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Abstract. We discuss cohomology injectivity and vanishing the-
orems for the LMMP. This paper contains a completely final form
of the Kawamata–Viehweg vanishing theorem for log canonical
pairs. The results in this paper are indispensable for the theory of
quasi-log varieties.
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1. Introduction

The following diagram is well known and described, for example, in
[KM, §3.1].

Kawamata–Viehweg vanishing
theorem for klt pairs

=⇒
Cone, contraction, rationality,
and base point free theorems
for klt pairs

This means that the Kawamata–Viehweg vanishing theorem pro-
duces the fundamental theorems of the log minimal model program
(LMMP, for short) for klt pairs. This method is sometimes called X-
method and now classical. It is sufficient for the LMMP for Q-factorial
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dlt pairs. In [A1], Ambro obtained the same diagram for quasi-log

varieties. Note that the class of quasi-log varieties naturally contains
lc pairs. Ambro introduced the notion of quasi-log varieties for the
inductive treatments of lc pairs.

Kollár’s torsion-free and van-
ishing theorems for embedded
normal crossing pairs

=⇒
Cone, contraction, rationality,
and base point free theorems
for quasi-log varieties

Namely, if we obtain Kollár’s torsion-free and vanishing theorems for
embedded normal crossing pairs, then X-method works and we obtain
the fundamental theorems of the LMMP for quasi-log varieties. Un-
fortunately, the proofs of torsion-free and vanishing theorems in [A1,
Section 3] contains various gaps. So, there exists an important open
problem for the LMMP for lc paris.

Problem 1.1. Are the injectivity, torsion-free and vanishing theorems
for embedded normal crossing pairs true?

Once this question is solved affirmatively, we can obtain the funda-
mental theorems of the LMMP for lc pairs. The X-method, which was
explained in [A1, Section 5], is essentially the same as the klt case. It
may be more or less a routine work for the experts (see [F12]). In this
paper, we give an affirmative answer to Problem 1.1.

Theorem 1.2. Ambro’s formulation of Kollár’s injectivity, torsion-

free, and vanishing theorems for embedded normal crossing pairs hold

true.

Ambro’s proofs in [A1] do not work even for smooth varieties. So, we
need new ideas to prove the desired injectivity, torsion-free, vanishing
theorems. It is the main subject of this paper. We will explain vari-
ous troubles in the proofs in [A1, Section 3] below. Here, we give an
application of Ambro’s theorems to motivate the reader. It is the cul-
mination of the works of several authors: Kawamata, Viehweg, Nadel,
Reid, Fukuda, Ambro, and many others. It is the first time that the
following theorem is stated explicitly in the literature.

Theorem 1.3 (cf. Theorem 5.17). Let (X, B) be a proper lc pair such

that B is a boundary R-divisor and let L be a Q-Cartier Weil divisor on

X. Assume that L−(KX+B) is nef and log big. Then Hq(X,OX(L)) =
0 for any q > 0.

It also contains a complete form of Kovács’ Kodaira vanishing theo-
rem for lc pairs (see Corollary 5.11). Let us explain the main trouble
in [A1, Section 3] by the following simple example.
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Example 1.4. Let X be a smooth projective variety and H a Cartier
divisor on X. Let A be a smooth member of |2H| and S a smooth
divisor on X such that S and A are disjoint. We put B = 1

2
A + S and

L = H +KX +S. Then L ∼Q KX +B and 2L ∼ 2(KX +B). We define
E = OX(−L + KX) as in the proof of [A1, Theorem 3.1]. Apply the
argument in the proof of [A1, Theorem 3.1]. Then we have a double
cover π : Y → X corresponding to 2B ∈ |E−2|. Then π∗Ω

p
Y (log π∗B) '

Ωp
X(log B) ⊕ Ωp

X(log B) ⊗ E(S). Note that Ωp
X(log B) ⊗ E is not a

direct summand of π∗Ω
p
Y (log π∗B). Theorem 3.1 in [A1] claims that

the homomorphisms Hq(X,OX(L)) → Hq(X,OX(L+D)) are injective
for all q. Here, we used the notation in [A1, Theorem 3.1]. In our case,
D = mA for some positive integer m. However, Ambro’s argument
just implies that Hq(X,OX(L− xBy)) → Hq(X,OX(L− xBy+ D)) is
injective for any q. Therefore, his proof works only for the case when
xBy = 0 even if X is smooth.

