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Abstract. We prove that the target space of an extremal Fano
contraction from a log canonical pair has only log canonical singu-
larities. We also treat some related topics, for example, the finite
generation of canonical rings for compact Kähler manifolds, and so
on. The main ingredient of this paper is the nefness of the moduli
parts of lc-trivial fibrations. We also give some observations on
the semi-ampleness of the moduli parts of lc-trivial fibrations. For
the reader’s convenience, we discuss some examples of non-Kähler
manifolds, flopping contractions, and so on, in order to clarify our
results.
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1. Introduction

Let π : (X, ∆) → S be a projective morphism from a log canonical
pair (X, ∆) to a variety S. Then the cone theorem

NE(X/S) = NE(X/S)KX+∆≥0 +
∑

i

R≥0[Ci]

holds for π : (X, ∆) → S. We take a (KX + ∆)-negative extremal ray
R = R≥0[Ci]. Then there is a contraction morphism

ϕR : (X, ∆) → Y

over S associated to R. For the details of the cone and contraction
theorem for log canonical pairs, see [A1], [F6], [F8], [F9], and [F10,
Theorem 1.1] (see also [F13]).

From now on, let us consider a contraction morphism

f : (X, ∆) → Y

such that

(i) (X, ∆) is a Q-factorial log canonical pair,
(ii) −(KX + ∆) is f -ample, and
(iii) ρ(X/Y ) = 1.

Then we have the following three cases.

Case 1 (Divisorial contraction). f is divisorial, that is, f is a birational
contraction which contracts a divisor.

In this case, the exceptional locus Exc(f) of f is a prime divisor on
X and (Y, ∆Y ) is a Q-factorial log canonical pair with ∆Y = f∗∆.

Case 2 (Flipping contraction). f is flipping, that is, f is a birational
contraction which is small.

In this case, we can take the flipping diagram:

X
ϕ //_______

f   @
@@

@@
@@

@ X+

f+}}{{
{{

{{
{{

Y

where f+ is a small projective birational morphism and

(i′) (X+, ∆+) is a Q-factorial log canonical pair with ∆+ = ϕ∗∆,
(ii′) KX+ + ∆+ is f+-ample, and
(iii′) ρ(X+/Y ) = 1.

For the existence of log canonical flips, see [B1, Corollary 1.2] and [HX,
Corollary 1.8].



MINIMAL MODEL PROGRAM 3

Case 3 (Fano contraction). f is a Fano contraction, that is, dimY <
dim X.

Then Y is Q-factorial and has only log canonical singularities. More-
over, if every log canonical center of (X, ∆) is dominant onto Y , then
Y has only log terminal singularities.

In Case 3, f : (X, ∆) → Y is usually called a Mori fiber space.

The log canonicity of Y in Case 3 is missing in the literature. So
we prove it in this paper. It is an easy consequence of the following
theorem. For the other statements on singularities in the above three
cases, see, for example, [KM, Propositions 3.36, 3.37, Corollaries 3.42,
and 3.43] (see also [F13]).

Theorem 1.1 (cf. [F1, Theorem 1.2]). Let (X, ∆) be a sub log canonical
pair such that X is smooth and Supp∆ is a simple normal crossing
divisor on X. Let f : (X, ∆) → Y be a proper surjective morphism
such that

f∗OX(d−∆<1e) ' OY

and that
KX + ∆ ∼Q,f 0.

Assume that KY is Q-Cartier. Then Y has only log canonical singu-
larities. We further assume that every log canonical center of (X, ∆)
is dominant onto Y . Then Y has only log terminal singularities.

Our proof of Theorem 1.1 depends on the nefness of the moduli parts
of lc-trivial fibrations (cf. [Mr, Section 5, Part II], [Ka3], [A2], [F3],
[Ko2], [FG3, Section 3], and so on). In this paper, we use Ambro’s
formulation in [A2] and its generalization in [FG3, Section 3] based
on the semipositivity theorem in [F4]. For the details of the Hodge
theoretic aspects of the semipositivity theorem, see also [FF] and [FFS].
It is conjectured that the moduli parts of lc-trivial fibrations are semi-
ample (see Conjecture 3.9). We give some observations on the semi-
ampleness of the moduli parts of lc-trivial fibrations in Section 3.

By the proof of [F1, Theorem 1.2] and [FG3, Section 3] (see Theorem
3.7), we have:

Theorem 1.2 (cf. [F1, Theorem 1.2] and [F3, Theorem 4.2.1]). Let
(X, ∆) be a sub log canonical pair such that X is smooth and Supp∆
is a simple normal crossing divisor on X. Let f : (X, ∆) → Y be a
proper surjective morphism such that

f∗OX(d−∆<1e) ' OY

and that
KX + ∆ ∼Q f∗D
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for some Q-Cartier Q-divisor D on Y . Assume that π : Y → S is
a projective morphism onto a quasi-projective variety S. Let A be a
π-ample Cartier divisor on Y and let ε be an arbitrary positive rational
number. We further assume that every log canonical center of (X, ∆)
is dominant onto Y . Then there is an effective Q-divisor ∆Y on Y
such that

KY + ∆Y ∼Q,π D + εA

and that (Y, ∆Y ) is kawamata log terminal.

Let us recall some results in [R], [Ko1], and [F1] for the reader’s
convenience.

Remark 1.3 (Known results). Let f : X → Y be a contraction mor-
phism associated to a KX-negative extremal face such that X is a pro-
jective variety with only canonical singularities. Then it is well known
that Y has only rational singularities by [Ko1, Corollary 7.4]. It was
first proved by Reid when dim X ≤ 3 (see [R]).

Let f : (X, ∆) → Y be a contraction morphism associated to a (KX+
∆)-negative extremal face such that (X, ∆) is a projective divisorial log
terminal pair. Then there is an effective Q-divisor ∆Y on Y such that
(Y, ∆Y ) is kawamata log terminal by [F1, Corollary 4.5]. In particular,
Y has only rational singularities.

Note that the above results now easily follow from Theorem 1.2.

The following conjecture is related to Theorem 1.1 (cf. [Ka1, Con-
jecture 7.4]).

Conjecture 1.4. Let (X, ∆) be a projective log canonical pair. Assume
that the log canonical ring

R(X, ∆) =
⊕
m≥0

H0(X,OX(bm(KX + ∆)c))

is a finitely generated C-algebra. We put

Y = ProjR(X, ∆).

Then there is an effective Q-divisor ∆Y on Y such that (Y, ∆Y ) is log
canonical.

If (X, ∆) is kawamata log terminal in Conjecture 1.4, then we have:

Theorem 1.5. Let (X, ∆) be a projective kawamata log terminal pair
such that ∆ is a Q-divisor. We put

Y = ProjR(X, ∆).

Then there is an effective Q-divisor ∆Y on Y such that (Y, ∆Y ) is
kawamata log terminal.
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It is a generalization of Nakayama’s result (see [N, Theorem]), which
is a complete solution of [Ka1, Conjecture 7.4]. Theorem 1.6 is a partial
answer to Conjecture 1.4.

Theorem 1.6. Let (X, ∆) be a projective log canonical pair such that
the log canonical ring R(X, ∆) is a finitely generated C-algebra. We
assume that KY is Q-Cartier where Y = ProjR(X, ∆). Then Y has
only log canonical singularities.

Note that KY is not always Q-Cartier in Conjecture 1.4. Therefore,
Theorem 1.6 is far from a complete solution of Conjecture 1.4.

The following conjecture is open. It is closely related to Conjecture
1.4 and Theorem 1.1.

Conjecture 1.7. Let (X, ∆) be a projective log canonical pair and
let f : X → Y be a contraction morphism between normal projective
varieties such that

KX + ∆ ∼R,f 0.

Then there is an effective R-divisor ∆Y on Y such that (Y, ∆Y ) is log
canonical and

KX + ∆ ∼R f ∗(KY + ∆Y ).

Of course, Conjecture 1.7 follows from the b-semi-ampleness conjec-
ture of the moduli parts of lc-trivial fibrations (see Conjecture 3.9 and
Remark 4.7).

From now on, the variety X is not always algebraic. We treat com-
pact Kähler manifolds. The following theorem is also missing in the
literature. Note that we can reduce the problem to the case when the
variety is projective by taking the Iitaka fibration. When X is projec-
tive, Theorem 1.8 is well known (see [BCHM]).

Theorem 1.8 (cf. [BCHM] and [FM]). Let X be a compact Kähler
manifold and let ∆ be an effective Q-divisor on X such that (X, ∆) is
kawamata log terminal. Then the log canonical ring

R(X, ∆) =
⊕
m≥0

H0(X,OX(bm(KX + ∆)c))

is a finitely generated C-algebra.

As a special case of Theorem 1.8, we have:

Corollary 1.9. Let X be a compact Kähler manifold. Then the canon-
ical ring

R(X) =
⊕
m≥0

H0(X, ω⊗m
X )

is a finitely generated C-algebra.



6 OSAMU FUJINO

We note that there exists a compact complex non-Kähler manifold
whose canonical ring is not a finitely generated C-algebra (see Example
6.4).

