

≥0, this can be rephrased to say that v ∈ (P (t · a)−1)∩Zn
≥0.

Multiplying both sides by pe − 1, we have that

(pe − 1)v ∈ (pe − 1)(P (t · a)− 1) = P (⌈t(pe − 1)⌉ · a)− (pe − 1)1

for all e such that t(pe − 1) is an integer. Finally, we see that for such e,

pev = v + (pe − 1)v

= (P (t · a)− 1) ∩ Zn
≥0 + P (⌈t(pe − 1)⌉ · a)− (pe − 1)1.

So, what it comes down to is that

I(R, at) ⊆ φe(F e
∗ (σ1(R, a

t)a⌈t(pe−1)⌉)) ⊆ σ2(R, a
t).

Inductively we conclude that I(R, at) is contained in σ(R, at), which completes the
proof of Theorem 15.1. �

Theorem 15.2. Let R be an F -finite normal ring of characteristic p > 0 and ∆ be

an effective R-divisor on X := Spec R such that KX + ∆ is R-Cartier. Let a ⊆ R

be a nonzero ideal and t > 0 be a real number. If f : X̃ → X is a proper birational

morphism from a normal scheme X̃ such that aO eX = O eX(−Z) is invertible and

K eX + ∆ eX = f ∗(KX + ∆) + tZ, then one has an inclusion

σ((R,∆); at) ⊆ H0(X̃,O eX(⌈K eX − f
∗(KX + ∆)− tZ + εF ⌉))

for sufficiently small 0 ≤ ε≪ 1, where F = Supp ∆≥1
eX

.

Proof. The proof is very similar to those of [HW, Theorem 3.3] and [T1, Theorem
2.13].

We may assume that R is local. Let c ∈ σ((R,∆); at). By Lemma 14.8, we may

assume that there exist a sufficiently large q = pe, a nonzero element a ∈ a⌈t(q−1)⌉

and an R-linear map ϕ : F e
∗R(⌈(q − 1)∆⌉)→ R sending a to c. The map ϕ induces

an R-linear map ϕ′ : F e
∗R(⌈(q−1)∆⌉+divX(a))→ R(divX(c)) sending 1 to 1. Since

H omR(F e
∗R(⌈(q − 1)∆⌉+ divX(a)), R(divX(c)))

∼=F e
∗OX((1− q)KX + q divX(c)− ⌈(q − 1)∆⌉ − divX(a))

by Grothendieck duality, we can regard ϕ′ as a rational section of O eX((1− q)K eX +

qf−1
∗ divX(c)). Let D be the divisor on X̃ corresponding to ϕ′. Then D is linearly

equivalent to (1− q)K eX + qf−1
∗ divX(c) and f∗D ≥ ⌈(q − 1)∆⌉+ divX(a).

Set Y := X̃ \ Supp D<0. Since Supp D<0 is supported on the exceptional locus,
ϕ′ lies in the global section of

F e
∗OY ((1− q)KY + qf−1

∗ divX(c)|Y ) ∼= F e
∗ H omOY

(F e
∗OY ,OY (f−1

∗ divX(c)|Y )).

We will prove that the coefficient of D − qf−1
∗ divX(c) in each irreducible com-

ponent is less than or equal to q − 1. Assume to the contrary that there exists
an irreducible component D0 of D whose coefficient is greater than or equal to
q(ordD0

(f−1
∗ divX(c)) + 1), where ordD0

denotes the order along D0. Note that D0

intersects Y . Set B := f−1
∗ divX(c) − ordD0

(f−1
∗ divX(c))D0. Then ϕ′ lies in the

global section of

F e
∗OY ((1− q)KY + qB|Y − qD0|Y ) ∼= F e

∗ H omOY
(F e

∗OY (qD0|Y ),OY (B|Y )).
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Combining ϕ′ with the natural inclusion mapOY (D0|Y ) →֒ F e
∗OY (qD0|Y ), we obtain

the OY -linear map ψ : OY (D0|Y )→ OY (B|Y ). Since ϕ′ sends 1 to 1, ψ also sends 1
to 1. However, since D0 is not contained in Supp B, this is a contradiction. Thus,
every coefficient of D − qf−1