This trouble is crucial in several applications on the LMMP. Ambro’s
proof is based on the mixed Hodge structure of H i(Y − π∗B, Z). It is
a standard technique for vanishing theorems in the LMMP. In this
paper, we use the mixed Hodge structure of H i

c(Y − π∗S, Z), where
H i

c(Y − π∗S, Z) is the cohomology group with compact support. Let
us explain the main idea of this paper. Let X be a smooth projective
variety with dim X = n and D a simple normal crossing divisor on X.
The main ingredient of our arguments is the decomposition

H i
c(X − D, C) =

⊕

p+q=i

Hq(X, Ωp
X(log D) ⊗OX(−D)).

The dual statement

H2n−i(X − D, C) =
⊕

p+q=i

Hn−q(X, Ωn−p
X (log D)),

which is well known and is commonly used for vanishing theorems, is
not useful for our purposes. To solve Problem 1.1, we have to carry
out this simple idea for reducible varieties.

Remark 1.5. In the proof of [A1, Theorem 3.1], if we assume that X
is smooth, B′ = S is a reduced smooth divisor on X, and T ∼ 0, then
we need the E1-degeneration of

Epq
1 = Hq(X, Ωp

X(log S)⊗OX(−S)) =⇒ Hp+q(X, Ω•

X(log S)⊗OX(−S)).

However, Ambro seemed to confuse it with the E1-degeneration of

Epq
1 = Hq(X, Ωp

X(log S)) =⇒ Hp+q(X, Ω•

X(log S)).
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Some problems on the Hodge theory seem to exist in the proof of [A1,
Theorem 3.1].

Remark 1.6. In [A2, Theorem 3.1], Ambro reproved his theorem un-
der some extra assumptions. Here, we use the notation in [A2, The-
orem 3.1]. In the last line of the proof of [A2, Theorem 3.1], he used
the E1-degeneration of some spectral sequence. It seems to be the
E1-degeneration of

Epq
1 = Hq(X ′, Ω̃p

X′(log
∑

i′

E ′

i′)) =⇒ Hp+q(X ′, Ω̃•

X′(log
∑

i′

E ′

i′))

since he cited [D1, Corollary 3.2.13]. Or, he applied the same type of
E1-degeneration to a desingularization of X ′. However, we think that
the E1-degeneration of

Epq
1 = Hq(X ′, Ω̃p

X′(log(π∗R +
∑

i′

E ′

i′)) ⊗OX′(−π∗R))

=⇒ Hp+q(X ′, Ω̃•

X′(log(π∗R +
∑

i′

E ′

i′)) ⊗OX′(−π∗R))

is the appropriate one in his proof. If we assume that T ∼ 0 in [A2, The-
orem 3.1], then Ambro’s proof seems to imply that the E1-degeneration
of

Epq
1 = Hq(X, Ωp

X(log R)⊗OX(−R)) =⇒ Hp+q(X, Ω•

X(log R)⊗OX(−R))

follows from the usual E1-degeneration of

Epq
1 = Hq(X, Ωp

X) =⇒ Hp+q(X, Ω•

X).

Anyway, there are some problems in the proof of [A2, Theorem 3.1].
In this paper, we adopt the following spectral sequence

Epq
1 = Hq(X ′, Ω̃p

X′(log π∗R) ⊗OX′(−π∗R))

=⇒ Hp+q(X ′, Ω̃•

X′(log π∗R) ⊗OX′(−π∗R))

and prove its E1-degeneration. For the details, see Sections 3 and 4.

One of the main contributions of this paper is the rigorous proof of
Proposition 3.2, which we call a fundamental injectivity theorem. Even
if we prove this proposition, there are still several technical difficulties
to recover Ambro’s theorems: Theorems 6.1 and 6.2. Some important
arguments are missing in [A1]. We will discuss the other troubles on
the arguments in [A1] throughout Sections 5 and 6.

