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Subadjunction for quasi-log canonical pairs and
its applications

by

Osamu Fujino

Abstract

We establish a kind of subadjunction formula for quasi-log canonical pairs. As an ap-
plication, we prove that a connected projective quasi-log canonical pair whose quasi-log
canonical class is anti-ample is simply connected and rationally chain connected. We also
supplement the cone theorem for quasi-log canonical pairs. More precisely, we prove that
every negative extremal ray is spanned by a rational curve. Finally, we treat the notion
of Mori hyperbolicity for quasi-log canonical pairs.

2010 Mathematics Subject Classification: Primary 14J17; Secondary 14E30.
Keywords: subadjunction, quasi-log canonical pairs, simply connectedness, rationally
chain connectedness, Fano varieties, cone theorem, lengths of extremal rational curves,
Mori hyperbolicity.

§1. Introduction

Let (X,∆) be a projective log canonical pair and let W be a minimal log canonical

center of (X,∆). Then we can find an effective R-divisor ∆W on W such that

(KX +∆)|W ∼R KW +∆W

and that (W,∆W ) is a kawamata log terminal pair. This is a famous subadjunction

formula for minimal log canonical centers (see [Ka2, Theorem 1] and [FG, Theorem

1.2]) and has already played a very important role in the theory of minimal models

for higher-dimensional algebraic varieties. Hence, it is very natural and interesting

to consider some useful generalizations. In this paper, we prove a kind of subad-

junction formula for (not necessarily minimal) qlc centers of quasi-log canonical

pairs. We note that the notion of quasi-log canonical pairs is a generalization of
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that of log canonical pairs. Then we discuss several powerful applications of our

new subadjunction formula for quasi-log canonical pairs.

The main purpose of this paper is to establish the following theorem, which we

call subadjunction for qlc strata. Theorem 1.1 is a generalization of [F6, Corollary

1.10], where we treat only minimal qlc centers. Our proof heavily depends on

the structure theorem for normal irreducible quasi-log canonical pairs established

in [F6, Theorem 1.7]. We note that it is a consequence of some deep results of

the theory of variations of mixed Hodge structure discussed in [FF]. Therefore,

Theorem 1.1 is highly nontrivial.

Theorem 1.1 (Subadjunction for qlc strata). Let [X,ω] be a quasi-log canonical

pair and let W be a qlc stratum of [X,ω]. Let ν : W ν → W be the normalization.

Assume that W ν is quasi-projective and H is an ample R-divisor on W ν . Then

there exists a boundary R-divisor ∆ on W ν such that

KW ν +∆ ∼R ν∗(ω|W ) +H

and that

Nklt(W ν ,∆) = ν−1 Nqklt(W,ω|W ),

where Nklt(W ν ,∆) denotes the non-klt locus of (W ν ,∆). More precisely, the equal-

ity

ν∗J (W ν ,∆) = INqklt(W,ω|W )

holds, where J (W ν ,∆) is the multiplier ideal sheaf of (W ν ,∆) and INqklt(W,ω|W )

is the defining ideal sheaf of Nqklt(W,ω|W ) on W . Furthermore, if [X,ω] has a

Q-structure and H is an ample Q-divisor on W ν , then we can make ∆ a Q-divisor

on W ν such that

KW ν +∆ ∼Q ν∗(ω|W ) +H

holds.

We give two remarks in order to help the reader understand Theorem 1.1.

Remark 1.2. In Theorem 1.1, [W,ω|W ] naturally becomes a quasi-log canonical

pair by adjunction (see [F4, Theorem 6.3.5 (i)]) and Nqklt(W,ω|W ) denotes the

union of all qlc centers of [W,ω|W ]. By adjunction again (see [F4, Theorem 6.3.5

(i)]),

[Nqklt(W,ω|W ), ω|Nqklt(W,ω|W )]

becomes a quasi-log canonical pair.
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Remark 1.3. By [FLh1, Theorem 1.1], we know that [W ν , ν∗(ω|W )] naturally

has a quasi-log canonical structure. In the proof of Theorem 1.1, we see that the

equality

J (W ν ,∆) = INqklt(W ν ,ν∗(ω|W ))

holds, where INqklt(W ν ,ν∗(ω|W )) is the defining ideal sheaf of Nqklt(W ν , ν∗(ω|W )),

the union of all qlc centers of [W ν , ν∗(ω|W )], on W .

By combining Theorem 1.1 with [F3, Theorem 1.2], we can easily obtain:

Corollary 1.4 (Subadjunction for slc strata). Let (X,∆) be a quasi-projective semi-

log canonical pair and let W be an slc stratum of (X,∆). Let ν : W ν → W be the

normalization and let H be an ample R-divisor on W ν . Then there exits a boundary

R-divisor ∆† on W ν such that

KW ν +∆† ∼R ν∗ ((KX +∆)|W ) +H

and that

Nklt(W ν ,∆†) = ν−1E,

where E is the union of all slc centers of (X,∆) that are strictly contained in

W and Nklt(W ν ,∆†) denotes the non-klt locus of (W ν ,∆†). More precisely, the

equality

ν∗J (W ν ,∆†) = INqklt(W,ω|W )

holds, where ω := KX +∆, J (W ν ,∆†) is the multiplier ideal sheaf of (W ν ,∆†),

and INqklt(W,ω|W ) is the defining ideal sheaf of Nqklt(W,ω|W ) on W . Note that

[X,ω] naturally becomes a quasi-log canonical pair and that [W,ω|W ] has a quasi-

log canonical structure induced from the natural quasi-log canonical structure of

[X,ω] by adjunction. Furthermore, if KX + ∆ is Q-Cartier and H is an ample

Q-divisor on W ν , then we can make ∆† a Q-divisor on W ν such that

KW ν +∆† ∼Q ν∗ ((KX +∆)|W ) +H

holds.

Corollary 1.4 is a very powerful generalization of [Ka2, Theorem 1]. We give

a small remark on Corollary 1.4 for the reader’s convenience.

Remark 1.5 (see Remark 4.1). If (X,∆) is log canonical, equivalently, X is nor-

mal, in Corollary 1.4, then it is sufficient to assume thatW ν is quasi-projective. We

do not need to assume that X is quasi-projective when X is normal in Corollary

1.4.

As an application of Theorem 1.1, we can prove:
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Theorem 1.6 (Simply connectedness of qlc Fano pairs). Let [X,ω] be a projec-

tive quasi-log canonical pair such that −ω is ample and that X is connected. Then

X is simply connected, that is, the topological fundamental group of X is trivial.

Theorem 1.6, which is a generalization of [FLw, Theorem 0.2], completely

confirms a conjecture raised by the author (see [F5, Conjecture 1.3] and Remark

2.10). We can also prove:

Theorem 1.7 (Rationally chain connectedness of qlc Fano pairs). Let [X,ω] be a

projective quasi-log canonical pair such that −ω is ample and that X is connected.