The following conjecture is still open even when X is projective.

Conjecture 1.10. Let X be a compact Kähler manifold and let ∆ be
an effective Q-divisor on X such that (X, ∆) is log canonical. Then
the log canonical ring

R(X, ∆) =
⊕
m≥0

H0(X,OX(bm(KX + ∆)c))

is a finitely generated C-algebra.

We do not know if we can reduce Conjecture 1.10 to the case when
the variety is projective or not (see Remark 5.9).

From Section 2 to Section 4, we assume that all the varieties are al-
gebraic for simplicity, although some of the results can be generalized
to analytic varieties. Section 2 collects some basic definitions. In Sec-
tion 3, we discuss lc-trivial fibrations and give some new observations.
Section 4 is devoted to the proofs of the main results. In Section 5,
we discuss some analytic generalizations and related topics. We note
that we just explain how to adapt the arguments to the analytic set-
tings and discuss Theorem 1.8, Corollary 1.9, and so on. In Section 6,
we discuss some examples of non-Kähler manifolds, which clarify the
main difference between Kähler manifolds and non-Kähler manifolds.
Note that Corollary 1.9 can not be generalized for non-Kähler mani-
folds (see Example 6.4). In Section 7: Appendix, we quickly discuss
the minimal model program for log canonical pairs and describe some
related examples by János Kollár for the reader’s convenience.

Acknowledgments. The author was partially supported by the Grant-
in-Aid for Young Scientists (A) ]24684002 from JSPS. He would like
to thank Professor Shigefumi Mori and Yoshinori Gongyo for useful
comments and questions.

This paper is a supplement to the author’s previous papers [F1],
[F10], and so on. For some recent related topics, see, for example,
[AB], [B3], and [HP].

We will work over C, the complex number field, throughout this
paper. We will make use of the standard notation as in [KM] and
[F10].
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2. Preliminaries

Let us recall some basic definitions on singularities of pairs. For the
details, see [KM] and [F10].

2.1 (Pairs). A pair (X, ∆) consists of a normal variety X and an R-
divisor ∆ on X such that KX + ∆ is R-Cartier. A pair (X, ∆) is
called sub kawamata log terminal (resp. sub log canonical) if for any
proper birational morphism g : Z → X from a normal variety Z, every
coefficient of ∆Z is < 1 (resp. ≤ 1) where

KZ + ∆Z := g∗(KX + ∆).

A pair (X, ∆) is called kawamata log terminal (resp. log canonical) if
(X, ∆) is sub kawamata log terminal (resp. sub log canonical) and ∆ is
effective. If (X, 0) is kawamata log terminal, then we simply say that
X has only log terminal singularities.

Let (X, ∆) be a sub log canonical pair and let W be a closed subset
of X. Then W is called a log canonical center of (X, ∆) if there are a
proper birational morphism g : Z → X from a normal variety Z and a
prime divisor E on Z such that multE∆Z = 1 and g(E) = W .

We note that −multE∆Z is denoted by a(E,X, ∆) and is called the
discrepancy coefficient of E with respect to (X, ∆).

Let D =
∑

i diDi be an R-divisor on X such that Di is a prime
divisor for every i and that Di 6= Dj for i 6= j. Then dDe (resp. bDc)
denotes the round-up (resp. round-down) of D. We put

D<1 =
∑
di<1

diDi.

In this paper, we use the notion of b-divisors introduced by Shokurov.
For the details, see, for example, [F11, Section 3].

2.2 (Canonical b-divisors and discrepancy b-divisors). Let X be a nor-
mal variety and let ω be a top rational differential form of X. Then
(ω) defines a b-divisor K. We call K the canonical b-divisor of X. The
discrepancy b-divisor A = A(X, ∆) of a pair (X, ∆) is the R-b-divisor
of X with the trace AY defined by the formula

KY = f ∗(KX + ∆) + AY ,

where f : Y → X is a proper birational morphism of normal varieties.
Similarly, we define A∗ = A∗(X, ∆) by

A∗
Y =

∑
ai>−1

aiAi
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for
KY = f ∗(KX + ∆) +

∑
aiAi,

where f : Y → X is a proper birational morphism of normal varieties.

2.3 (b-nef and b-semi-ample Q-b-divisors). Let X be a normal variety
and let X → S be a proper surjective morphism onto a variety S. A
Q-b-divisor D of X is b-nef over S (resp. b-semi-ample over S) if there
exists a proper birational morphism X ′ → X from a normal variety X ′

such that D = DX′ and DX′ is nef (resp. semi-ample) relative to the
induced morphism X ′ → S. A Q-b-divisor D of X is Q-b-Cartier if
there is a proper birational morphism X ′ → X from a normal variety
X ′ such that D = DX′ .

3. Lc-trivial fibrations

Let us recall the definition of lc-trivial fibrations.

Definition 3.1 (Lc-trivial fibrations). An lc-trivial fibration f : (X, ∆) →
Y consists of a proper surjective morphism between normal varieties
with connected fibers and a pair (X, ∆) satisfying the following prop-
erties:

(i) (X, ∆) is sub log canonical over the generic point of Y ,
(ii) rankf∗OX(dA∗(X, ∆)e) = 1, and
(iii) there exists a Q-Cartier Q-divisor D on Y such that

KX + ∆ ∼Q f ∗D.

Remark 3.2. Let f : X → Y be a proper surjective morphism between
normal varieties with f∗OX ' OY . Assume that (X, ∆) is log canonical
over the generic point of Y . Then we have

rankf∗OX(dA∗(X, ∆)e) = 1.

We give a standard example of lc-trivial fibrations.

Example 3.3. Let (X, ∆) be a sub log canonical pair such that X is
smooth and that Supp∆ is a simple normal crossing divisor on X. Let
f : X → Y be a proper surjective morphism onto a normal variety Y
such that

KX + ∆ ∼Q,f 0

and that
f∗OX(d−∆<1e) ' OY .

Then f : (X, ∆) → Y is an lc-trivial fibration.

We give a remark on the definition of lc-trivial fibrations for the
reader’s convenience.
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Remark 3.4 (Lc-trivial fibrations and klt-trivial fibrations). In [A2,
Definition 2.1], (X, ∆) is assumed to be sub kawamata log terminal
over the generic point of Y . Therefore, Definition 3.1 is wider than
Ambro’s original definition of lc-trivial fibrations. When (X, ∆) is sub
kawamata log terminal over the generic point of Y in Definition 3.1, we
call f : (X, ∆) → Y a klt-trivial fibration (see [FG3, Definition 3.1]).

We need the notion of induced lc-trivial fibrations, discriminant Q-
divisors, moduli Q-divisors, and so on in order to discuss lc-trivial fi-
brations.

3.5 (Induced lc-trivial fibrations by base changes). Let f : (X, ∆) → Y
be an lc-trivial fibration and let σ : Y ′ → Y be a generically finite mor-
phism. Then we have an induced lc-trivial fibration f ′ : (X ′, ∆X′) →
Y ′, where ∆X′ is defined by µ∗(KX + ∆) = KX′ + ∆X′ :

(X ′, ∆X′)
µ //

f ′

��

(X, ∆)

f

��
Y ′

σ
// Y,

Note that X ′ is the normalization of the main component of X ×Y Y ′.
We sometimes replace X ′ with X ′′ where X ′′ is a normal variety such
that there is a proper birational morphism ϕ : X ′′ → X ′. In this case,
we set KX′′ + ∆X′′ = ϕ∗(KX′ + ∆X′).

3.6 (Discriminant Q-b-divisors and moduli Q-b-divisors). Let us con-
sider an lc-trivial fibration f : (X, ∆) → Y as in Definition 3.1. We
take a prime divisor P on Y . By shrinking Y around the generic point
of P , we assume that P is Cartier. We set

bP = max

{
t ∈ Q

∣∣∣∣ (X, ∆ + tf∗P ) is sub log canonical
over the generic point of P

}
and set

BY =
∑

P

(1 − bP )P,

where P runs over prime divisors on Y . Then it is easy to see that BY is
a well-defined Q-divisor on Y and is called the discriminant Q-divisor
of f : (X, ∆) → Y . We set

MY = D − KY − BY

and call MY the moduli Q-divisor of f : (X, ∆) → Y . Let σ : Y ′ → Y
be a proper birational morphism from a normal variety Y ′ and let
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f ′ : (X ′, ∆X′) → Y ′ be the induced lc-trivial fibration by σ : Y ′ → Y
(see 3.5). We can define BY ′ , KY ′ and MY ′ such that

σ∗D = KY ′ + BY ′ + MY ′ ,

σ∗BY ′ = BY , σ∗KY ′ = KY , and σ∗MY ′ = MY . Hence there exist a
unique Q-b-divisor B such that BY ′ = BY ′ for every σ : Y ′ → Y and
a unique Q-b-divisor M such that MY ′ = MY ′ for every σ : Y ′ → Y .
Note that B is called the discriminant Q-b-divisor and that M is called
the moduli Q-b-divisor associated to f : (X, ∆) → Y . We sometimes
simply say that M is the moduli part of f : (X, ∆) → Y .