1.7 (Background, history, and related topics). The standard references
for vanishing and injectivity theorems for the LMMP are [Ko, Part III
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Vanishing Theorems] and the first half of the book [EV]. In this pa-
per, we closely follow the presentation of [EV] and that of [A1]. Some
special cases of Ambro’s theorems were proved in [F1, Section 2]. The
vanishing and injectivity theorems for the LMMP are treated from
a transcendental viewpoint in [F3] and [F4]. The reader who reads
Japanese can find [F5] useful. It is a survey article. Chapter 1 in
[KMM] is still a good source for vanishing theorems for the LMMP.
We note that one of the origins of Ambro’s results is [Ka, Section 4].
However, we do not treat Kawamata’s vanishing and injectivity theo-
rems for generalized normal crossing varieties. It is mainly because we
can quickly reprove the main theorem of [Ka] without appealing these
difficult vanishing and injectivity theorems once we know a generalized
version of Kodaira’s canonical bundle formula. For the details, see my
recent preprint [F6] or [F8].

We summarize the contents of this paper. In Section 2, we collect
basic definitions and fix some notations. In Section 3, we prove a
fundamental cohomology injectivity theorem for simple normal crossing
pairs. It is a very special case of Ambro’s theorem. Our proof heavily
depends on the E1-degeneration of a certain Hodge to de Rham type
spectral sequence. We postpone the proof of the E1-degeneration in
Section 4 since it is a purely Hodge theoretic argument. Section 4
consists of a short survey of mixed Hodge structures on various objects
and the proof of the key E1-degeneration. We could find no references
on mixed Hodge structures which are appropriate for our purposes.
So, we write it for the reader’s convenience. Section 5 is devoted to
the proofs of Ambro’s theorems for embedded simple normal crossing
pairs. We discuss various problems in [A1, Section 3] and give the
first rigorous proofs to [A1, Theorems 3.1, 3.2] for embedded simple
normal crossing pairs. We think that several indispensable arguments
such as Lemmas 5.1, 5.2, and 5.4 are missing in [A1, Section 3]. We
treat some new generalizations of vanishing and torsion-free theorems
in 5.14. In Section 6, we recover Ambro’s theorems in full generality.
We recommend the reader to compare this paper with [A1]. We note
that Section 6 seems to be unnecessary for applications. In 6.8, we
will quickly review the structure of our proofs of the injectivity and
vanishing theorems. It may help the reader to understand the reason
why our proofs are much longer than the original proofs in [A1, Section
3]. We think that the proofs of injectivity and vanishing theorems and
their applications are completely different topics. So, we do not treat
any applications for quasi-log varieties in this paper. We recommend
the interested reader to see [A1, Sections 4 and 5] and [F7]. The reader
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can find various other applications of our new cohomological results in
[F9], [F10], and [F11]. To tell the truth, we do not need the notion
of normal crossing pairs for the theory of quasi-log varieties. For the
details, see [F7].

Notation. For an R-Weil divisor D =
∑r

j=1 djDj such that Di 6=

Dj for i 6= j, we define the round-up pDq =
∑r

j=1pdjqDj (resp. the

round-down xDy =
∑r

j=1xdjyDj), where for any real number x, pxq

(resp. xxy) is the integer defined by x ≤ xxy < x + 1 (resp. x − 1 <
xxy ≤ x). The fractional part {D} of D denotes D − xDy. We call D
a boundary (resp. subboundary) R-divisor if 0 ≤ dj ≤ 1 (resp. dj ≤ 1)
for any j.

We will work over C, the complex number field, throughout this
paper. I hope I will make no new mistakes in this paper.

2. Preliminaries

We explain basic notion according to [A1, Section 2].

Definition 2.1 (Normal and simple normal crossing varieties). A vari-
ety X has normal crossing singularities if, for every closed point x ∈ X,

ÔX,x '
C[[x0, · · · , xN ]]

(x0 · · ·xk)

for some 0 ≤ k ≤ N , where N = dim X. Furthermore, if each irre-
ducible component of X is smooth, X is called a simple normal crossing

variety. If X is a normal crossing variety, then X has only Gorenstein
singularities. Thus, it has an invertible dualizing sheaf ωX . So, we
can define the canonical divisor KX such that ωX ' OX(KX). It is a
Cartier divisor on X and is well defined up to linear equivalence.