Then X is rationally chain connected. This means that for arbitrary closed points

x1, x2 ∈ X there exists a connected curve C ⊂ X which contains x1 and x2 such

that every irreducible component of C is rational.

Of course, Theorem 1.7 is a generalization of [FLw, Corollary 2.5] by [F3,

Theorem 1.2] (see also Theorem 2.9) and adjunction for quasi-log canonical pairs

(see [F4, Theorem 6.3.5 (i)]).

From now on, we discuss the cone theorem for quasi-log canonical pairs. Let

[X,ω] be a quasi-log canonical pair and let π : X → S be a projective morphism

between schemes. Then it is well known that the cone theorem

NE(X/S) = NE(X/S)ω≥0 +
∑

Rj

holds, where Rj ’s are the ω-negative extremal rays of the relative Kleiman–Mori

cone NE(X/S). For the details, see [F4, Theorem 6.7.4]. As an application of

Theorem 1.1, we obtain:

Theorem 1.8 (Lengths of extremal rational curves). Each ω-negative extremal ray

Rj is spanned by an integral (possibly singular) rational curve Cj on X such that

π(Cj) is a point and that 0 < −ω · Cj ≤ 2 dimX.

Theorem 1.8 is a generalization of [Ka1, Theorem 1]. Note that Theorem 1.8

depends on [Ka1, Theorem 1]. More generally, we have:

Theorem 1.9 (Mori hyperbolicity, see [S, Theorems 1.2 and 6.5] and Theorem 7.7).

In Theorem 1.8, the curve Cj can be so taken that there exist a qlc stratum W

of [X,ω] and a non-constant morphism f : A1 → W \ Nqklt(W,ω|W ) such that

Cj ∩ (W \Nqklt(W,ω|W )) contains f(A1).

We note that Theorem 7.7 is obviously a generalization of [S, Theorems 1.2

and 6.5]. By the proof of Theorem 1.9, we obtain:
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Theorem 1.10 (Cone theorem for semi-log canonical pairs, see [F3, Theorem 1.19]).

Let (X,∆) be a semi-log canonical pair and let π : X → S be a projective mor-

phism onto a scheme S. Then, for each (KX +∆)-negative extremal ray R, we can

find an slc stratum W of (X,∆), a non-constant morphism f : A1 → X, and a

possibly singular rational curve C whose numerical equivalence class spans R such

that f(A1) ⊂ C ∩ (W \ E) holds with 0 < −(KX +∆) · C ≤ 2 dimX, where E is

the union of all slc centers of (X,∆) that are strictly contained in W .

In [F7], we will treat the cone theorem for quasi-log schemes which are not

necessarily quasi-log canonical.

We summarize the contents of this paper. In Section 2, we recall some basic

definitions. In Section 3, we review some important result in [F6], which is the

main ingredient of this paper. In Section 4, we prove Theorem 1.1 and Corollary

1.4, that is, subadjunction for qlc strata and slc strata, respectively. In Section

5, we explain how to modify the arguments in [FLw] to prove Theorems 1.6 and

1.7. In Section 6, we discuss lengths of extremal rational curves for qlc pairs (see

Theorem 1.8). In Section 7, we treat the notion of Mori hyperbolicity for quasi-log

canonical pairs.

Conventions. We work over C, the complex number field, throughout this paper.

A scheme means a separated scheme of finite type over C. A variety means an

integral scheme, that is, an irreducible and reduced separated scheme of finite

type over C. Let f : Y → X be a proper birational morphism between varieties.

Then Exc(f) denotes the exceptional locus of f . We freely use the basic notation

of the minimal model program as in [F2] and [F4]. For the details of the theory of

quasi-log schemes, see [F4, Chapter 6]. For the details of semi-log canonical pairs,

we recommend the reader to see [F3] and [Kl2].

§2. Preliminaries

In this section, let us briefly recall some basic definitions. For the details, see [F2],

[F4], and [Kl1]. We also recommend the reader to see [F6, Section 2] for the theory

of quasi-log schemes.

Let us explain singularities of pairs and some related definitions.

Definition 2.1 (Singularities of pairs). A normal pair (X,∆) consists of a normal

variety X and an R-divisor ∆ on X such that KX +∆ is R-Cartier. Let f : Y → X

be a projective birational morphism from a normal variety Y . Then we can write

KY = f∗(KX +∆) +
∑
E

a(E,X,∆)E
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with

f∗

(∑
E

a(E,X,∆)E

)
= −∆,

where E runs over prime divisors on Y . We call a(E,X,∆) the discrepancy of E

with respect to (X,∆). Note that we can define the discrepancy a(E,X,∆) for

any prime divisor E over X by taking a suitable resolution of singularities of X.

If a(E,X,∆) ≥ −1 (resp. > −1) for every prime divisor E over X, then (X,∆)

is called sub log canonical (resp. sub kawamata log terminal). We further assume

that ∆ is effective. Then (X,∆) is called log canonical and kawamata log terminal

if it is sub log canonical and sub kawamata log terminal, respectively.

Let (X,∆) be a log canonical pair. If there exists a projective birational

morphism f : Y → X from a smooth variety Y such that both Exc(f) and Exc(f)∪
Supp f−1

∗ ∆ are simple normal crossing divisors on Y and that a(E,X,∆) > −1

holds for every f -exceptional divisor E on Y , then (X,∆) is called divisorial log

terminal (dlt, for short).

Let (X,∆) be a normal pair. If there exist a projective birational morphism

f : Y → X from a normal variety Y and a prime divisor E on Y such that (X,∆)

is sub log canonical in a neighborhood of the generic point of f(E) and that

a(E,X,∆) = −1, then f(E) is called a log canonical center of (X,∆).

Definition 2.2 (Operations for Q-divisors and R-divisors). Let X be an equidi-

mensional reduced scheme. Note that X is not necessarily regular in codimension

one. Let D be an R-divisor (resp. a Q-divisor), that is, D is a finite formal sum∑
i diDi, where Di is an irreducible reduced closed subscheme of X of pure codi-

mension one and di is a real number (resp. a rational number) for every i such

that Di ̸= Dj for i ̸= j. We put

D<c =
∑
di<c

diDi, D≤c =
∑
di≤c

diDi, D=1 =
∑
di=1

Di, and ⌈D⌉ =
∑
i

⌈di⌉Di,

where c is any real number and ⌈di⌉ is the integer defined by di ≤ ⌈di⌉ < di + 1.

Similarly, we put

D>c =
∑
di>c

diDi and D≥c =
∑
di≥c

diDi

for any real number c. Moreover, we put ⌊D⌋ = −⌈−D⌉ and {D} = D − ⌊D⌋.
Let D be an R-divisor (resp. a Q-divisor) as above. We call D a subboundary

R-divisor (resp. Q-divisor) if D = D≤1 holds. When D is effective and D = D≤1

holds, we call D a boundary R-divisor (resp. Q-divisor).