∗ divX(c) is less than or equal to q − 1.
Now we put G := 1

q−1
D − f−1

∗ ∆. Then G is Q-linearly equivalent to −(K eX +

f−1
∗ ∆) + q

q−1
f−1
∗ divX(c), so that f∗G is Q-linearly equivalent to −(KX + ∆) +

q
q−1

divX(c). There are finitely many prime divisors Ej on X̃ such that

K eX ∼
R-lin.

f ∗(KX + ∆) + tZ +
∑

j

ajEj

where aj are real numbers chosen as f−1
∗ ∆ + tZ +

∑
j ajEj is f -exceptional. Hence,

one has

G− f ∗f∗G+ f−1
∗ ∆ + tZ +

q

q − 1

(
div eX(c)− f−1

∗ divX(c)
)

+
∑

j

ajEj = 0,

because it is an f -exceptional divisor R-linearly equivalent to zero. On the other
hand,

f∗G ≥
1

q − 1
⌈(q − 1)∆⌉+

1

q − 1
divX(a)−∆ ≥

1

q − 1
divX(a).

Putting it all together, we obtain

−aj =ordEj

(
G− f ∗f∗G+ f−1

∗ ∆ + tZ +
q

q − 1

(
div eX(c)− f−1

∗ divX(c)
))

≤
1

q − 1
ordEj

(
D − div eX(a) + t(q − 1)Z − qf−1

∗ divX(c)
)

+
q

q − 1
νEj

(c)

≤
1

q − 1
ordEj

(
D − qf−1

∗ divX(c)
)

+
q

q − 1
νEj

(c)

≤1 +
q

q − 1
νEj

(c),

where ordEj
denotes the order along Ej and νEj

is the valuation corresponding to
Ej . Since q is sufficiently large, we conclude that aj + vEj

(c) ≥ −1 for all j, which

implies that c lies in H0(X̃,O eX(⌈K eX − f
∗(KX + ∆) − tZ + εF ⌉)) for sufficiently

small 0 ≤ ε≪ 1. �

Conjecture 15.3. Let R be a normal ring essentially of finite type over a field
of characteristic zero, and let ∆ be an effective Q-divisor on X := Spec R such
that KX + ∆ is Q-Cartier. Let a ⊆ R be a nonzero ideal and t > 0 be a real
number. Denoting by (Rp,∆p, ap) the reduction modulo p of the triple (R,∆, a) and
by J ′((X,∆); at)p that of the maximal non-lc ideal J ′((X,∆); at), one has

J ′((X,∆); at)p = σ((Rp,∆p); a
t
p)

for infinitely many primes p.

Remark 15.4. It follows from Theorem 15.2 that σ((Rp,∆p); a
t
p) is contained in

J ′((X,∆); at)p for all sufficiently large primes p. However, the converse inclusion
does not hold for all sufficiently large primes p in general. For example, let E ⊆ P2

Q

be an elliptic curve over the rational numbers and X = Spec R be the affine cone
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over E. Since X has only log canonical singularities, J ′(X, 0) = R. On the other
hand, σ(Rp, 0) = Rp if and only if p is not supersingular prime for E. It is known
by Elkies [El] that there are infinitely many supersingular primes for E. Hence, it
cannot happen that J ′(X, 0)p = σ(Rp, 0) for all sufficiently large primes p. The
reader is referred to [MTW, Example 4.6] for a more detailed explanation.

16. The restriction theorem for non-F-pure ideals

In this section, we formulate the restriction theorem for non-F-pure ideals when
a is the unit ideal.

For simplicity, we may assume that R is an F -finite normal local ring of charac-
teristic p > 0, and set X = Spec R. Then there exists a bijection of sets:

{
Effective Q-divisors ∆ on X such
that (pe − 1)(KX + ∆) is Cartier

}
↔ {Nonzero elements of HomR(F e

∗R,R)}
/
∼

where the equivalence relation on the right hand side identifies two maps φ1, φ2 ∈
HomR(F e

∗R,R) if there exists some unit u ∈ R such that φ1(x) = φ2(ux). The
reader is referred to [Sc4] for the details of this correspondence.

Given a map φ ∈ HomR(F e
∗R,R) and an integer l ≥ 1, the lth iteration φl of φ is

defined as follows:

φl = φ ◦ (F e
∗φ) ◦ · · · ◦ (F (l−1)e

∗ φ) ∈ HomR(F le
∗ R,R).