Definition 2.2 (Mayer–Vietoris simplicial resolution). Let X be a
simple normal crossing variety with the irreducible decomposition X =⋃

i∈I Xi. Let In be the set of strictly increasing sequences (i0, · · · , in)
in I and Xn =

∐
In

Xi0∩· · ·∩Xin the disjoint union of the intersections
of Xi. Let εn : Xn → X be the disjoint union of the natural inclusions.
Then {Xn, εn}n has a natural semi-simplicial scheme structure. The
face operator is induced by λj,n, where λj,n : Xi0 ∩ · · · ∩ Xin → Xi0 ∩
· · ·∩Xij−1

∩Xij+1
∩ · · ·∩Xin is the natural closed embedding for j ≤ n

(cf. [E2, 3.5.5]). We denote it by ε : X• → X and call it the Mayer–

Vietoris simplicial resolution of X. The complex

0 → ε0∗OX0 → ε1∗OX1 → · · · → εk∗OXk → · · · ,
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where the differential dk : εk∗OXk → εk+1∗OXk+1 is
∑k+1

j=0(−1)jλ∗

j,k+1

for any k ≥ 0, is denoted by OX•. It is easy to see that OX• is quasi-
isomorphic to OX . By tensoring L, any line bundle on X, to OX• , we
obtain a complex

0 → ε0∗L
0 → ε1∗L

1 → · · · → εk∗L
k → · · · ,

where Ln = ε∗nL. It is denoted by L•. Of course, L• is quasi-isomorphic
to L. We note that Hq(X•,L•) is Hq(X,L•) by the definition and it is
obviously isomorphic to Hq(X,L) for any q ≥ 0 because L• is quasi-
isomorphic to L.

Definition 2.3. Let X be a simple normal crossing variety. A stratum

of X is the image on X of some irreducible component of X•. Note
that an irreducible component of X is a stratum of X.

Definition 2.4 (Permissible and normal crossing divisors). Let X be
a simple normal crossing variety. A Cartier divisor D on X is called
permissible if it induces a Cartier divisor D• on X•. This means that
Dn = ε∗nD is a Cartier divisor on Xn for any n. It is equivalent to the
condition that D contains no strata of X in its support. We say that
D is a normal crossing divisor on X if, in the notation of Definition
2.1, we have

ÔD,x '
C[[x0, · · · , xN ]]

(x0 · · ·xk, xi1 · · ·xil)

for some {i1, · · · , il} ⊂ {k+1, · · · , N}. It is equivalent to the condition
that Dn is a normal crossing divisor on Xn for any n in the usual sense.
Furthermore, let D be a normal crossing divisor on a simple normal
crossing variety X. If Dn is a simple normal crossing divisor on Xn for
any n, then D is called a simple normal crossing divisor on X.

The following lemma is easy but important. We will repeatedly use
it in Sections 3 and 5.

Lemma 2.5. Let X be a simple normal crossing variety and B a per-

missible R-Cartier R-divisor on X, that is, B is an R-linear combi-

nation of permissible Cartier divisor on X, such that xBy = 0. Let

A be a Cartier divisor on X. Assume that A ∼R B. Then there ex-

ists a Q-Cartier Q-divisor C on X such that A ∼Q C, xCy = 0, and

SuppC = SuppB.

Sketch of the proof. We can write B = A +
∑

i ri(fi), where fi ∈
Γ(X,K∗

X) and ri ∈ R for any i. Here, KX is the sheaf of total quotient
ring of OX . First, we assume that X is smooth. In this case, the claim
is well known and easy to check. Perturb ri’s suitably. Then we obtain
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a desired Q-Cartier Q-divisor C on X. It is an elementary problem
of the linear algebra. In the general case, we take the normalization
ε0 : X0 → X and apply the above result to X0, ε∗0A, ε∗0B, and ε∗0(fi)’s.
We note that ε0 : Xi → X is a closed embedding for any irreducible
component Xi of X0. So, we get a desired Q-Cartier Q-divisor C on
X. �

Definition 2.6 (Simple normal crossing pair). We say that the pair
(X, B) is a simple normal crossing pair if the following conditions are
satisfied.

(1) X is a simple normal crossing variety, and
(2) B is an R-Cartier R-divisor whose support is a simple normal

crossing divisor on X.

We say that a simple normal crossing pair (X, B) is embedded if there
exists a closed embedding ι : X → M , where M is a smooth variety
of dimension dim X + 1. We put KX0 + Θ = ε∗0(KX + B), where
ε0 : X0 → X is the normalization of X. From now on, we assume that
B is a subboundary R-divisor. A stratum of (X, B) is an irreducible
component of X or the image of some lc center of (X0, Θ) on X. It is
compatible with Definition 2.3 when B = 0. A Cartier divisor D on a
simple normal crossing pair (X, B) is called permissible with respect to

(X, B) if D contains no strata of the pair (X, B).