Let ∆1 and ∆2 be R-Cartier (resp. Q-Cartier) divisors on X. Then ∆1 ∼R ∆2

(resp. ∆1 ∼Q ∆2) means that ∆1 is R-linearly (resp. Q-linearly) equivalent to ∆2.
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In this paper, we need the notion of multiplier ideal sheaves. Although it is

well known, we recall it here for the reader’s convenience.

Definition 2.3 (Multiplier ideal sheaves and non-lc ideal sheaves). LetX be a nor-

mal variety and let ∆ be an effective R-divisor onX such thatKX+∆ is R-Cartier.
Let f : Y → X be a resolution with

KY +∆Y = f∗(KX +∆)

such that Supp∆Y is a simple normal crossing divisor on Y . We put

J (X,∆) = f∗OY (−⌊∆Y ⌋).

Then J (X,∆) is an ideal sheaf on X and is known as the multiplier ideal sheaf

associated to the pair (X,∆). It is independent of the resolution f : Y → X. The

closed subscheme Nklt(X,∆) defined by J (X,∆) is called the non-klt locus of

(X,∆). It is obvious that (X,∆) is kawamata log terminal if and only if J (X,∆) =

OX . Similarly, we put

JNLC(X,∆) = f∗OX(−⌊∆Y ⌋+∆=1
Y )

and call it the non-lc ideal sheaf associated to the pair (X,∆). We can check that

it is independent of the resolution f : Y → X. The closed subscheme Nlc(X,∆)

defined by JNLC(X,∆) is called the non-lc locus of (X,∆). It is obvious that

(X,∆) is log canonical if and only if JNLC(X,∆) = OX .

By definition, the natural inclusion

J (X,∆) ⊂ JNLC(X,∆)

always holds. Therefore, we have

Nlc(X,∆) ⊂ Nklt(X,∆).

For the details of J (X,∆) and JNLC(X,∆), see [F1], [F2, Section 7], and [L,

Chapter 9].

Definition 2.4 (Semi-log canonical pairs). Let X be an equidimensional scheme

which satisfies Serre’s S2 condition and is normal crossing in codimension one. Let

∆ be an effective R-divisor on X such that no irreducible component of Supp∆ is

contained in the singular locus of X and that KX +∆ is R-Cartier. We say that

(X,∆) is a semi-log canonical pair if (Xν ,∆Xν ) is log canonical in the usual sense,

where ν : Xν → X is the normalization of X and KXν + ∆Xν = ν∗(KX + ∆),

that is, ∆Xν is the sum of the inverse images of ∆ and the conductor of X. An

slc center of (X,∆) is the ν-image of a log canonical center of (Xν ,∆Xν ). An slc
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stratum of (X,∆) means either an slc center of (X,∆) or an irreducible component

of X.

We need the notion of globally embedded simple normal crossing pairs for the

theory of quasi-log schemes described in [F4, Chapter 6].

Definition 2.5 (Globally embedded simple normal crossing pairs). Let Z be a sim-

ple normal crossing divisor on a smooth variety M and let B be an R-divisor on M

such that Z and B have no common irreducible components and that the support

of Z + B is a simple normal crossing divisor on M . In this situation, (Z,B|Z) is

called a globally embedded simple normal crossing pair.

Let us quickly recall the definition of quasi-log canonical pairs.

Definition 2.6 (Quasi-log canonical pairs). Let X be a scheme and let ω be an

R-Cartier divisor (or an R-line bundle) onX. Let f : Z → X be a proper morphism

from a globally embedded simple normal crossing pair (Z,∆Z). If the natural map

OX → f∗OZ(⌈−(∆<1
Z )⌉)

is an isomorphism, ∆Z is a subboundary R-divisor, and f∗ω ∼R KZ +∆Z holds,

then

(X,ω, f : (Z,∆Z) → X)

is called a quasi-log canonical pair (qlc pair, for short). If there is no danger of

confusion, we simply say that [X,ω] is a qlc pair. We usually call ω the quasi-log

canonical class of [X,ω].

We say that (X,ω, f : (Z,∆Z) → X) or [X,ω] has a Q-structure if ∆Z is a

Q-divisor, ω is a Q-Cartier divisor (or a Q-line bundle), and f∗ω ∼Q KZ + ∆Z

holds in the above definition.

We can define qlc Fano pairs as follows.

Definition 2.7 (Qlc Fano pairs). Let [X,ω] be a projective qlc pair such that −ω

is ample. Then we simply say that [X,ω] is a qlc Fano pair.

The notion of qlc strata plays a crucial role in the theory of quasi-log schemes.

Definition 2.8 (Qlc strata and qlc centers). Let (X,ω, f : (Z,∆Z) → X) be a quasi-

log canonical pair as in Definition 2.6. Let ν : Zν → Z be the normalization. We

put

KZν +Θ = ν∗(KZ +∆Z),

that is, Θ is the sum of the inverse images of ∆Z and the singular locus of Z.

Then (Zν ,Θ) is sub log canonical. Let W be a log canonical center of (Zν ,Θ)
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or an irreducible component of Zν . Then f ◦ ν(W ) is called a qlc stratum of

(X,ω, f : (Z,∆Z) → X). If there is no danger of confusion, we simply call it a qlc

stratum of [X,ω]. If C is a qlc stratum of [X,ω] but is not an irreducible component

of X, then C is called a qlc center of [X,ω]. The union of all qlc centers of [X,ω]

is denoted by Nqklt(X,ω) (see [F4, Notation 6.3.10]). It is important that

[Nqklt(X,ω), ω|Nqklt(X,ω)]

naturally has a quasi-log canonical structure induced from (X,ω, f : (Z,∆Z) → X)

by adjunction (see [F4, Theorem 6.3.5 (i)]).

We recall the main result of [F3], which makes the theory of quasi-log schemes

(see [F4, Chapter 6]) useful for the study of semi-log canonical pairs.

Theorem 2.9 ([F3, Theorem 1.2]). Let (X,∆) be a quasi-projective semi-log canon-

ical pair. Then [X,KX +∆] becomes a quasi-log canonical pair such that W is an

slc stratum of (X,∆) if and only if W is a qlc stratum of [X,KX +∆].

For the details of Theorem 2.9, we recommend the reader to see [F3].

Remark 2.10. By combining Theorem 2.9 with adjunction for quasi-log canoni-

cal pairs (see [F4, Theorem 6.3.5 (i)]), we see that any union V of slc strata of a

given quasi-projective semi-log canonical pair (X,∆) becomes a quasi-log canoni-

cal pair, that is, [V, (KX +∆)|V ] is a quasi-log canonical pair.

We collect some basic properties of qlc strata for the reader’s convenience.

Proposition 2.11 (Basic properties of qlc strata). Let [X,ω] be a quasi-log canon-

ical pair. Then its qlc strata have the following nice properties.