We remark that if φ corresponds to some effective Q-divisor ∆ on X such that
(pe − 1)(KX + ∆) is Cartier, then φl corresponds to the same divisor ∆ for every
l ∈ N. This is equivalent to saying that if HomR(F e

∗R((pe − 1)∆), R) is a free F e
∗R-

module generated by φ, then HomR(F le
∗ R((ple − 1)∆), R) is a free F le

∗ R-module
generated by φl for every l ∈ N.

Lemma 16.1. Let (R,m) be an F -finite normal local ring of characteristic p > 0
and ∆ be an effective Q-divisor on X := Spec R such that (pe0 − 1)(KX + ∆) is

Cartier for some e0 ∈ N. Let φe0 : F e0R→ R be the R-linear map corresponding to

∆. Then for all sufficiently large l ∈ N, one has

σ(R,∆) = φle0(F
le0
∗ R).

Proof. Since φe0(F
e0
∗ R) ⊆ σ1(R,∆), we have φ2

e0(F
2e0
∗ R) ⊆ σ2(R,∆) by the defini-

tion of σ2(R,∆). Inductively we have φne0(F
ne0
∗ R) ⊆ σn(R,∆) for all n ∈ N. It then

follows from Lemma 14.8 that for all sufficiently large l ∈ N,

φle0(F
le0
∗ R) ⊆ σ(R,∆) ⊆

∑

e≥le0

∑

ϕ

ϕ(F e
∗R),

where ϕ ranges over all elements of HomR(F e
∗R(⌈(pe−1)∆⌉), R). Hence, it suffices to

show that
∑

e≥le0

∑
ϕ ϕ(F e

∗R) ⊆ φle0(F
le0
∗ R). Let ϕ ∈ HomR(F e

∗R(⌈(pe − 1)∆⌉), R)

with e ≥ le0. Then by [Sc4, Corollary 3.10], there exists an R-linear map ψi :
F i
∗R(⌈(pi − 1)∆⌉)→ R such that ϕ = φle0 ◦ (F le0

∗ ψi) with i = e− le0. Thus, one has

ϕ(F e
∗R) = φle0((F

le0
∗ ψi)(F

e
∗R)) ⊆ φle0(F

le0
∗ R).

�
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Remark 16.2. In the case of a regular ring R, we have the following description of
non-F-pure ideals: let ∆ = t · div(f) be an effective Q-divisor on Spec R such that
the denominator of t is not divisible by p. If J ⊆ R is an ideal, one defines J [1/pe]

to be the smallest ideal I such that I [pe] ⊇ J . Then by Lemma 16.1 and [BSTZ,
Proposition 3.10], one has

σ(R,∆) = (f t(p
e−1))[1/pe]

for sufficiently large and divisible e such that t(pe−1) is an integer. For example, let
R = Fp[x, y] be the two-dimensional polynomial ring over Fp and let ∆ = div(x3 −
y2). Note that {xiyj}pe−1≥i,j≥0 is a basis of R over Rpe

for all e ∈ N. Then by [BMS,
Proposition 2.5], taking a sufficiently large e, one has

σ(R,∆) =
(
(x3 − y2)p

e−1
)[1/pe]

= (x, y).

Proposition-Definition 16.3 ([Sc4, Theorem 5.2]). Let R be an F -finite normal
local ring of characteristic p > 0 and D+B be an effective Q-divisor on X := Spec R
such that D is a normal prime divisor with defining ideal Q ⊆ R and that D is not
contained in Supp B. Assume that there exists e ∈ N such that (pe−1)(KX+D+B)
is Cartier.

Let φ : F e
∗R→ R be the R-linear map corresponding to D+B. Since the localized

ring RQ is a DVR, φ(F e
∗Q) ⊆ Q (that is, Q is an F-pure center of (R,D + B). See

Definition 16.8 for the definition of F-pure centers). Then we have the following
commutative diagram:

F e
∗R

φ
//

��

R

��

F e
∗ (R/Q)

φQ
// R/Q,

where the vertical maps are the natural surjections. We denote by BR/Q the effective
Q-divisor on D corresponding to φQ. It is easy to check the following properties:

(i) (pe − 1)(KD +BR/Q) is a Cartier divisor.
(i’) HomR/Q(F e

∗ (R/Q)((pe−1)BR/Q), R/Q) is a free F e
∗ (R/Q)-module generated

by φQ.
(ii) (R,D +B) is sharply F-pure if and only if (R/Q,BR/Q) is sharply F-pure.