Remark 2.7. Let (X, B) be a simple normal crossing pair. Assume
that X is smooth. Then (X, B) is embedded. It is because X is a
divisor on X × C, where C is a smooth curve.

We give a typical example of embedded simple normal crossing pairs.

Example 2.8. Let M be a smooth variety and X a simple normal
crossing divisor on M . Let A be an R-Cartier R-divisor on M such
that Supp(X + A) is simple normal crossing on M and that X and
A have no common irreducible components. We put B = A|X . Then
(X, B) is an embedded simple normal crossing pair.

The following lemma is obvious.

Lemma 2.9. Let (X, S + B) be an embedded simple normal crossing

pair such that S+B is a boundary R-divisor, S is reduced, and xBy = 0.
Let M be the ambient space of X and f : N → M the blow-up along a

smooth irreducible component C of Supp(S + B). Let Y be the strict

transform of X on N . Then Y is a simple normal crossing divisor on

N . We can write KY + SY + BY = f ∗(KX + S + B), where SY + BY

is a boundary R-Cartier R-divisor on Y such that SY is reduced and

xBY y = 0. In particular, (Y, SY + BY ) is an embedded simple normal
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crossing pair. By the construction, we can easily check the following

properties.

(i) SY is the strict transform of S on Y if C ⊂ SuppB,

(ii) BY is the strict transform of B on Y if C ⊂ SuppS,

(iii) f -image of any stratum of (Y, SY +BY ) is a stratum of (X, S +
B), and

(iv) Rif∗OY = 0 for i > 0 and f∗OY ' OX .

As a consequence of Lemma 2.9, we obtain a very useful lemma.

Lemma 2.10. Let (X, BX) be an embedded simple normal crossing

pair, BX a boundary R-divisor, and M the ambient space of X. Then

there is a projective birational morphism f : N → M , which is a

sequence of blow-ups as in Lemma 2.9, with the following properties.

(i) Let Y be the strict transform of X on N . We put KY + BY =
f ∗(KX + BX). Then (Y, BY ) is an embedded simple normal

crossing pair. Note that BY is a boundary R-divisor.

(ii) f : Y → X is an isomorphism at any generic points of strata of

Y . f -image of any stratum of (Y, BY ) is a stratum of (X, BX).
(iii) Rif∗OY = 0 for any i > 0 and f∗OY ' OX .

(iv) There exists an R-divisor D on N such that D and Y have

no common irreducible components and Supp(D + Y ) is simple

normal crossing on N , and BY = D|Y .

In general, normal crossing varieties are much more difficult than
simple normal crossing varieties. We postpone the definition of normal

crossing pairs in Section 6 to avoid unnecessary confusion. Let us recall
the notion of semi-ample R-divisors since we often use it in this paper.

2.11 (Semi-ample R-divisor). Let D be an R-Cartier R-divisor on a
variety X and π : X → S a proper morphism. Then, D is π-semi-
ample if D ∼R f ∗H, where f : X → Y is a proper morphism over S
and H a relatively ample R-Cartier R-divisor on Y . It is not difficult
to see that D is π-semi-ample if and only if D ∼R

∑
i aiDi, where ai is

a positive real number and Di is a π-semi-ample Cartier divisor on X
for any i.

In the following sections, we have to treat algebraic varieties with
quotient singularities. All the V -manifolds in this paper are obtained as
cyclic covers of smooth varieties whose ramification loci are contained in
simple normal crossing divisors. So, they also have toroidal structures.
We collect basic definitions according to [S, Section 1], which is the
best reference for our purposes.
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2.12 (V -manifold). A V -manifold of dimension N is a complex an-
alytic space that admits an open covering {Ui} such that each Ui is
analytically isomorphic to Vi/Gi, where Vi ⊂ CN is an open ball and
Gi is a finite subgroup of GL(N, C). In this paper, Gi is always a cyclic
group for any i. Let X be a V -manifold and Σ its singular locus. Then

we define Ω̃•

X = j∗Ω
•

X−Σ, where j : X − Σ → X is the natural open
immersion. A divisor D on X is called a divisor with V -normal cross-

ings if locally on X we have (X, D) ' (V, E)/G with V ⊂ CN an open
domain, G ⊂ GL(N, C) a small subgroup acting on V , and E ⊂ V a
G-invariant divisor with only normal crossing singularities. We define

Ω̃•

X(log D) = j∗Ω
•

X−Σ(log D). Furthermore, if D is Cartier, then we

put Ω̃•

X(log D)(−D) = Ω̃•

X(log D) ⊗OX(−D). This complex will play
crucial roles in Sections 3 and 4.