(i) there is a unique minimal (with respect to the inclusion) qlc stratum through

a given point,

(ii) the minimal qlc stratum at a given point is normal at that point, and

(iii) the intersection of two qlc strata is a union of qlc strata.

If X is additionally a connected projective scheme and −ω is ample, that is, [X,ω]

is a connected qlc Fano pair, then

(iv) any union of qlc strata of [X,ω] is connected, and

(v) there is a unique minimal qlc stratum of [X,ω], which is normal.

Sketch of Proof of Proposition 2.11. For (i), (ii), and (iii), see [F4, Theorem 6.3.11].

For (iv), it is sufficient to show that H0(V,OV ) = C for any union V of qlc strata
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of [X,ω]. Since −ω is ample, we have H1(X, IV ) = 0, where IV is the defining

ideal sheaf of V on X, by [F4, Theorem 6.3.5 (ii)]. Therefore, the surjection

C = H0(X,OX) → H0(V,OV ) → 0

implies H0(V,OV ) = C. Finally, we note that (v) is a direct consequence of (i),

(ii), (iii) and (iv).

For the details of the theory of quasi-log schemes, we recommend the reader

to see [F4, Chapter 6].

We close this section with the definition of rationally chain connected schemes.

Definition 2.12 (Rationally chain connected schemes). A projective scheme X

is rationally chain connected if and only if for arbitrary closed points x1, x2 ∈ X

there exists a connected curve C ⊂ X which contains x1 and x2 such that every

irreducible component of C is rational.

For the details of rationally chain connected schemes and various related top-

ics, see [Kl1].

§3. Quick review of [F6]

In this section, we quickly look at the structure theorem for normal irreducible

quasi-log canonical pairs obtained in [F6]. Theorem 3.2 is the main ingredient of

this paper.

Let us recall the definition of potentially nef divisors in order to explain The-

orem 3.2.

Definition 3.1 (Potentially nef divisors). Let X be a normal variety and let D

be a divisor on X. If there exist a completion X of X, that is, X is a normal

complete variety and contains X as a dense Zariski open set, and a nef divisor D

on X such that D = D|X , then D is called a potentially nef divisor on X. A finite

R>0-linear (resp. Q>0-linear) combination of potentially nef divisors is called a

potentially nef R-divisor (resp. Q-divisor).

For the basic properties of potentially nef divisors, we recommend the reader

to see [F6, Section 2].

The following theorem will play a crucial role in the theory of quasi-log

schemes (see [F6], [FLh2], and [FLh3]).
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Theorem 3.2 (Structure theorem for normal irreducible quasi-log canonical pairs, see [F6, Theorem 1.7]).

Let [X,ω] be a quasi-log canonical pair such that X is a normal variety. Then there

exists a projective birational morphism p : X ′ → X from a smooth quasi-projective

variety X ′ such that

KX′ +BX′ +MX′ = p∗ω,

where BX′ is a subboundary R-divisor such that SuppBX′ is a simple normal

crossing divisor and that B<0
X′ is p-exceptional, and MX′ is a potentially nef R-

divisor on X ′. Furthermore, we can make BX′ satisfy p(B=1
X′ ) = Nqklt(X,ω).

We further assume that [X,ω] has a Q-structure. Then we can make BX′ and

MX′ Q-divisors in the above statement.

In [F6], we introduce the notion of basic slc-trivial fibrations, which is a kind

of canonical bundle formula for reducible schemes. Then we prove some funda-

mental properties by using the theory of variations of mixed Hodge structure on

cohomology with compact support (see [FF] and [FFS]). Theorem 3.2 (see [F6,

Theorem 1.7]) is an application of the main result of [F6], that is, [F6, Theorem

1.2].

§4. Subadjunction for qlc pairs

In this section, we prove Theorem 1.1, which is a direct consequence of Theo-

rem 3.2. We note that Corollary 1.4 follows from Theorems 1.1 and 2.9 (see [F3,

Theorem 1.2]).

Let us start the proof of Theorem 1.1.

Proof of Theorem 1.1. By adjunction (see [F4, Theorem 6.3.5 (i)]), [W,ω|W ] is

a quasi-log canonical pair. By [FLh1, Theorem 1.1], we see that [W ν , ν∗(ω|W )]

naturally becomes a quasi-log canonical pair such that Nqklt(W ν , ν∗(ω|W )) =

ν−1 Nqklt(W,ω|W ) holds. More precisely, we obtain that the equality

ν∗INqklt(W ν ,ν∗(ω|W )) = INqklt(W,ω|W )

holds. Note that INqklt(W,ω|W ) is the defining ideal sheaf of Nqklt(W,ω|W ) on W

and INqklt(W ν ,ν∗(ω|W )) is that of Nqklt(W ν , ν∗(ω|W )) on W ν . By Theorem 3.2,

there is a projective birational morphism p : W ′ → W ν from a smooth quasi-

projective variety W ′ such that

KW ′ +BW ′ +MW ′ = p∗ν∗(ω|W ),

where BW ′ is a subboundary R-divisor on W ′ whose support is a simple normal

crossing divisor, B<0
W ′ is p-exceptional, MW ′ is a potentially nef R-divisor on W ′,
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and p(B=1
W ′) = Nqklt(W ν , ν∗(ω|W )). We may further assume that there is an

effective p-exceptional divisor F on W ′ such that −F is p-ample and that SuppF ∪
SuppBW ′ is contained in a simple normal crossing divisor on W ′. Then p∗H−εF+

MW ′ is semi-ample for any 0 < ε ≪ 1. We take a general effective R-divisor G on

W ′ such that G ∼R p∗H−εF+MW ′ with 0 < ε ≪ 1, SuppG∪SuppBW ′ ∪SuppF

is contained in a simple normal crossing divisor on W ′, and ⌊(BW ′ +εF +G)≥1⌋ =
B=1

W ′ . Then we have

KW ′ +BW ′ +MW ′ + p∗H = KW ′ +BW ′ + εF + p∗H − εF +MW ′

∼R KW ′ +BW ′ + εF +G.

We put ∆ := p∗(BW ′ + εF + G). By construction, KW ν + ∆ ∼R ν∗(ω|W ) +

H. Let J (W ν ,∆) be the multiplier ideal sheaf of (W ν ,∆). Then J (W ν ,∆) =

p∗OW ′(−⌊BW ′ + εF + G⌋) by definition (see Definition 2.3). Since the effective

part of −⌊BW ′ + εF +G⌋ is p-exceptional, we obtain

J (W ν ,∆) = p∗OW ′(−⌊BW ′ + εF +G⌋)
= p∗OW ′(−⌊(BW ′ + εF +G)≥1⌋)
= p∗OW ′(−B=1

W ′)

= INqklt(W ν ,ν∗(ω|W )).

(4.1)

As we saw above, by [FLh1, Theorem 1.1], we have the equality

(4.2) ν∗INqklt(W ν ,ν∗(ω|W )) = INqklt(W,ω|W ).