Theorem 3.7 is the most fundamental result on lc-trivial fibrations.
It is the main ingredient of this paper. Ambro [A2] obtained Theorem
3.7 for klt-trivial fibrations. Theorem 3.7 is a direct generalization of
[A2, Theorem 0.2].

Theorem 3.7 ([FG3, Theorem 3.6]). Let f : (X, ∆) → Y be an lc-
trivial fibration and let π : Y → S be a proper morphism. Let B and
M be the induced discriminant and moduli Q-b-divisors of f . Then,

(1) K + B is Q-b-Cartier,
(2) M is b-nef over S.

Remark 3.8. Theorem 3.7 says that there is a proper birational mor-
phism Y ′ → Y from a normal variety Y ′ such that K+B = KY ′ + BY ′ ,
M = MY ′ , and MY ′ is nef over S. We note that the arguments in [A2,
Section 5] show how to construct Y ′. For the details, see [A2, p. 245,
set-up] and [A2, Proof of Theorem 2.7].

The following conjecture is one of the most important open problems
on lc-trivial fibrations. It was conjectured by Fujita, Mori, Shokurov
and others (see [N, Problem], [PS, Conjecture 7.13] and so on).

Conjecture 3.9 (b-semi-ampleness conjecture). Let f : (X, ∆) → Y
be an lc-trivial fibration and let π : Y → S be a proper morphism. Then
the moduli part M is b-semi-ample over S.

Conjecture 3.9 was only solved for some special cases (see [Ka2], [F2],
and [PS, Section 8]). The arguments in [Ka2] (see also [PS]) and [F2]
use the theory of moduli spaces of curves, K3 surfaces, and Abelian
varieties.

We give some observations on Conjecture 3.9.

3.10 (Observation I). Let f : (X, ∆) → Y be an lc-trivial fibration.
For simplicity, we assume that X is smooth and Supp∆ is a simple
normal crossing divisor on X. We write

∆ = ∆+ − ∆−
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where ∆+ and ∆− are effective Q-divisors on X such that ∆+ and ∆−

have no common irreducible components. In this situation, we have

OX(dA∗(X, ∆)e) ' OX(d∆−e)

over the generic point of Y (see [F11, Lemma 3.22]). Therefore, the
condition

rankf∗OX(dA∗(X, ∆)e) = 1

is equivalent to

rankf∗OX(d∆−e) = 1.

For Conjecture 3.9, it seems to be reasonable to assume that

rankf∗OX(dm∆−e) = 1

holds for every nonnegative integer m. This condition is equivalent to

κ(Xη, KXη + ∆+|Xη) = 0

where Xη is the generic fiber of f : X → Y . The condition

rankf∗OX(d∆−e) = 1

seems to be insufficient for Conjecture 3.9.
If there are an lc-trivial fibration f † : (X†, ∆†) → Y such that

(X†, ∆†) is log canonical and a proper birational morphism µ : X → X†

such that KX + ∆ = µ∗(KX† + ∆†) and f = f † ◦ µ, then ∆− is µ-
exceptional. Therefore we have

µ∗OX(dm∆−e) ' OX†

for every nonnegative integer m. This implies

f∗OX(dm∆−e) ' OY

for every nonnegative integer m. Consequently, this extra assumption
that

rankf∗OX(dm∆−e) = 1

for every nonnegative integer m is harmless for many applications.

3.11 (Observation II). Assume that the minimal model program and
the abundance conjecture hold.

Let f : (X, ∆) → Y be an lc-trivial fibration such that X is smooth
and Supp∆ is a simple normal crossing divisor on X. Assume that

κ(Xη, KXη + ∆+|Xη) = 0
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as in 3.10. By [AK], we can construct the following commutative dia-
gram:

X

f

��

X ′µoo

f ′

��

UX′? _oo

��
Y Y ′

σ
oo UY ′ ,? _oo

satisfying:

(1) µ and σ are projective birational morphisms.
(2) f ′ : (UX′ ⊂ X ′) → (UY ′ ⊂ Y ′) is a projective equidimensional

toroidal morphism.
(3) KX′ + ∆X′ = µ∗(KX + ∆), Supp∆X′ ⊂ ΣX′ = X ′ \UX′ , and X ′

is Q-factorial.
(4) Y ′ is a smooth quasi-projective variety and ΣY ′ = Y ′ \ UY ′ is a

simple normal crossing divisor on Y ′.
(5) f ′ is smooth over UY ′ and ΣX′ is a relatively normal crossing

divisor over UY ′ .

We can write

KX′ + ∆X′ ∼Q f ′∗(KY ′ + BY ′ + MY ′)

as in 3.6. Let ΣY ′ =
∑

i Pi be the irreducible decomposition. Then we
can write

BY ′ =
∑

i

(1 − bPi
)Pi

as in 3.6. We put

∆X′ +
∑

i

bPi
f ′∗Pi = Θ − E

where Θ and E are effective Q-divisors on X ′ such that Θ and E have
no common irreducible components. Then

KX′ + Θ ∼Q f ′∗(KY ′ + ΣY ′ + MY ′) + E ∼Q,f ′ E ≥ 0.

We run the minimal model program with respect to KX′ + Θ over Y ′

(cf. [FG3, Proof of Theorem 1.1]). Note that (X ′, Θ) is a Q-factorial

log canonical pair. Then we obtain a minimal model f̃ : (X̃, Θ̃) → Y ′

such that
K

eX + Θ̃ ∼Q, ef 0.

It is easy to see that

K
eX + Θ̃ ∼Q f̃ ∗(KY ′ + ΣY ′ + MY ′),

that is, ΣY ′ is the discriminant Q-divisor of f̃ : (X̃, Θ̃) → Y ′ and MY ′

is the moduli part of f̃ : (X̃, Θ̃) → Y ′. Therefore, if we assume that
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the minimal model program and the abundance conjecture hold, then

we can replace (X, ∆) with a log canonical pair (X̃, Θ̃) when we prove
the b-semi-ampleness of M under the assumption that κ(Xη, KXη +
∆+|Xη) = 0. We note that the b-semi-ampleness conjecture of M for

f̃ : (X̃, Θ̃) → Y ′ can be reduced to the case when g : (V, ∆V ) → W is
an lc-trivial fibration such that (V, ∆V ) is kawamata log terminal over
the generic point of W and ∆V is effective. For the details, see [FG3,
Proof of Theorem 1.1].

We also note that the existence of a good minimal model of (X ′
η, Θ|X′

η
),

where X ′
η is the generic fiber of f ′ : X ′ → Y ′, is sufficient to construct

a relative good minimal model f̃ : (X̃, Θ̃) → Y ′. Let us go into details.
By replacing (X ′, Θ) with its dlt blow-up, we may assume that (X ′, Θ)
is a Q-factorial divisorial log terminal pair. We run the minimal model
program on KX′ + Θ with ample scaling over Y ′. After finitely many
steps, all the horizontal components of E are contracted if (X ′

η, Θ|X′
η
)

has a good minimal model. Thus we assume that E has no horizontal
components. Then it is easy to see that E is very exceptional over Y ′.
For the definition of very exceptional divisors, see, for example, [B1,
Definition 3.1]. Therefore, by [B1, Theorem 3.4], we obtain a relative

minimal model f̃ : (X̃, Θ̃) → Y ′ with K
eX + Θ̃ ∼Q, ef 0. Note that the

existence of a good minimal model of (X ′
η, Θ|X′

η
) is equivalent to the

existence of a good minimal model of (Xη, ∆
+|Xη).

3.12 (Observation III). Let f : (X, ∆) → Y be an lc-trivial fibration
such that X and Y are quasi-projective and that (X, ∆) is log canonical.
By taking a dlt blow-up, we may assume that (X, ∆) is a Q-factorial
divisorial log terminal pair. Let Y be a normal projective variety which
is a compactification of Y . By using the minimal model program,
we can construct a projective Q-factorial divisorial log terminal pair
(X, ∆) which is a compactification of (X, ∆) such that X \X contains
no log canonical centers of (X, ∆) and that f : X → Y is extended to
f : X → Y .

(X, ∆)

f
��

(X, ∆)? _oo

f

��
Y Y?

_oo

By [B1, Theorem 1.4], we have a good minimal model (X
′
, ∆

′
) over

Y . See also [HX, Theorem 1.1 and Corollary 1.2]. Let f
′
: X

′ → Y
′

be the contraction morphism over Y associated to KX
′ + ∆

′
. Then
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f
′
: (X

′
, ∆

′
) → Y

′
is an lc-trivial fibration which is a compactification

of f : (X, ∆) → Y .

Therefore, the b-semi-ampleness of M of f
′
: (X

′
, ∆

′
) → Y

′
implies

that the moduli part of f : (X, ∆) → Y is b-semi-ample over S, where
Y → S is a proper morphism as in Conjecture 3.9.