Remark 16.4. The divisor BR/Q defined above is canonically determined and exists
even outside the local setting. Explicitly, if X is an F -finite normal irreducible
scheme and D and B are as above, then there exists a divisor BD on D (replacing
BR/Q) satisfying the properties (i), (i’) and (ii) above locally and also satisfying the
condition that (KX +D +B)|D ∼Q BD. See [Sc4, Remark 9.5] for details.

Conjecture 16.5 (cf. [Sc4, Remark 7.6]). Let the notation be the same as in Def-
inition 16.3. Then BR/Q coincides with the different BD of (X,D + B) on D (see
Section 11 for the definition of differents).

Remark 16.6. Conjecture 16.5 holds true if D is Cartier in codimension two. The
reader is referred to [Sc4, Section 7] for details.

Now we state our restriction theorem for non-F-pure ideals.
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Theorem 16.7. Let R be an F -finite normal domain of characteristic p > 0 and

D + B be an effective Q-divisor on X := Spec R such that D is a normal prime

divisor with defining ideal Q ⊆ R and that D is not contained in Supp B. Assume

that KX +D +B is Q-Cartier with index not divisible by p. Then

σ(R,D +B)|D = σ(R/Q,BR/Q).

Proof. The statement is local, so we may assume without loss of generality that R
is also local. Since KX + D + B is Q-Cartier with index not divisible by p, there
exist infinitely many e ∈ N such that (pe − 1)(KX + D + B) is a Cartier divisor.
We fix one of such e. Let φ ∈ HomR(F e

∗R,R) be the R-linear map corresponding
to D + B. By the definition of BR/Q, there exists φQ ∈ HomR/Q(F e

∗ (R/Q), R/Q)
corresponding to BR/Q such that we have the following commutative diagram for
each l ∈ N :

F le
∗ R

φl

//

��

R

��

F le
∗ (R/Q)

φl
Q

// R/Q,

where the vertical maps are natural quotient maps. Thus, it follows from Lemma
16.1 that for a sufficiently large l,

σ(R,D +B)|D = φl(F le
∗ R)R/Q = φlQ(F le

∗ (R/Q)) = σ(R/Q,BR/Q).

�

In fact, the previous restriction even holds when restricting to an F -pure center
of arbitrary codimension.

Definition 16.8 ([Sc3]). Suppose that (X,∆) is a pair such thatKX+∆ is Q-Cartier
with index not divisible by p. We say that a subvariety W ⊆ X is a center of sharp

F -purity for (X,∆) if, after localizing at each point x ∈ X, any (equivalently, some)
map φ : F e

∗OX,x → OX,x corresponding to ∆ (as at the start of this section) satisfies
the property that

φ(F e
∗IW,x) ⊆ IW,x.

Here IW is the ideal sheaf defining W and IW,x is its stalk at x ∈ X. We simply
call it an F-pure center of (R,∆) if the context is clear.

Given a pair (X := Spec R,∆) and a normal F -pure center W ⊆ X with defining
ideal Q ⊆ R such that (X,∆) is sharply F -pure at Q, then there exists a canonically
determined Q-divisor ∆R/Q on W satisfying the properties (i), (i’) and (ii) from
Proposition-Definition 16.3. The proof (and reference) are the same.

Theorem 16.9. Let R be an F -finite normal ring of characteristic p > 0 and ∆ be

an effective Q-divisor on X := Spec R such that KX + ∆ is Q-Cartier with index

not divisible by p. Suppose that W ⊆ X is an F -pure center of (X,∆) and also that

(X,∆) is sharply F -pure at the generic point of W . Let us use Q to denote the ideal

of W . Then

σ(R,∆)|W = σ(R/Q,∆R/Q).
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Proof. The proof is the same as in Theorem 16.7. The assumption that (X,∆) is
sharply F-pure at the generic point of W is needed to define the Q-divisor ∆R/Q. �

Compare the following example with Example 12.9.

Example 16.10. Let R = k[x, y] be the two-dimensional polynomial ring over an
F -finite field k. Set D = div(x) and B = div(x3− y2). It then follows from Remark
16.2 that

σ(R,D +B) = (x2, y),

σ(R/(x), B|D) = (y).

Hence the restriction theorem holds in this case.
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