Therefore, we obtain

ν∗J (W ν ,∆) = ν∗INqklt(W ν ,ν∗(ω|W )) = INqklt(W,ω|W )

by (4.1) and (4.2). Thus we get

J (W ν ,∆) = INqklt(W ν ,ν∗(ω|W )) = ν−1INqklt(W,ω|W ) · OW ν .

This implies that

Nklt(W ν ,∆) = Nqklt(W ν , ν∗(ω|W )) = ν−1 Nqklt(W,ω|W )

holds. This is what we wanted.

When [X,ω] has a Q-structure, we can make BW ′ and MW ′ Q-divisors by

Theorem 3.2. Then it is easy to see that we can make ∆ a Q-divisor on W ν such

that KW ν + ∆ ∼Q ν∗(ω|W ) + H if H is an ample Q-divisor and [X,ω] has a

Q-structure by the above construction of ∆.
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Corollary 1.4 easily follows from Theorems 1.1 and 2.9 (see [F3, Theorem

1.2]).

Proof of Corollary 1.4. By Theorem 2.9 (see [F3, Theorem 1.2]), [X,KX+∆] has a

natural quasi-log canonical structure which is compatible with the original semi-log

canonical structure of (X,∆). Then, by adjunction (see [F4, Theorem 6.3.5 (i)]),

[W, (KX +∆)|W ] is quasi-log canonical such that Nqklt(W, (KX +∆)|W ) = E (see

Remark 2.10). By Theorem 1.1, we can take an effective R-divisor ∆† on W ν such

that

KW ν +∆† ∼R ν∗ ((KX +∆)|W ) +H

and that Nklt(W ν ,∆†) = ν−1E. More precisely,

ν∗J (W ν ,∆†) = INqklt(W,ω|W )

holds. Of course, by Theorem 1.1, we can make ∆† a Q-divisor with

KW ν +∆† ∼Q ν∗ ((KX +∆)|W ) +H

if KX +∆ and H are both Q-divisors.

Remark 4.1. In Corollary 1.4, if (X,∆) is log canonical, that is, X is normal,

then we do not need the assumption that X is quasi-projective. This is because

[X,ω], where ω := KX+∆, always has a natural quasi-log canonical structure that

is compatible with the original log canonical structure of (X,∆) (see [F4, 6.4.1]).

We do not need the quasi-projectivity of X to construct the quasi-log canonical

structure on [X,ω] when X is normal. When X is not normal in Corollary 1.4, we

need the quasi-projectivity of X to use Theorem 2.9 (see [F3, Theorem 1.2]).

§5. On qlc Fano pairs

In this short section, we explain how to modify the arguments in [FLw] to prove

Theorems 1.6 and 1.7. Since this section is independent of the other sections, the

reader can skip it if he or she is not interested in qlc Fano pairs.

We prepare an important lemma, which is an easy application of Theorem

1.1.

Lemma 5.1 (see [FLw, Lemmas 2.3 and 2.6]). Let W be a qlc stratum of a con-

nected qlc Fano pair [X,ω] and let E be the union of all qlc strata that are strictly

contained in W . We take the normalization ν : W ν → W of W . Let H be an

ample Cartier divisor on X and let ε be a sufficiently small positive real num-

ber. Then there exists a boundary R-divisor ∆ on W ν such that KW ν + ∆ ∼R
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ν∗ ((ω + εH)|W ), Nklt(W ν ,∆) = ν−1E, and −(KW ν +∆) is ample. We note that

Nklt(W ν ,∆) is connected since −(KW ν +∆) is ample.

Proof. We note that −(ω + εH) is ample for any sufficiently small positive real

number ε. By Theorem 1.1, we can take a boundary R-divisor ∆ on W ν with

KW ν + ∆ ∼R ν∗ ((ω + εH)|W ) and Nklt(W ν ,∆) = ν−1E. By the Nadel vanish-

ing theorem (see [F4, Theorem 3.4.2]), we have H1(W ν ,J (W ν ,∆)) = 0, where

J (W ν ,∆) is the multiplier ideal sheaf of (W ν ,∆), since −(KW ν + ∆) is ample.

This implies that Nklt(W ν ,∆) = ν−1E is connected.

By the standard argument in the recent developments of the theory of higher-

dimensional minimal models, we have the following lemma.

Lemma 5.2. Let V be a normal projective variety and let ∆ be a boundary R-
divisor on V such that −(KV + ∆) is ample. Then we can take a boundary Q-

divisor ∆′ on V such that −(KV +∆′) is ample and that the equality J (V,∆′) =

J (V,∆) holds, where J (V,∆) (resp. J (V,∆′)) is the multiplier ideal sheaf of

(V,∆) (resp. (V,∆′)). Moreover, we can choose ∆′ such that multP ∆′ = multP ∆

holds for any prime divisor P on V with multP ∆ ∈ Q.

Proof. By slightly perturbing the coefficients of ∆, we get a boundary Q-divisor ∆′

with the desired properties. We leave the details as an exercise for the reader.

Since many results were formulated and stated only for Q-divisors in the

literature, Lemma 5.2 is useful and helpful.

By Lemmas 5.1 and 5.2, the proof of [FLw, Corollary 2.5 and Theorem 2.7]

works with some minor modifications.

Sketch of Proof of Theorems 1.6 and 1.7. Let W0 be the unique minimal qlc

stratum of [X,ω] (see Proposition 2.11 (v)). Then we can take a boundary Q-

divisor ∆0 on W0 such that (W0,∆0) is kawamata log terminal and −(KW0
+∆0)

is ample by Lemmas 5.1 and 5.2. Thus it is well known that W0 is rationally

(chain) connected and simply connected (see, for example, [FLw, Corollary 2.4]).

Let W be any qlc stratum of [X,ω]. By Lemmas 5.1 and 5.2, the proof of

[FLw, Corollary 2.5] works with some minor modifications. Therefore, we obtain

that X is rationally chain connected. Hence we get Theorem 1.7.

By Lemmas 5.1 and 5.2 again, we can easily see that the proof of [FLw,

Theorem 2.7] works with some minor changes. Hence we see that X is simply

connected. This is Theorem 1.6.
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§6. Lengths of extremal rational curves for qlc pairs

In this section, we prove Theorem 1.8, which is a generalization of [Ka1, Theorem

1]. Our proof of Theorem 1.8 below heavily depends on [F4, Theorem 4.6.7].

Let us start the proof of Theorem 1.8. Although we will treat a more general

result in Section 7, the proof of Theorem 1.8 plays a crucial role.

Proof of Theorem 1.8. Let φRj : X → Y be the extremal contraction associated to

Rj (see [F4, Theorems 6.7.3 and 6.7.4]). By replacing π : X → S with φRj
: X →

Y , we may assume that −ω is π-ample. We take a qlc stratum W of [X,ω] such

that π : Nqklt(W,ω|W ) → π (Nqklt(W,ω|W )) is finite and that π : W → π(W )

is not finite. It is sufficient to find a rational curve C on W such that π(C) is a

point and that 0 < −(ω|W ) · C ≤ 2 dimW ≤ 2 dimX. Therefore, by replacing

π : X → S with π : W → S, we may assume that X is irreducible and that

π : Nqklt(X,ω) → π (Nqklt(X,ω)) is finite. Let ν : Xν → X be the normalization.