By combining the above observations with the results in [A3, Theo-
rem 3.3] and [PS, Theorem 8.1], we have:

Theorem 3.13. Let f : (X, ∆) → Y be an lc-trivial fibration such
that X is smooth and Supp∆ is a simple normal crossing divisor on X
and let Y → S be a proper morphism. We write ∆ = ∆+ − ∆− where
∆+ and ∆− are effective Q-divisors and have no common irreducible
components. Assume that κ(Xη, KXη + ∆+|Xη) = 0 where Xη is the
generic fiber of f and that (Xη, ∆

+|Xη) has a good minimal model.
Then the moduli part M of f : (X, ∆) → Y is b-nef and abundant over
S. This means that there is a proper birational morphism Y ′ → Y from
a normal variety Y ′ such that M = MY ′ and MY ′ is nef and abundant
relative to the induced morphism Y ′ → S.

We further assume that dim X = dim Y + 1. Then the moduli part
M of f : (X, ∆) → Y is b-semi-ample over S.

We note that we do not use Theorem 3.13 in the subsequent sections.

Sketch of Proof of Theorem 3.13. By the arguments in 3.11, we may
assume that X and Y are quasi-projective and that (X, ∆) is log canon-
ical. By the arguments in 3.12, we may further assume that X and Y
are projective. Then, by [FG3, Theorem 1.1], we obtain that M is
b-nef and abundant over S. When dim X = dim Y + 1, we see that M
is b-semi-ample over S by [PS, Theorem 8.1]. �

For the details of lc-trivial fibrations, see also [A2] and [FG3, Section
3].

4. Proof of the main results

First, let us prove the log canonicity of Y in Case 3 in the introduc-
tion by using Theorem 1.1.

Proof of the log canonicity of Y in Case 3. It is easy to see that Y is
Q-factorial (see, for example, [KM, Proposition 3.36]). By perturbing
∆, we may assume that ∆ is a Q-divisor. By shrinking Y , we may
assume that Y is affine. We can take an effective Q-divisor ∆′ on X
such that (X, ∆ + ∆′) is log canonical and that

KX + ∆ + ∆′ ∼Q,f 0.
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Let g : Z → X be a resolution such that

KZ + ∆Z = g∗(KX + ∆ + ∆′)

and that Supp∆Z is a simple normal crossing divisor on Z. Then

g∗OZ(d−∆<1
Z e) ' OX .

Therefore,

h∗OZ(d−∆<1
Z e) ' OY

and

KZ + ∆Z ∼Q,h 0

where h = f◦g. By Theorem 1.1, Y has only log canonical singularities.
If every log canonical center of (X, ∆) is dominant onto Y , then we

can take ∆′ such that every log canonical center of (Z, ∆Z) is domi-
nant onto Y . Thus Y is log terminal by Theorem 1.1 when every log
canonical center of (X, ∆) is dominant onto Y . �

Let us prove Theorem 1.1. We use the framework of lc-trivial fibra-
tions.

Proof of Theorem 1.1. Without loss of generality, we may assume that
Y is affine. We can write

KX + ∆ ∼Q f∗(KY + BY + MY )

where BY is the discriminant and MY is the moduli part of the lc-trivial
fibration f : (X, ∆) → Y (see 3.6). Note that BY is effective and the
coefficients of BY are ≤ 1. Let E be an arbitrary prime divisor over Y .
We take a resolution σ : Y ′ → Y with

KY ′ + BY ′ + MY ′ = σ∗(KY + BY + MY )

such that E is a prime divisor on Y ′ and that E ∪ SuppBY ′ ∪ Exc(σ)
is a simple normal crossing divisor on Y ′. Note that f ′ : (X ′, ∆′) → Y ′

is an induced lc-trivial fibration by σ : Y ′ → Y (see 3.5) and that BY ′

is the discriminant and MY ′ is the moduli part of f ′ : (X ′, ∆′) → Y ′.

(X ′, ∆X′) //

f ′

��

(X, ∆)

f

��
Y ′

σ
// Y

By taking σ : Y ′ → Y suitably, we may assume that MY ′ is σ-nef (see
Theorem 3.7) and there is an effective exceptional Q-divisor F on Y ′

which is anti-σ-ample. Without loss of generality, we may assume that
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the coefficients of F are ≤ 1. Let ε be an arbitrary positive rational
number. Then

KY ′ + BY ′ + MY ′ = KY ′ + BY ′ + εF + MY ′ − εF

∼Q KY ′ + BY ′ + εF + G

where G is a general effective Q-divisor on Y ′ such that bGc = 0,
G ∼Q MY ′ − εF , and SuppBY ′ ∪ SuppF ∪ SuppG is a simple normal
crossing divisor. Note that MY ′ − εF is σ-ample and that Y is affine.
We put

ΘE,ε = σ∗(BY ′ + εF + G).

Then ΘE,ε is an effective Q-divisor on Y whose coefficients are ≤ 1
such that KY + ΘE,ε is Q-Cartier and

a(E, Y, ΘE,ε) = −multEBY ′ − εmultEF

≥ −1 − ε.

Therefore,
a(E, Y, 0) ≥ a(E, Y, ΘE,ε) ≥ −1 − ε.

This means that a(E, Y, 0) ≥ −1. Thus Y has only log canonical
singularities.

When every log canonical center of (X, ∆) is dominant onto Y ,
multEBY ′ < 1 always holds by the construction of BY ′ . Therefore,
we obtain a(E, Y, 0) > −1. Thus Y has only log terminal singulari-
ties. �
Remark 4.1. In the proof of Theorem 1.1, if MY ′ is σ-semi-ample and
Y is quasi-projective, then we can take a general effective Q-divisor G
on Y ′ such that

KY ′ + BY ′ + MY ′ ∼Q,σ KY ′ + BY ′ + G.

Thus (Y, ∆Y ) is log canonical where ∆Y = σ∗(BY ′ +G). Therefore, the
b-semi-ampleness of M is desirable (see Conjecture 3.9). Of course, if
MY ′ is semi-ample, then we can choose G such that

KY ′ + BY ′ + MY ′ ∼Q KY ′ + BY ′ + G.

Note that Y in Theorem 1.1 has a quasi-log structure in the sense of
Ambro (see [A1]).

Remark 4.2 (Quasi-log structure). We use the same notation as in
Theorem 1.1. We can write

KX + ∆ ∼Q f ∗ω

for some Q-Cartier Q-divisor ω on Y . Then the pair [Y, ω] has a quasi-
log structure with only qlc singularities (see [A1], [F6], [F8], and [F13]).
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Therefore, the cone and contraction theorem holds for Y with respect
to ω. It is a complete generalization of [F1, Theorem 4.1].

Proof of Theorem 1.2. By using Theorem 3.7, the proof of Theorem 1.2
in [F1] works. We leave the details as an exercise for the reader. �

Let us start the proof of Theorem 1.6.

Proof of Theorem 1.6. By taking a suitable resolution, we may assume
that f : X → Y is a morphism such that

m0(KX + ∆) = f ∗A + E

where m0 is a sufficiently large and divisible positive integer, A is a
very ample Cartier divisor on Y , and E is an effective divisor on X
satisfying

|mm0(KX + ∆)| = |mf ∗A| + mE

for every positive integer m (see, for example, [B2, Lemma 3.2]). With-
out loss of generality, we may further assume that Supp∆ ∪ SuppE is
a simple normal crossing divisor on X. We put

∆X = ∆ − 1

m0

E.

Then we have
KX + ∆X ∼Q,f 0.

It is easy to see that f∗OX(d−∆<1
X e) ' OY (see, for example, the proof

of [B1, Lemma 3.2]). Note that

0 ≤ d−∆<1
X e = d 1

m0

Ee ≤ E.

Therefore, by Theorem 1.1, we have that Y has only log canonical
singularities. �
Remark 4.3. In the proof of Theorem 1.6, we have κ(Xη, KXη +
∆|Xη) = 0 where Xη is the generic fiber of f : X → Y . Therefore,
if Conjecture 3.9 holds under the extra assumption that

κ(Xη, KXη + ∆+
X |Xη) = κ(Xη, KXη + ∆|Xη) = 0

as in 3.10, then Conjecture 1.4 also holds (see Proof of Theorem 1.1
and Remark 4.1).

Remark 4.4. If (X, ∆) has a good minimal model in Conjecture 1.4,
then we may assume that there is a morphism f : X → Y such that
f∗OX ' OY and KX + ∆ ∼Q,f 0 by replacing (X, ∆) with its good
minimal model. In this case, Conjecture 1.4 follows from Conjecture
1.7.
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Proof of Theorem 1.5. By combining the proof of Theorem 1.6 with
Theorem 1.2, we can find an effective Q-divisor ∆Y on Y such that
(Y, ∆Y ) is kawamata log terminal. We leave the details as an exercise
for the reader. �

We give a remark on the finite generation of R(X, ∆).