3. Fundamental injectivity theorems

The following theorem is a reformulation of the well-known result by
Esnault–Viehweg (cf. [EV, 3.2. Theorem. c), 5.1. b)]). Their proof in
[EV] depends on the characteristic p methods obtained by Deligne and
Illusie. Here, we give another proof for the later usage. Note that all
we want to do in this section is to generalize the following theorem for
simple normal crossing pairs.

Proposition 3.1 (Fundamental injectivity theorem I). Let X be a

proper smooth variety and S + B a boundary R-divisor on X such

that the support of S + B is simple normal crossing, S is reduced, and

xBy = 0. Let L be a Cartier divisor on X and let D be an effective

Cartier divisor whose support is contained in SuppB. Assume that

L ∼R KX + S + B. Then the natural homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L + D)),

which are induced by the inclusion OX → OX(D), are injective for all

q.

Proof. We can assume that B is a Q-divisor and L ∼Q KX + S +
B by Lemma 2.5. We put L = OX(L − KX − S). Let ν be the
smallest positive integer such that νL ∼ ν(KX +S +B). In particular,
νB is an integral Weil divisor. We take the ν-fold cyclic cover π ′ :
Y ′ = SpecX

⊕ν−1
i=0 L−i → X associated to the section νB ∈ |Lν|. More

precisely, let s ∈ H0(X,Lν) be a section whose zero divisor is νB.
Then the dual of s : OX → Lν defines a OX -algebra structure on⊕ν−1

i=0 L−i. For the details, see, for example, [EV, 3.5. Cyclic covers].
Let Y → Y ′ be the normalization and π : Y → X the composition
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morphism. Then Y has only quotient singularities because the support
of νB is simple normal crossing (cf. [EV, 3.24. Lemma]). We put

T = π∗S. The usual differential d : OY → Ω̃1
Y ⊂ Ω̃1

Y (log T ) gives

the differential d : OY (−T ) → Ω̃1
Y (log T )(−T ). This induces a natural

connection π∗(d) : π∗OY (−T ) → π∗(Ω̃
1
Y (log T )(−T )). It is easy to

see that π∗(d) decomposes into ν eigen components. One of them is
∇ : L−1(−S) → Ω1

X(log(S+B))⊗L−1(−S) (cf. [EV, 3.2. Theorem. c)]).
It is well known and easy to check that the inclusion Ω•

X(log(S +B))⊗
L−1(−S − D) → Ω•

X(log(S + B)) ⊗ L−1(−S) is a quasi-isomorphism
(cf. [EV, 2.9. Properties]). On the other hand, the following spectral
sequence

Epq
1 = Hq(X, Ωp

X(log(S + B)) ⊗ L−1(−S))

=⇒ Hp+q(X, Ω•

X(log(S + B)) ⊗ L−1(−S))

degenerates in E1. This follows from the E1-degeneration of

Hq(Y, Ω̃p
Y (log T )(−T )) =⇒ Hp+q(Y, Ω̃•

Y (log T )(−T ))

where the right hand side is isomorphic to Hp+q
c (Y − T, C). We will

discuss this E1-degeneration in Section 4. For the details, see 4.5 in
Section 4 below. We note that Ω•

X(log(S + B)) ⊗ L−1(−S) is a direct

summand of π∗(Ω̃
•

Y (log T )(−T )). We consider the following commuta-
tive diagram for any q.

Hq(X, Ω•

X(log(S + B)) ⊗ L−1(−S))
α

−−−→ Hq(X,L−1(−S))xγ

xβ

Hq(X, Ω•

X(log(S + B)) ⊗ L−1(−S − D)) −−−→ Hq(X,L−1(−S − D))

Since γ is an isomorphism by the above quasi-isomorphism and α is sur-
jective by the E1-degeneration, we obtain that β is surjective. By the
Serre duality, we obtain Hq(X,OX(KX)⊗L(S)) → Hq(X,OX(KX)⊗
L(S + D)) is injective for any q. This means that Hq(X,OX(L)) →
Hq(X,OX(L + D)) is injective for any q. �

The next result is a key result of this paper.