Then, by [FLh1, Theorem 1.1], [Xν , ν∗ω] naturally becomes a quasi-log canonical

pair with Nqklt(Xν , ν∗ω) = ν−1 Nqklt(X,ω). Therefore, by replacing π : X → S

with π ◦ ν : Xν → S, we may assume that X is a normal variety such that π :

Nqklt(X,ω) → π (Nqklt(X,ω)) is finite. In this situation, all we have to do is to find

a rational curve C on X such that π(C) is a point and that 0 < −ω ·C ≤ 2 dimX.

Without loss of generality, we may assume that X and S are quasi-projective by

shrinking S suitably. Let H be an ample Cartier divisor on X. By Theorem 1.1,

we can construct a boundary R-divisor ∆ε on X such that KX +∆ε ∼R ω + εH

and that Nklt(X,∆ε) = Nqklt(X,ω) for every positive real number ε. Note that

Nlc(X,∆ε) ⊂ Nklt(X,∆ε) = Nqklt(X,ω), where Nlc(X,∆ε) denotes the non-lc

locus of (X,∆ε) as in Definition 2.3. Therefore, π : Nlc(X,∆ε) → π (Nlc(X,∆ε)) is

finite. We assume that ε is sufficiently small such that −(ω+εH) is π-ample. Then,

by the cone theorem for (X,∆ε), we can find a rational curve Cε on X such that

π(Cε) is a point and that 0 < −(KX +∆ε) ·Cε ≤ 2 dimX (see [F2, Theorem 1.1]

and [F4, Theorem 4.6.7]). We take an ample Q-divisor A on X such that −(ω+A)

is π-ample. We take {εi}∞i=0 such that limi→0 εi = 0, εi is a positive real number,

and −(ω+A+εiH) is π-ample for every i. As we saw above, we can take a rational

curve Ci on X such that π(Ci) is a point and that 0 < −(ω+ εiH) ·Ci ≤ 2 dimX

for every i. Note that

0 < A · Ci = ((ω + εiH +A)− (ω + εiH)) · Ci < 2 dimX.

It follows that the curves Ci belong to a bounded family. Thus, possibly passing

to a subsequence, we may assume that Ci = C is constant. Therefore, we get

0 < −ω · C = lim
i→∞

−(ω + εiH) · C = lim
i→∞

−(ω + εiH) · Ci ≤ 2 dimX.
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This is what we wanted.

Remark 6.1. We expect that the estimate ≤ 2 dimX should be replaced by

≤ dimX + 1 in Theorem 1.8 (see [F4, Remark 4.6.3]).

We give a remark on the proof of [F4, Theorem 4.6.7], which was used in the

proof of Theorem 1.8 above.

Remark 6.2. In the proof of [F4, Theorem 4.6.7], the author claims that π is an

isomorphism in a neighborhood of Nlc(X,∆) by replacing π : X → S with the

extremal contraction φR : X → Y over S. However, it is not correct. In general,

π is not necessarily an isomorphism around Nlc(X,∆) (see Example 6.3 below).

By replacing π : X → S with φR : X → Y , we can assume that π : Nlc(X,∆) →
π (Nlc(X,∆)) is finite. Note that all we need in the proof of [F4, Theorem 4.6.7]

is the fact that π contracts no curves in Nlc(X,∆). Therefore, the proof of [F4,

Theorem 4.6.7] works without any modifications.

Example 6.3. We put X = P1, π : X → S = SpecC, and ∆ = 3
2P , where P is a

point of X = P1. Then −(KX + ∆) is π-ample and ρ(X/S) = 1. Of course, π is

not an isomorphism around P = Nlc(X,∆).

We close this section with an important remark.

Remark 6.4. The proof of [F4, Theorem 4.6.7] needs Mori’s bend and break

technique to create rational curves (see [F4, Remark 4.6.4]). Therefore, we need

the mod p reduction technique for the proof of Theorem 1.8. We note that we take

a dlt blow-up (see [F4, Theorem 4.4.21]) in the proof of [F4, Theorem 4.6.7]. This

means that Theorem 1.8 depends on the minimal model program mainly due to

[BCHM].

§7. Mori hyperbolicity for quasi-log canonical pairs

In this final section, we generalize the main result of [S] for quasi-log canonical

pairs. We note that in [S] the notion of crepant log structures, which is a very

special case of that of quasi-log schemes, plays a crucial role. On the other hand,

we can directly treat highly singular reducible schemes by the framework of quasi-

log schemes (see [F4, Chapter 6]) and basic slc-trivial fibrations (see [F6]). This is

the main difference between [S] and our approach here.

Let us start with the following key result.

Proposition 7.1 ([S, Proposition 5.2]). Let π : X → S be a projective morphism

from a normal Q-factorial variety X onto a scheme S. Let ∆ =
∑

i diDi be an
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effective R-divisor on X, where the Di’s are the distinct prime components of ∆

for all i, such that X,∆′ :=
∑
di<1

diDi +
∑
di≥1

Di


is dlt. Assume that (KX + ∆)|Nklt(X,∆) is nef over S. Then KX + ∆ is nef over

S or there exists a non-constant morphism f : A1 → X \ Nklt(X,∆) such that

π ◦ f(A1) is a point.

More precisely, the curve C, the closure of f(A1) in X, is a (possibly singular)

rational curve with

0 < −(KX +∆) · C ≤ 2 dimX.

This is one of the most important results of [S]. We give a detailed proof for

the sake of completeness.

Proof of Proposition 7.1. Note that Nklt(X,∆) coincides with (∆′)=1 = ⌊∆′⌋,
∆≥1, and ⌊∆⌋ set theoretically because (X,∆′) is dlt by assumption. It is sufficient

to construct a non-constant morphism f : A1 → X\Nklt(X,∆) such that π◦f(A1)

is a point with the desired properties when KX +∆ is not nef over S. By shrinking

S suitably, we may assume that S and X are both quasi-projective. By the cone

and contraction theorem (see [F2, Theorem 1.1]), we can take a (KX+∆)-negative

extremal ray R of NE(X/S) and the associated extremal contraction morphism

φ := φR : X → Y over S since (KX + ∆)|Nklt(X,∆) is nef over S. Note that

(KX + ∆<1) · R < 0 and (KX + ∆′) · R < 0 hold because (KX + ∆)|Nklt(X,∆)

is nef over S. Since (X,∆<1) is kawamata log terminal and −(KX + ∆<1) is φ-

ample, we get Riφ∗OX = 0 for every i > 0 by the relative Kawamata–Viehweg

vanishing theorem (see [F4, Corollary 5.7.7]). By construction, φ : Nklt(X,∆) →
φ(Nklt(X,∆)) is finite. We have the following short exact sequence

0 → OX(−⌊∆′⌋) → OX → O⌊∆′⌋ → 0.