Remark 4.5 (Finite generation of R(X, ∆)). Let (X, ∆) be a projec-
tive log canonical pair such that ∆ is a Q-divisor. It is conjectured that
the log canonical ring R(X, ∆) is a finitely generated C-algebra. It is
one of the most important conjectures for higher-dimensional algebraic
varieties. For the details and various related conjectures, see [FG4]. It
is known that R(X, ∆) is finitely generated for dim X ≤ 4 (see [F7,
Theorem 1.2]). Note that R(X, ∆) is a finitely generated C-algebra
when (X, ∆) is kawamata log terminal and ∆ is a Q-divisor. It was
established by Birkar–Cascini–Hacon–McKernan ([BCHM]) and is now
well known.

We close this section with remarks on Conjecture 1.7.

Remark 4.6. If (X, ∆) is kawamata log terminal and ∆ is a Q-divisor
in Conjecture 1.7, then we can take a Q-divisor ∆Y such that (Y, ∆Y ) is
kawamata log terminal and KX +∆ ∼Q f ∗(KY +∆Y ) by [A2, Theorem
0.2], which is a complete solution of [F1, Problem 1.1]. Theorem 3.1 in
[FG1] generalizes [A2, Theorem 0.2] for R-divisors.

Remark 4.7 (cf. the proof of Theorem 3.1 in [FG1]). In Conjecture
1.7, we can write

KX + ∆ =
k∑

i=1

ri(KX + ∆i)

such that

(a) ∆i is an effective Q-divisor for every i,
(b) (X, ∆i) is log canonical and KX + ∆i is f -nef for every i, and

(c) 0 < ri < 1, ri ∈ R for every i, and
∑k

i=1 ri = 1.

Since KX + ∆ is numerically f -trivial, so is KX + ∆i for every i. By
[FG2, Theorem 4.9], we obtain that KX +∆i ∼Q,f 0 for every i. There-
fore, we can reduce Conjecture 1.7 to the case when ∆ is a Q-divisor
with KX +∆ ∼Q,f 0. Then we can use the framework of lc-trivial fibra-
tions. We can easily check that Conjecture 1.7 follows from Conjecture
3.9 such that S is a point (see also Remark 4.1).
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5. Some analytic generalizations

In this section, we give some remarks on complex analytic varieties
in Fujiki’s class C and compact Kähler manifolds. The following theo-
rem easily follows from [BCHM] and [FM]. Note that Theorem 5.1 is
equivalent to Theorem 1.8 by taking a resolution.

Theorem 5.1 (cf. [BCHM] and [FM]). Let X be a normal complex
analytic variety in Fujiki’s class C and let ∆ be an effective Q-divisor on
X such that (X, ∆) is kawamata log terminal. Then the log canonical
ring

R(X, ∆) =
⊕
m≥0

H0(X,OX(bm(KX + ∆)c))

is a finitely generated C-algebra.

As a special case of Theorem 5.1, we have:

Corollary 5.2. Let X be a compact Kähler manifold. Then the canon-
ical ring

R(X) =
⊕
m≥0

H0(X, ω⊗m
X )

is a finitely generated C-algebra.

Theorem 5.1 and Corollary 5.2 do not hold for varieties which are
not in Fujiki’s class C (see Example 6.4 below).

Note that the proof of Theorem 5.1 is not related to the minimal
model theory for compact Kähler manifolds. We do not discuss the
minimal models for compact Kähler manifolds here (see [HP]).

5.3 (Ideas). Let m be a large and divisible positive integer and let

Φ|m(KX+∆)| : X 99K Y

be the Iitaka fibration. Then Y is projective even when X is only a
complex analytic variety. By taking suitable resolutions, it is sufficient
to treat the case where Φ : X → Y is a proper surjective morphism
from a compact Kähler manifold X to a normal projective variety Y
with connected fibers. In this situation, the arguments in [FM], [A2],
[FG3, Section 3], and so on work with some minor modifications. This
is because we can use the theory of variations of (mixed) R-Hodge
structure for Φ : X → Y . In general, the general fibers of Φ are not
projective. They are only Kähler. Therefore, the natural polarization
of the variation of (mixed) Hodge structure is defined only on R.

Anyway, by the arguments in [FM, Sections 4 and 5], we can find an
effective Q-divisor ∆Y on Y such that the finite generation of R(X, ∆)
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is equivalent to the finite generation of R(Y, ∆Y ) where (Y, ∆Y ) is kawa-
mata log terminal and KY +∆Y is big. Therefore, by [BCHM], R(X, ∆)
is finitely generated.

Remark 5.4. Let f : X → Y be a surjective morphism from a com-
pact Kähler manifold (or, more generally, a complex analytic variety
in Fujiki’s class C) X to a projective variety Y . In this setting, we can
prove various fundamental results, for example, Kollár type vanishing
theorem, torsion-free theorem, weak positivity theorem, and so on. For
the details, see [F12].

By the arguments in [A2, Sections 4 and 5] and the semipositivity
theorem in [F4] (see also [FF], [FFS], and [F12, Theorem 1.5]), we can
prove an analytic generalization of Theorem 3.7 without any difficulties
(see Example 6.1 and Remark 6.3 for the case when the varieties are
not in Fujiki’s class C).

Theorem 5.5 (cf. [FG3, Theorem 3.6]). Let X be a normal complex
analytic variety in Fujiki’s class C and let ∆ be a Q-divisor on X such
that KX + ∆ is Q-Cartier. Let f : X → Y be a surjective morphism
onto a normal projective variety Y . Assume that f : (X, ∆) → Y is an
lc-trivial fibration, that is,

(i) (F, ∆|F ) is sub log canonical for a general fiber F of f : X → Y ,
(ii) rankf∗OX(dA∗(X, ∆)e) = 1, and
(iii) there exists a Q-Cartier Q-divisor D on Y such that

KX + ∆ ∼Q f ∗D.

Let B and M be the induced discriminant and moduli Q-b-divisor of
f : (X, ∆) → Y . Then

(1) K + B is Q-b-Cartier, that is, there exists a proper birational
morphism Y ′ → Y from a normal variety Y ′ such that K+B =
KY ′ + BY ′,

(2) M is b-nef.

In the setting of Theorem 5.5, we have:

Conjecture 5.6 (cf. Conjecture 3.9). In Theorem 5.5, M is b-semi-
ample.

Conjecture 5.6 may be harder than Conjecture 3.9 because there are
no good moduli theory for compact Kähler manifolds.

Proof of Theorem 5.1. Let f : X 99K Y be the Iitaka fibration with
respect to KX +∆. By replacing X and Y bimeromorphically, we may
assume that Y is a smooth projective variety, X is a compact Kähler
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manifold, (X, ∆) is kawamata log terminal such that Supp∆ is a simple
normal crossing divisor on X, and f is a morphism. By using the theory
of log-canonical bundle formulas discussed in [FM, Section 4] with the
aid of Theorem 5.5, we can apply [FM, Theorem 5.2]. Then there are
a smooth projective variety Y ′, which is birationally equivalent to Y ,
and an effective Q-divisor ∆′ on Y ′ such that (Y ′, ∆′) is a kawamata
log terminal pair, KY ′ + ∆′ is big, and

R(X, ∆)(e) ' R(Y ′, ∆′)(e′)

for some positive integers e and e′, where

R(Y ′, ∆′) =
⊕
m≥0

H0(Y ′,OY ′(bm(KY ′ + ∆′)c)).

Note that R(e) =
⊕

m≥0 Rem for a graded ring R =
⊕

m≥0 Rm. By
[BCHM], R(Y ′, ∆′) is a finitely generated C-algebra. This implies that
R(X, ∆) is a finitely generated C-algebra. �
Remark 5.7. By using Theorem 5.5, we can prove some analytic gen-
eralizations of Theorem 1.1, Theorem 1.2, and so on. We leave the
details for the interested reader.

Conjecture 5.8 is obviously equivalent to Conjecture 1.10 by taking
a resolution.

Conjecture 5.8. Let X be a normal complex analytic variety in Fu-
jiki’s class C and let ∆ be an effective Q-divisor on X such that (X, ∆)
is log canonical. Then the log canonical ring

R(X, ∆) =
⊕
m≥0

H0(X,OX(bm(KX + ∆)c))

is a finitely generated C-algebra.

We give a remark on Conjecture 5.8.

Remark 5.9. Conjecture 5.8 is still open even when X is projective.
If Conjecture 5.6 holds true, then we can reduce Conjecture 5.8 to the
case when X is projective by the same way as in [FM, Sections 4 and
5] (see also 5.3, Proof of Theorem 5.1, and Remark 4.1). Note that
Theorem 5.5 is not sufficient for this reduction argument.

We close this section with an observation on Conjecture 5.6.

5.10 (Observation IV). Let f : (X, ∆) → Y be an lc-trivial fibration
as in Theorem 5.5. By taking a resolution, we assume that X is a
compact Kähler manifold and that Supp∆ is a simple normal crossing
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divisor on X. For Conjecture 5.6, it seems to be reasonable to assume
that

rankf∗OX(dm∆−e) = 1

for every nonnegative integer m as in 3.10, equivalently,

κ(F, KF + ∆+|F ) = 0

where F is a sufficiently general fiber of f . The extra assumption
κ(F, KF +∆+|F ) = 0 is harmless for [FM, Sections 4 and 5]. Therefore,
Remark 5.9 works even if we add the extra assumption κ(F, KF +
∆+|F ) = 0 to Conjecture 5.6. Unfortunately, the reduction arguments
in 3.11 based on the minimal model program have not been established
for compact Kähler manifolds.