Proposition 3.2 (Fundamental injectivity theorem II). Let (X, S+B)
be a simple normal crossing pair such that X is proper, S + B is a

boundary R-divisor, S is reduced, and xBy = 0. Let L be a Cartier

divisor on X and let D be an effective Cartier divisor whose support is

contained in SuppB. Assume that L ∼R KX +S+B. Then the natural

homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L + D)),
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which are induced by the inclusion OX → OX(D), are injective for all

q.

Proof. We can assume that B is a Q-divisor and L ∼Q KX + S + B
by Lemma 2.5. Without loss of generality, we can assume that X is
connected. Let ε : X• → X be the Mayer–Vietoris simplicial resolution
of X. Let ν be the smallest positive integer such that νL ∼ ν(KX +
S +B). We put L = OX(L−KX −S). We take the ν-fold cyclic cover
π′ : Y ′ → X associated to νB ∈ |Lν| as in the proof of Proposition 3.1.

Let Ỹ → Y ′ be the normalization of Y ′. We can glue Ỹ naturally along
the inverse image of ε1(X

1) ⊂ X and then obtain a connected reducible
variety Y and a finite morphism π : Y → X. For a supplementary
argument, see Remark 3.3 below. We can construct the Mayer–Vietoris
simplicial resolution ε : Y • → Y and a natural morphism π• : Y • →
X•. Note that Definition 2.2 makes sense without any modifications
though Y has singularities. The finite morphism π0 : Y 0 → X0 is
essentially the same as the finite cover constructed in Proposition 3.1.
Note that the inverse image of an irreducible component Xi of X by π0

may be a disjoint union of copies of the finite cover constructed in the
proof of Proposition 3.1. More precisely, let V be any stratum of X.
Then π−1(V ) is not necessarily connected and π : π−1(V ) → V may be
a disjoint union of copies of the finite cover constructed in the proof of
the Proposition 3.1. Since Hq(X•, (L−1(−S−D))•) ' Hq(X,L−1(−S−
D)) and Hq(X•, (L−1(−S))•) ' Hq(X,L−1(−S)), it is sufficient to see
that Hq(X•, (L−1(−S − D))•) → Hq(X•, (L−1(−S))•) is surjective.
First, we note that the natural inclusion

Ω•

Xn(log(Sn+Bn))⊗(L−1(−S−D))n → Ω•

Xn(log(Sn+Bn))⊗(L−1(−S))n

is a quasi-isomorphism for any n ≥ 0 (cf. [EV, 2.9. Properties]). So,

Ω•

X•(log(S•+B•))⊗(L−1(−S−D))• → Ω•

X•(log(S•+B•))⊗(L−1(−S)•)

is a quasi-isomorphism. We put T = π∗S. Then Ω•

Xn(log(Sn + Bn)) ⊗

(L−1(−S))n is a direct summand of πn∗Ω̃
•

Y (log T n)(−T n) for any n ≥ 0.
Next, we can check that

Epq
1 = Hq(Y •, Ω̃p

Y •(log T •)(−T •)) =⇒ Hp+q(Y •, Ω̃•

Y •(log T •)(−T •))

degenerates in E1. We will discuss this E1-degeneration in Section 4.
See 4.6 in Section 4. The right hand side is isomorphic to Hp+q

c (Y −
T, C). Therefore,

Epq
1 = Hq(X•, Ωp

X•(log(S• + B•)) ⊗ (L−1(−S))•)

=⇒ Hp+q(X•, Ω•

X•(log(S• + B•)) ⊗ (L−1(−S))•)
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degenerates in E1. Thus, we have the following commutative diagram.