Since −⌊∆′⌋− (KX +{∆′}) = −(KX +∆′) is φ-ample and (X, {∆′}) is kawamata

log terminal, Riφ∗OX(−⌊∆′⌋) = 0 holds for every i > 0 by the relative Kawamata–

Viehweg vanishing theorem again (see [F4, Corollary 5.7.7]). Therefore,

0 → φ∗OX(−⌊∆′⌋) → OY → φ∗O⌊∆′⌋ → 0

is exact. This implies that Supp⌊∆′⌋ = Supp∆≥1 is connected in a neighborhood

of any fiber of φ.

Case 1. Assume that φ is a Fano contraction, that is, dimY < dimX. Then we

see that ∆≥1 is φ-ample and that dimY = dimX − 1. Note that Supp∆≥1 is
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finite over Y . In this situation, we can easily see that every general fiber is P1 by

R1φ∗OX = 0. Moreover, any general fiber intersects ∆≥1 in at most one point

by the connectedness of Supp∆≥1 discussed above. Therefore, we can find a non-

constant morphism f : A1 → X \ Nklt(X,∆) such that π ◦ f(A1) is a point and

that 0 < −(KX +∆) · C ≤ 2 dimX holds, where C is the closure of f(A1) in X.

Case 2. Assume that φ is a birational contraction and that the exceptional locus

Exc(φ) of φ is disjoint from Nklt(X,∆). In this situation, we can find a rational

curve C in a fiber of φ with 0 < −(KX +∆) · C ≤ 2 dimX by the cone theorem

(see [F2, Theorem 1.1]). It is obviously disjoint from Nklt(X,∆). Therefore, we

can take a non-constant morphism f : A1 → X \Nklt(X,∆) such that the closure

of f(A1) is C.

Case 3. Assume that φ is a birational contraction and that Exc(φ)∩Nklt(X,∆) ̸=
∅. In this situation, as in Case 1, we see that ∆≥1 is φ-ample and that dimφ−1(y) ≤
1 for every y ∈ Y . By taking a complete intersection of general hypersurfaces of Y

and its inverse image, we can reduce the problem to the case where φ(Exc(φ)) =: P

is a point. Then R1φ∗OX = 0 implies that every irreducible component of φ−1(P )

is P1. We take any irreducible component C of φ−1(P ). By the connectedness of

Supp∆≥1 discussed above, C intersects ∆≥1 in at most one point. Therefore, we

can get a non-constant morphism f : A1 → X \ Nklt(X,∆) such that f(A1) ⊂
C ∩ (X \ Nklt(X,∆)). By applying the cone theorem (see [F2, Theorem 1.1]) to

φ : X → Y , we may assume that 0 < −(KX +∆) · C ≤ 2 dimX.

Therefore, we get the desired statement.

Let us recall the following useful lemma, which is a kind of dlt blow-ups. Here

we need the minimal model theory mainly due to [BCHM].

Lemma 7.2 ([S, Theorem 3.4]). Let X be a normal quasi-projective variety and

let ∆ be a boundary R-divisor on X such that KX +∆ is R-Cartier. Then we can

construct a projective birational morphism g : Y → X from a normal Q-factorial

variety Y with the following properties.

(i) KY +∆Y := g∗(KX +∆),

(ii) the pair Y,∆′
Y :=

∑
di<1

diDi +
∑
di≥1

Di


is dlt, where ∆Y =

∑
i diDi is the irreducible decomposition of ∆Y ,

(iii) every g-exceptional prime divisor is a component of (∆′
Y )

=1, and
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(iv) g−1 Nklt(X,∆) coincides with Nklt(Y,∆Y ) and Nklt(Y,∆′
Y ) set theoretically.

Sketch of Proof of Lemma 7.2. It is well known that there exists a dlt blow-up

α : Z → X with KZ + ∆Z := α∗(KX + ∆) satisfying (i), (ii), and (iii) (see [F4,

Theorem 4.4.21]). Note that (Z,∆<1
Z ) is a Q-factorial kawamata log terminal pair.

We take a minimal model (Z ′,∆<1
Z′ ) of (Z,∆<1

Z ) over X by [BCHM].

Z

α
��@

@@
@@

@@
φ //_______ Z ′

α′
~~}}
}}
}}
}}

X

Then KZ′ + ∆<1
Z′ ∼R −∆≥1

Z′ + α′∗(KX + ∆) is nef over X. Of course, we put

∆Z′ = φ∗∆Z . We take a dlt blow-up β : Y → Z ′ of (Z ′,∆<1
Z′ + Supp∆≥1

Z′ ) again

(see [F4, Theorem 4.4.21]) and put g := α′ ◦ β : Y → X. It is not difficult to

see that this birational morphism g : Y → X with KY + ∆Y := g∗(KX + ∆)

satisfies the desired properties. It is obvious that g−1 Nklt(X,∆) contains the

support of β∗∆≥1
Z′ . Since −β∗∆≥1

Z′ is nef over X, we see that β∗∆≥1
Z′ coincides

with g−1 Nklt(X,∆) set theoretically. For the details, see the proof of [S, Theorem

3.4].

By combining Proposition 7.1 with Lemma 7.2, we obtain:

Corollary 7.3 ([S, Corollary 5.3]). Let X be a normal variety and let ∆ be a

boundary R-divisor on X such that KX + ∆ is R-Cartier. Let π : X → S be

a projective morphism onto a scheme S. Assume that there is no non-constant

morphism f : A1 → X \Nklt(X,∆) such that π ◦ f(A1) is a point. Then KX +∆

is nef over S if and only if (KX +∆)|Nklt(X,∆) is nef over S.

Proof. If KX + ∆ is nef over S, then (KX + ∆)|Nklt(X,∆) is obviously nef over

S. Therefore, it is sufficient to construct a non-constant morphism f : A1 →
X \ Nklt(X,∆) such that π ◦ f(A1) is a point under the assumption that (KX +

∆)|Nklt(X,∆) is nef over S and that KX + ∆ is not nef over S. By shrinking S

suitably, we may assume that X and S are both quasi-projective. By Lemma 7.2,

we can construct a projective birational morphism g : Y → X from a normal

Q-factorial variety Y satisfying (i), (ii), and (iv) in Lemma 7.2. Let us consider

π◦g : Y → S. Note that KY +∆Y is not nef over S since KY +∆Y = g∗(KX+∆).