Anyway, Conjecture 5.6 looks harder than Conjecture 3.9.

6. Examples of non-Kähler manifolds

In this section, we discuss some examples of compact complex non-
Kähler manifolds constructed by Atiyah ([A]) and Wilson ([W]) for the
reader’s convenience. These examples clarify the reason why we have
to assume that the varieties are in Fujiki’s class C in Section 5. For
some related examples, see [U, Remark 15.3] and [Mg].

The following example is due to Atiyah (see [A, §10, Specific exam-
ples]). This example shows that the Fujita–Kawamata semipositivity
theorem does not hold for non-Kähler manifolds. For the details of the
theory of fiber spaces of complex tori, see [A].

Example 6.1 (cf. [A, §10]). Let us construct an analytic family of tori
f : X → Y = P1 such that f∗ωX/Y is not semipositive.

We put

I =

(
0, 1
−1, 0

)
, J =

(
0,

√
−1√

−1, 0

)
, K =

(√
−1, 0
0, −

√
−1

)
,

and

E =

(
1, 0
0, 1

)
.

We take s1, s2 ∈ H0(P1,OP1(1)) \ {0} such that s1 and s2 have no
common zeros. We consider the analytic family of tori f : X → Y := P1

where

X = V(OP1(1) ⊕OP1(1))/Λ.

Note that V(OP1(1)⊕OP1(1)) is the total space of OP1(1)⊕OP1(1) and

Λ =

〈
E

(
s1

s2

)
, I

(
s1

s2

)
, J

(
s1

s2

)
, K

(
s1

s2

)〉
.
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In other words, the fiber Xp = f−1(p) for p ∈ Y is C2/Λ(p), where Λ(p)
is the lattice〈

E

(
s1(p)
s2(p)

)
, I

(
s1(p)
s2(p)

)
, J

(
s1(p)
s2(p)

)
, K

(
s1(p)
s2(p)

)〉
Z

in C2. For the details of the construction, see [A]. Then ωX/Y '
f ∗OP1(−2) by [A, Proposition 10]. Therefore, we have

f∗ωX/Y ' OP1(−2).

This means that f∗ωX/Y is not always semipositive when X is not
Kähler. Note that f is smooth in this example.

Remark 6.2. Let f : V → W be a surjective morphism from a com-
pact complex manifold V in Fujiki’s class C to a smooth projective
curve W . Then we can easily check that f∗ωV/W is semipositive by
[Ft]. This means that X in Example 6.1 is not in Fujiki’s class C.

Remark 6.3. Example 6.1 shows that Theorem 5.5 does not hold
without assuming that X is in Fujiki’s class C. Therefore, the proof of
Theorem 5.1 does not work for varieties which are not in Fujiki’s class
C.

The following example is essentially the same as Wilson’s example
(see [W, Example 4.3]). It is a compact complex non-Kähler 4-fold
whose canonical ring is not a finitely generated C-algebra. Wilson’s
example is very important. Unfortunately, [W, Example 4.3] omitted
some technical details. Moreover, we can not find it in the standard
literature for the minimal model program. So we explain a slightly
simplified example in details for the reader’s convenience.

Example 6.4 (cf. [W, Example 4.3]). Let us construct a 4-dimensional
compact complex non-Kähler manifold X whose canonical ring R(X)
is not a finitely generated C-algebra.

Let C ⊂ P2 be a smooth elliptic curve and let H be a line on P2.
We blow up 12 general points P1, · · · , P12 on C and one point P 6∈ C.
Let π : Z → P2 denote this birational modification and let E be the
exceptional curve π−1(P ). Let C ′ be the strict transform of C. We put
H ′ = π∗H − E. Then the linear system |H ′| is free and (H ′)2 = 0.
Note that KZ ∼ −C ′ + E.

Claim 1. The linear system |nπ∗H +(n−1)C ′| is free for every n ≥ 1
and the base locus Bs|nπ∗H + nC ′| = C ′ for every n ≥ 1. Therefore,
we have

|nπ∗H + nC ′| = |nπ∗H + (n − 1)C ′| + C ′

for every n ≥ 1.
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Proof of Claim 1. It is obvious that |nπ∗H| is free. We consider the
following short exact sequence:

0 → OZ(nπ∗H + (r − 1)C ′) → OZ(nπ∗H + rC ′)(♠)

→ OC′(nπ∗H + rC ′) → 0

for 1 ≤ r ≤ n. Note that degOC′(nπ∗H + rC ′) ≥ 3 for 1 ≤ r ≤ n − 1.
Therefore, |OC′(nπ∗H + rC ′)| is very ample for 1 ≤ r ≤ n− 1 since C ′

is an elliptic curve. On the other hand,

nπ∗H + (r − 1)C ′ − KZ ∼ nπ∗H + rC ′ − E

= (n − 1)π∗H + rC ′ + H ′

is nef and big for 1 ≤ r ≤ n− 1. By the Kawamata–Viehweg vanishing
theorem, we obtain

H1(Z,OZ(nπ∗H + (r − 1)C ′)) = 0

for 1 ≤ r ≤ n− 1. By using the long exact sequence associated to (♠),
we have that |nπ∗H + rC ′| is free for 1 ≤ r ≤ n− 1 by induction on r.
Note that

H0(C ′,OC′(nπ∗H + nC ′)) = 0

for every n 6= 0 since P1, · · · , P12 are general points on C. Precisely
speaking, we take P1, · · · , P12 such that OC′(π∗H +C ′) is not a torsion
element in Pic0(C ′). This means that the natural inclusion

0 → H0(Z,OZ(nπ∗H + (n − 1)C ′)) → H0(Z,OZ(nπ∗H + nC ′))

is an isomorphism for every n ≥ 1. Thus we have

|nπ∗H + nC ′| = |nπ∗H + (n − 1)C ′| + C ′

for every n ≥ 1. �
Similarly, we can check the following statement.

Claim 2. The linear system |4π∗H + 4H ′ + 6C ′ − 2E| is free.

Proof of Claim 2. We note that

4π∗H + 4H ′ + 6C ′ − 2E = 6H ′ + 2π∗H + 6C ′.

We also note that |H ′| and |π∗H| are free. We consider the linear
system |6H ′ + 2π∗H + rC ′| for 0 ≤ r ≤ 6. If r = 0, then the linear
system |6H ′ + 2π∗H| is free. We consider the following short exact
sequence:

0 → OZ(6H ′ + 2π∗H + (r − 1)C ′) → OZ(6H ′ + 2π∗H + rC ′)(♣)

→ OC′(6H ′ + 2π∗H + rC ′) → 0.
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Note that

6H ′ + 2π∗H + (r − 1)C ′ − KZ ∼ 6H ′ + 2π∗H − E + rC ′

= 7H ′ + π∗H + rC ′

is nef and big for 1 ≤ r ≤ 6. Therefore, by the Kawamata–Viehweg
vanishing theorem, we obtain

H1(Z,OZ(6H ′ + 2π∗H + (r − 1)C ′)) = 0

for 1 ≤ r ≤ 6. On the other hand,

degOC′(6H ′ + 2π∗H + rC ′) ≥ 6

for 1 ≤ r ≤ 6. Thus |OC′(6H ′ + 2π∗H + rC ′)| is very ample for
1 ≤ r ≤ 6. Note that C ′ is an elliptic curve. By considering the long
exact sequence associated to (♣) and by induction on r, we obtain that
|6H ′ + 2π∗H + rC ′| is free for 0 ≤ r ≤ 6. In particular, |4π∗H + 4H ′ +
6C ′ − 2E| is free. �

We take a general member C0 of the free linear system |4π∗H +
4H ′ + 6C ′ − 2E| and take the double cover g : Y → Z ramified along
C0. Then we have

KY = g∗(KZ + 2π∗H + 2H ′ + 3C ′ − E)

∼ g∗(2π∗H + 2H ′ + 2C ′).

Note that |g∗H ′| is free on a smooth projective surface Y such that
κ(Y, g∗H ′) = 1. Then we can take s1, s2 ∈ H0(Y,OY (g∗H ′)) \ {0} such
that s1 and s2 have no common zeros. By using s1 and s2, we can
construct the analytic family of tori f : X → Y as in Example 6.1,
that is,

X = V(OY (g∗H ′) ⊕OY (g∗H ′))/Λ

and

Λ =

〈
E

(
s1

s2

)
, I

(
s1

s2

)
, J

(
s1

s2

)
, K

(
s1

s2

)〉
.

Then X is a compact complex 4-fold. By [A, Proposition 10], we can
check that

ωX = f ∗OY (KY − 2g∗H ′)

= f ∗OY (g∗(2π∗H + 2H ′ + 2C ′) − 2g∗H ′)

' f∗OY (g∗(2π∗H + 2C ′)).

Therefore, if the canonical ring R(X) =
⊕

m≥0 H0(X,ω⊗m
X ) is a finitely

generated C-algebra, then so is

R(Z, 2π∗H + 2C ′) =
⊕
m≥0

H0(Z,OZ(2m(π∗H + C ′))).
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Claim 3. R(Z, 2π∗H +2C ′) =
⊕

m≥0 H0(Z,OZ(2m(π∗H +C ′))) is not
a finitely generated C-algebra.

Proof of Claim 3. By Claim 1,

m−1⊕
a>0

H0(Z,OZ(2a(π∗H + C ′))) ⊗ H0(Z,OZ(2(m − a)(π∗H + C ′)))

→ H0(Z,OZ(2m(π∗H + C ′)))

is not surjective for any m ≥ 1. This implies that R(Z, 2π∗H + 2C ′) is
not a finitely generated C-algebra. �

Alternative proof of Claim 3. Since 2π∗H+2C ′ is nef and big, we know
that R(Z, 2π∗H + 2C ′) is a finitely generated C-algebra if and only if
2π∗H + 2C ′ is semi-ample (see, for example, [L, Theorem 2.3.15]). On
the other hand, OC′(π∗H+C ′) is not a torsion element in Pic0(C ′). This
implies that π∗H +C ′ is not semi-ample. Therefore, R(Z, 2π∗H +2C ′)
is not a finitely generated C-algebra. �

Therefore, the canonical ring R(X) of X is not finitely generated as
a C-algebra. Since f∗ωX/Y ' OY (−2g∗H ′) is not nef, X is non-Kähler.
Note that X is a compact complex manifold which is not in Fujiki’s
class C by Theorem 5.1.

Example 6.4 shows that the finite generation of canonical rings does
not always hold for compact complex manifolds which are not in Fujiki’s
class C.

Remark 6.5. Wilson’s original example (see [W, Example 4.3]) uses
the fact that nH ′+(n−1)C ′ is very ample for all n ≥ 1 (see [W, Claim
in Example 4.3]). Since H ′ is not a big divisor, the statement in [W,
Claim in Example 4.3] has to be changed suitably. So, we modified his
construction slightly. Note that f : X → Y constructed in Example

6.4 does not coincide with Wilson’s original example V → S̃ in [W,
Example 4.3].

Example 6.4 also shows that there are no generalizations of the abun-
dance conjecture for compact complex non-Kähler manifolds.

Remark 6.6. In Example 6.4, we can check that π∗H + C ′ is nef
and big. Therefore, ωX is a pull-back of a nef and big line bundle
on a smooth projective variety Y . So X should be recognized to be
a minimal model. However, ωX is not semi-ample. This means that
the abundance conjecture can not be generalized for compact complex
manifolds which are not in Fujiki’s class C.
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We close this section with a comment on Moriwaki’s result (see
[Mw]).

Remark 6.7. Let X be a three-dimensional compact complex mani-
fold. Moriwaki proved that the canonical ring R(X) of X is always a
finitely generated C-algebra even when X is not Kähler (see [Mw, (3.5)
Theorem]).

7. Appendix

In this appendix, we quickly discuss the minimal model program
for log canonical pairs and describe some related examples by János
Kollár for the reader’s convenience. We assume that all the varieties
are algebraic throughout this section.

7.1. Minimal model program for log canonical pairs. Let π :
(X, ∆) → S be a projective morphism such that (X, ∆) is a Q-factorial
log canonical pair. Then we can run the minimal model program on
(X, ∆) over S since we have the cone and contraction theorem (see, for
example, [F10, Theorem 1.1]) and the flip theorem for log canonical
pairs (see [B1, Corollary 1.2] and [HX, Corollary 1.8]). We can also
run the minimal model program on (X, ∆) over S with scaling by
[F10, Theorem 1.1]. Unfortunately, we do not know if the minimal
model program terminates or not.

Conjecture 7.1 (Flip conjecture II). A sequence of flips

(X0, ∆0) 99K (X1, ∆1) 99K (X2, ∆2) 99K · · ·

terminates after finitely many steps. Namely, there exists no infinite
sequence of flips.

Note that each flip in Conjecture 7.1 is a flip described in Case 2 in
the introduction.

If Conjecture 7.1 is true, then we can freely use the minimal model
program in full generality. In order to prove Conjecture 7.1 in dimen-
sion n, it is sufficient to solve Conjecture 7.1 for kawamata log terminal
pairs in dimension ≤ n. This reduction is an easy consequence of the
existence of dlt blow-ups and the special termination theorem by in-
duction on the dimension. For the details, see [F5] and [F13].

More generally, by the cone and contraction theorem (see [F10, The-
orem 1.1]), [B1, Theorem 1.1] and [HX, Theorem 1.6], we can run the
minimal model program for non-Q-factorial log canonical pairs (see [F6,
Subsection 3.1.2] and [F13]). Note that the termination of flips in this
more general setting also follows from Conjecture 7.1 for kawamata log
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terminal pairs by using the existence of dlt blow-ups and the special
termination theorem as explained above (see [F5] and [F13]).

Anyway, Conjecture 7.1 for Q-factorial kawamata log terminal pairs
is one of the most important open problems for the minimal model
program.

7.2. On log canonical flops. In this subsection, we discuss some
examples, which show the differences between kawamata log terminal
pairs and log canonical pairs. The following result is well known to the
experts (see, for example, [F6, Theorem 3.24]).

Theorem 7.2. Let (X, ∆) be a kawamata log terminal pair and let D
be a Q-divisor on X. Then

⊕
m≥0 OX(bmDc) is a finitely generated

OX-algebra.

Proof. If D is Q-Cartier, then this theorem is obvious. So we assume
that D is not Q-Cartier. Since the statement is local, we may assume
that X is affine. By replacing D with D′ such that D′ ∼ D and D′ ≥ 0,
we may further assume that D is effective. By [BCHM], we can take
a small projective birational morphism f : Y → X such that Y is
Q-factorial, KY + ∆Y = f ∗(KX + ∆), and (Y, ∆Y ) is kawamata log
terminal. Let DY be the strict transform of D on Y . Note that DY is
Q-Cartier because Y is Q-factorial. Let ε be a small positive number.
By running the minimal model program on (Y, ∆Y +εDY ) over X with
scaling, we may assume that DY is f -nef. Then, by the basepoint-free
theorem, DY is f -semi-ample. Therefore,⊕

m≥0

f∗OY (bmDY c)

is a finitely generated OX-algebra. Since we have an OX-algebra iso-
morphism ⊕

m≥0

f∗OY (bmDY c) '
⊕
m≥0

OX(bmDc),⊕
m≥0 OX(bmDc) is a finitely generated OX-algebra. �
The next example shows that Theorem 7.2 does not always hold

for log canonical pairs. In other words, if (X, ∆) is log canonical,
then

⊕
m≥0 OX(bmDc) is not necessarily finitely generated as an OX-

algebra.

Example 7.3 ([Ko3, Exercise 95]). Let E ⊂ P2 be a smooth cubic
curve. Let S be a surface obtained by blowing up nine general points
on E and let ES ⊂ S be the strict transform of E. Let H be a very
ample divisor on S giving a projectively normal embedding S ⊂ PN .
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Let X ⊂ AN+1 be the cone over S and let D ⊂ X be the cone over ES.
Then (X, D) is log canonical by Lemma 7.4 below since KS + ES ∼ 0.
Let P ∈ D ⊂ X be the vertex of the cones D and X. Since X is
normal, we have

H0(X,OX(mD)) = H0(X \ P,OX(mD))

'
⊕
r∈Z

H0(S,OS(mES + rH)).

By construction, OS(mES) has only the obvious section which vanishes
along mES for every m > 0. It can be checked by induction on m using
the following exact sequence

0 → H0(X,OS((m − 1)ES)) → H0(S,OS(mES))

→ H0(ES,OES
(mES)) → · · ·

since OES
(ES) is not a torsion element in Pic0(ES). Therefore,

H0(S,OS(mES + rH)) = 0

for every r < 0. So, we have⊕
m≥0

OX(mD) '
⊕
m≥0

⊕
r≥0

H0(S,OS(mES + rH)).

Since ES is nef, OS(mES + 4H) ' OS(KS + ES + mES + 4H) is very
ample for every m ≥ 0. Therefore, by replacing H with 4H, we may
assume that OS(mES + rH) is very ample for every m ≥ 0 and every
r > 0. In this setting, the multiplication maps

m−1⊕
a=0

H0(S,OS(aES + H)) ⊗ H0(S,OS((m − a)ES))

→ H0(S,OS(mES + H))

are never surjective. This implies that
⊕

m≥0 OX(mD) is not finitely
generated as an OX-algebra.

Let us recall an easy lemma for the reader’s convenience.