It is obvious that (KY +∆Y )|Nklt(Y,∆Y ) is nef over S by (iv) because so is (KX +

∆)|Nklt(X,∆). Therefore, by Proposition 7.1, we have a non-constant morphism

h : A1 → Y \ Nklt(Y,∆Y ) such that (π ◦ g) ◦ h(A1) is a point. By Proposition

7.1, we have 0 < −(KY + ∆Y ) · C ≤ 2 dimY = 2dimX, where C is the closure
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of h(A1) in Y . Since KY +∆Y = h∗(KX +∆) holds, g does not contract C to a

point. This implies that f := g◦h : A1 → X \Nklt(X,∆) is a desired non-constant

morphism such that π ◦ f(A1) is a point by (iv).

We introduce the notion of open qlc strata in order to state the main result

of this section (see Theorem 7.5 below).

Definition 7.4 (Open qlc strata). Let W be a qlc stratum of a quasi-log canon-

ical pair [X,ω]. We put

U := W \
∪
W ′

W ′,

where W ′ runs over qlc strata of [X,ω] strictly contained in W , and call it the

open qlc stratum of [X,ω] associated to W .

The following theorem is the main result of this section, which is a general-

ization of [S, Theorem 1.1] (see also [LZ]).

Theorem 7.5 (cf. [S, Theorem 1.1]). Let [X,ω] be a quasi-log canonical pair and

let π : X → S be a projective morphism onto a scheme S. Assume that for all

open qlc strata U of [X,ω] there is no non-constant morphism f : A1 → U such

that π ◦ f(A1) is a point. Then ω is nef over S.

Proof. We divide the proof into five small steps.

Step 1. We use induction on dimX. If dimX = 0, then the statement is obvious.

Step 2. Let X =
∪

i∈I Xi be the irreducible decomposition. Then Xi is a qlc

stratum of [X,ω] for every i ∈ I. By adjunction (see [F4, Theorem 6.3.5 (i)]),

[Xi, ω|Xi
] is a quasi-log canonical pair for every i ∈ I. We note that the qlc strata

of [Xi, ω|Xi
] are exactly the qlc strata of [X,ω] contained in Xi (see [F4, Theorem

6.3.5 (i)]). Therefore, by replacing [X,ω] with [Xi, ω|Xi ], we may assume that X

is irreducible.

Step 3. By adjunction (see [F4, Theorem 6.3.5 (i)]), [Nqklt(X,ω), ω|Nqklt(X,ω)]

becomes a quasi-log canonical pair whose qlc strata are exactly the qlc strata of

[X,ω] contained in Nqklt(X,ω). Therefore, by induction, ω|Nqklt(X,ω) is nef over

S. Therefore, it is sufficient to prove that ω is nef over S under the assumption

that ω|Nqklt(X,ω) is nef over S.

Step 4. We take the normalization ν : Xν → X. Then, by [FLh1, Theorem 1.1],

[Xν , ν∗ω] naturally becomes a quasi-log canonical pair such that ν−1 Nqklt(X,ω) =

Nqklt(Xν , ν∗ω) holds. We note that ω is nef over S if and only if so is ν∗ω.
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Step 5. We assume that ω is not nef over S. Without loss of generality, we may

assume that S is quasi-projective by shrinking S suitably. Therefore, X and Xν

are both quasi-projective. We take an ample Q-divisor H on Xν such that ν∗ω+H

is not nef over S. By Theorem 1.1, we can take a boundary R-divisor ∆ on Xν

such that KXν + ∆ ∼R ν∗ω + H and that Nklt(Xν ,∆) = Nqklt(Xν , ν∗ω) =

ν−1 Nqklt(X,ω). Thus (KXν +∆)|Nklt(Xν ,∆) is ample over S. Hence it is obviously

nef over S. Since KXν +∆ is not nef over S, there exists a non-constant morphism

f : A1 → Xν \ Nklt(Xν ,∆) such that (π ◦ ν) ◦ f(A1) is a point by Corollary

7.3. Thus ν ◦ f : A1 → X \ Nqklt(X,ω) is a non-constant morphism such that

π ◦ (ν ◦ f)(A1) is a point. This is a contradiction because X \ Nqklt(X,ω) is an

open qlc stratum of [X,ω]. Therefore, ω is nef over S.

This is what we wanted.

As an obvious corollary of Theorem 7.5, we have:

Corollary 7.6. Let [X,ω] be a projective quasi-log canonical pair. Assume that

[X,ω] is Mori hyperbolic, that is, for any open qlc stratum U , there is no non-

constant morphism f : A1 → U . Then ω is nef.

We give a slight generalization of the cone theorem for quasi-log canonical

pairs. For log canonical pairs, it is nothing but [S, Theorem 1.2]. Of course, The-

orem 7.5 can be seen as a special case of Theorem 7.7.

Theorem 7.7 (Cone theorem for quasi-log canonical pairs). Let [X,ω] be a quasi-

log canonical pair and let π : X → S be a projective morphism onto a scheme S.

Then we have

NE(X/S) = NE(X/S)ω≥0 +
∑
j

Rj ,

where

(i) Rj is spanned by a rational curve Cj such that π(Cj) is a point with

0 < −ω · Cj ≤ 2 dimX,

and

(ii) there exists an open qlc stratum U of [X,ω] such that Cj ∩ U contains the

image of a non-constant morphism f : A1 → U .

Sketch of Proof of Theorem 7.7. In this proof, we only explain how to modify

the proof of Theorem 1.8. So we will use the same notation as in the proof of

Theorem 1.8. By construction, (KX+∆ε)|Nklt(X,∆ε) is obviously nef over S since π :

Nqklt(X,ω) → π(Nqklt(X,ω)) is finite and Nklt(X,∆ε) = Nqklt(X,ω). Therefore,
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by the proof of Corollary 7.3 (see also Proposition 7.1), we can take a non-constant

morphism fε : A1 → X \ Nqklt(X,ω) such that Cε, the closure of fε(A1), is a

rational curve on X such that π(Cε) is a point and that 0 < −(KX +∆ε) · Cε ≤
2 dimX. As in the proof of Theorem 1.8, we finally get a rational curve Cj spanning

Rj with the desired properties.

We close this section with a sketch of the proof of Theorem 1.10.

Sketch of Proof of Theorem 1.10. We note that the cone and contraction theorem

holds for semi-log canonical pairs by [F3, Theorem 1.19]. Let R be a (KX + ∆)-

negative extremal ray. By replacing π : X → S with the extremal contraction

φR : X → Y over S associated to R and shrinking S suitably, we may assume that

−(KX +∆) is π-ample and that X and S are quasi-projective. Then, by Theorem

2.9, [X,KX + ∆] naturally becomes a quasi-log canonical pair such that V is a

qlc stratum of [X,KX + ∆] if and only if it is an slc stratum of (X,∆). By the

above sketch of the proof of Theorem 7.7, we can check that there exists a possibly

singular rational curve C with the desired properties.

Alternatively, in Theorem 1.10, we can take the normalization ofX and reduce

the problem to the case where (X,∆) is log canonical. Then we can apply [S,

Theorems 1.2 and 6.5] to find a desired rational curve C.
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