Lemma 7.4. Let (V, ∆) be a log canonical pair such that V is smooth,
Supp∆ is a simple normal crossing divisor on V , and KV + ∆ ∼Q 0.
Let V ⊂ PN be a projectively normal embedding. Let W ⊂ AN+1 be
the cone over V and let ∆W be the cone over ∆. Then (W, ∆W ) is log
canonical.
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Proof. Let g : W ′ → W be the blow-up at 0 ∈ AN+1 and let E be the
exceptional divisor of g. Note that W ′ is smooth and E ' V . Then we
can check that

KW ′ + ∆W ′ + E = g∗(KW + ∆W )

where ∆W ′ is the strict transform of ∆W . Note that Supp(∆W ′ +
E) is a simple normal crossing divisor on W ′. Thus, (W, ∆W ) is log
canonical. �

Let us recall the definition of log canonical flops.

Definition 7.5 (Log canonical flop). Let (X, ∆) be a log canonical
pair. Let D be a Cartier divisor on X. Let f : X → Y be a small
contraction such that KX + ∆ is numerically f -trivial and −D is f -
ample. The opposite of f with respect to D is called a flop with respect
to D for (X, ∆) or simply a D-flop. We sometimes call it flop or a log
canonical flop if there is no risk of confusion.

Remark 7.6. Without loss of generality, we may assume that ∆ is
a Q-divisor and KX + ∆ ∼Q,f 0 in Definition 7.5 (see, for example,
Remark 4.7 and [FG2, Theorem 4.9 and Subsection 4.1]). Furthermore,
if (X, ∆ + εD) is log canonical for some positive number ε, then a D-
flop always exists by [B1, Theorem 1.1 and Corollary 1.2] and [HX,
Theorem 1.6 and Corollary 1.8].

The following example shows that log canonical flops do not always
exist. Of course, flops always exist for kawamata log terminal pairs by
[BCHM].

Example 7.7 ([Ko3, Exercise 96]). Let E be an elliptic curve and let
L be a degree zero line bundle on E. We put

S = PE(OE ⊕ L).

Let C1 and C2 be the sections of the P1-bundle p : S → E. We note
that KS +C1 +C2 ∼ 0. As in Example 7.3, we take a sufficiently ample
divisor H = aF + bC1 on S giving a projectively normal embedding
S ⊂ PN , where F is a fiber of the P1-bundle p : S → E, a > 0,
and b > 0. We may assume that OS(mCi + rH) is very ample for
i = 1, 2, every m ≥ 0, and every r > 0. Moreover, we may assume that
OS(M + rH) is very ample for any nef Cartier divisor M and every
r > 0. Let X ⊂ AN+1 be the cone over S and let Di ⊂ X be the
cones over Ci for i = 1 and 2. Since KS + C1 + C2 ∼ 0, (X, D1 + D2)
is log canonical by Lemma 7.4. We can check KX + D1 + D2 ∼ 0 by
construction. By the same arguments as in Example 7.3, we can prove
the following statement.
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Claim 1. If L is a non-torsion element in Pic0(E), then⊕
m≥0

OX(mDi)

is not a finitely generated OX-algebra for i = 1 and 2.

We note that OS(mCi) has only the obvious section which vanishes
along mCi for every m > 0.

Let B ⊂ X be the cone over F . Then we have the following result.

Claim 2. The graded OX-algebra
⊕

m≥0 OX(mB) is a finitely gener-
ated OX-algebra.

Proof of Claim 2. By the same arguments as in Example 7.3, we have⊕
m≥0

OX(mB) '
⊕
m≥0

⊕
r≥0

H0(S,OS(mF + rH)).

We consider V = PS(OS(F ) ⊕ OS(H)). Then OV (1) is semi-ample.
Therefore,⊕

n≥0

H0(V,OV (n)) '
⊕
m≥0

⊕
r≥0

H0(S,OS(mF + rH))

is finitely generated. �
Let P ∈ X be the vertex of the cone X and let f : Y → X be the

blow-up at P . Let A ' S be the exceptional divisor of f . We consider
the P1-bundle π : PS(OS ⊕OS(H)) → S. Then

Y ' PS(OS ⊕OS(H)) \ G,

where G is the section of π corresponding to

OS ⊕OS(H) → OS(H) → 0.

We consider π∗F on Y . Then OY (π∗F ) is obviously f -semi-ample. So,
we obtain a contraction morphism g : Y → Z over X. We can check
that

Z ' ProjX
⊕
m≥0

OX(mB)

over X and that h : Z → X is a small projective contraction. On Y ,
we have

−A ∼ π∗H = aπ∗F + bπ∗C1.

Therefore, we obtain aB+bD1 ∼ 0 on X. Let B′ be the strict transform
of B on Z and let D′

i be the strict transform of Di on Z for i = 1 and
2. Note that B′ is h-ample, aB′ + bD′

1 ∼ 0, and KZ + D′
1 + D′

2 =
h∗(KX + D1 + D2) ∼ 0. If L is not a torsion element, then the flop of
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h : Z → X with respect to D′
1 for (Z, D′

1 + D′
2) does not exist since⊕

m≥0 OX(mD1) is not finitely generated as an OX-algebra.
Let C be any Cartier divisor on Z such that −C is h-ample. Then

the flop of h : Z → X with respect to C exists if and only if⊕
m≥0

h∗OZ(mC)

is a finitely generated OX-algebra. We can take positive integers m0

and m1 such that m1C is numerically equivalent to m0D
′
1 over X. Note

that Exc(h) ' E. Therefore, we can find a degree zero Cartier divisor
N on E such that

m1C − m0D
′
1 ∼h g∗(π|Y )∗(p∗N).

Thus, ⊕
m≥0

h∗OZ(mm1C)

is a finitely generated OX-algebra if and only if

R =
⊕
m≥0

h∗OZ(m(m0D
′
1 + g∗(π|Y )∗(p∗N)))

is so. Since h is small, R is isomorphic to⊕
m≥0

OX(m(m0D1 + Ñ)),

where Ñ ⊂ X is the cone over p∗N . Anyway,⊕
m≥0

h∗OZ(mC)

is a finitely generated OX-algebra if and only if⊕
m≥0

OX(m(m0D1 + Ñ))
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is so, where Ñ is the cone over p∗N . We note the following commutative
diagram:

Z
h

~~~~
~~

~~
~

X

''PPPPPPPP Y
f

oo

π|Y
��

g
__@@@@@@@

S

p

��
E

where X 99K S is the natural projection from the vertex P of X.

Claim 3. If L is not a torsion element in Pic0(E), then⊕
m≥0

OX(m(m0D1 + Ñ))

is not finitely generated as an OX-algebra. In particular, the flop of
h : Z → X with respect to C does not exist.

Proof of Claim 3. By the same arguments as in Example 7.3, we have⊕
m≥0

OX(m(m0D1 + Ñ))

'
⊕
m≥0

⊕
r∈Z

H0(S,OS(m(m0C1 + p∗N) + rH)).

By considering

0 → H0(S,OS((l − 1)C1 + mp∗N)) → H0(S,OS(lC1 + mp∗N))

→ H0(C1,OC1(lC1 + mp∗N)) → · · ·

for 1 ≤ l ≤ mm0, we obtain that

dim H0(S,OS(m(m0C1 + p∗N))) ≤ 1

for every m ≥ 0. Therefore, we can check that the above OX-algebra
is not finitely generated by the same arguments as in Example 7.3. We
note that OS(m(m0C1 + p∗N) + rH) is very ample for every m ≥ 0
and every r > 0 because m0C1 + p∗N is nef. �

Anyway, if L is not a torsion element in Pic0(E), then the flop of
h : Z → X does not exist with respect to any divisor.
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From now on, in the above setting, we assume that L is a torsion
element in Pic0(E). Then OY (π∗C1) is f -semi-ample. So, we obtain a
contraction morphism g′ : Y → Z+ over X. It is easy to see that⊕

m≥0

OX(mDi)

is finitely generated as an OX-algebra for i = 1, 2 (cf. Claim 2),

Z+ ' ProjX
⊕
m≥0

OX(mD1),

over X and that Z+ → X is the flop of Z → X with respect to D′
1.

Let C be any Cartier divisor on Z such that −C is h-ample. If
−C ∼Q,h cB′ for some positive rational number c, then it is obvious
that the above Z+ → X is the flop of h : Z → X with respect to
C. If −C 6∼Q,h cB′ for any positive rational number c, then the flop
of h : Z → X with respect to C does not exist. As above, we take
positive integers m0 and m1 such that m1C is numerically equivalent
to m0D

′
1 over X. Then we can find a degree zero Cartier divisor N on

E such that

m1C − m0D
′
1 ∼h g∗(π|Y )∗(p∗N).

Since −C 6∼Q,h cB′ for any positive rational number c, N is a non-
torsion element in Pic0(E). Thus,⊕

m≥0

h∗OZ(mC)

is finitely generated if and only if⊕
m≥0

OX(m(m0D1 + Ñ))

is so, where Ñ ⊂ X is the cone over p∗N ⊂ S. By the same arguments
as in the proof of Claim 3, we can check that⊕

m≥0

OX(m(m0D1 + Ñ))

is not finitely generated as an OX-algebra. We note that

dim H0(S,OS(m(m0C1 + p∗N))) = 0

for every m > 0 since N is a non-torsion element in Pic0(E) and L is
a torsion element in Pic0(E) (see the proof of Claim 3).
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