Hq(X•, Ω•

X•(log(S• + B•)) ⊗ (L−1(−S))•)
α

−−−→ Hq(X•, (L−1(−S))•)xγ

xβ

Hq(X•, Ω•

X•(log(S• + B•)) ⊗ (L−1(−S − D))•) −−−→ Hq(X•, (L−1(−S − D))•)

As in the proof of Proposition 3.1, γ is an isomorphism and α is sur-
jective. Thus, β is surjective. This implies the desired injectivity re-
sults. �

Remark 3.3. For simplicity, we assume that X = X1 ∪X2, where X1

and X2 are smooth, and that V = X1 ∩X2 is irreducible. We consider

the natural projection p : Ỹ → X. We note that Ỹ = Ỹ1

∐
Ỹ2, where Ỹi

is the inverse image of Xi by p for i = 1 and 2. We put pi = p|eYi
for i = 1

and 2. It is easy to see that p−1
1 (V ) is isomorphic to p−1

2 (V ) over V .
We denote it by W . We consider the following surjective OX-module
homomorphism µ : p∗OeY1

⊕ p∗OeY2
→ p∗OW : (f, g) 7→ f |W − g|W . Let

A be the kernel of µ. Then A is an OX -algebra and π : Y → X is

nothing but SpecXA → X. We can check that π−1(Xi) ' Ỹi for i = 1
and 2 and that π−1(V ) ' W .

Remark 3.4. As pointed out in the introduction, the proof of [A1,
Theorem 3.1] only implies that the homomorphisms Hq(X,OX(L −
S)) → Hq(X,OX(L − S + D)) are injective for all q. When S = 0,
we do not need the mixed Hodge structure on the cohomology with
compact support. The mixed Hodge structure on the usual singular
cohomology is sufficient for the case when S = 0.

We close this section with an easy application of Proposition 3.2.
The following vanishing theorem is the Kodaira vanishing theorem for
simple normal crossing varieties.

Corollary 3.5. Let X be a projective simple normal crossing variety

and L an ample line bundle on X. Then H q(X,OX(KX)⊗L) = 0 for

any q > 0.

Proof. We take a general member B ∈ |Ll| for some l � 0. Then we can
find a Cartier divisor M such that M ∼Q KX + 1

l
B and OX(KX)⊗L '

OX(M). By Proposition 3.2, we obtain injections Hq(X,OX(M)) →
Hq(X,OX(M + mB)) for any q and any positive integer m. Since
B is ample, Serre’s vanishing theorem implies the desired vanishing
theorem. �



14 OSAMU FUJINO

4. E1-degenerations of Hodge to de Rham type spectral

sequences

From 4.1 to 4.3, we recall some well-known results on mixed Hodge
structures. We use the notations in [D2] freely. The basic references on
this topic are [D2, Section 8], [E1, Part II], and [E2, Chapitres 2 and
3]. The starting point is the pure Hodge structures on proper smooth
algebraic varieties.

4.1. (Hodge structures for proper smooth varieties). Let X be a proper
smooth algebraic variety over C. Then the triple (ZX , (Ω•

X , F ), α),
where Ω•

X is the holomorphic de Rham complex with the filtration
bête F and α : CX → Ω•

X is the inclusion, is a cohomological Hodge
complex (CHC, for short) of weight zero.

The next one is also a fundamental example. For the details, see
[E1, I.1.] or [E2, 3.5].

4.2. (Mixed Hodge structures for proper simple normal crossing vari-
eties). Let D be a proper simple normal crossing algebraic variety over
C. Let ε : D• → D be the Mayer–Vietoris simplicial resolution. The
following complex of sheaves, denoted by QD•,

0 → ε0∗QD0 → ε1∗QD1 → · · · → εk∗QDk → · · · ,

is a resolution of QD. More explicitly, the differential dk : εk∗QDk →
εk+1∗QDk+1 is

∑k+1
j=0(−1)jλ∗

j,k+1 for any k ≥ 0. For the details, see [E1,

I.1.] or [E2, 3.5.3]. We obtain the resolution Ω•

D• of CD as follows,

0 → ε0∗Ω
•

D0 → ε1∗Ω
•

D1 → · · · → εk∗Ω
•

Dk → · · · .

Of course, dk : εk∗Ω
•

Dk → εk+1∗Ω
•

Dk+1 is
∑k+1

j=0(−1)jλ∗

j,k+1. Let s(Ω•

D•)
be the simple complex associated to the double complex Ω•

D• . The
Hodge filtration F on s(Ω•

D•) is defined by F p = s(0 → · · · → 0 →
ε∗Ω

p
D• → ε∗Ω

p+1
D• → · · · ). We note that ε∗Ω

p
D• = (0 → ε0∗Ω

p

D0 →
ε1∗Ω

p

D1 → · · · → εk∗Ω
p

Dk → · · · ). There exist natural weight filtrations
W ’s on QD• and s(Ω•

D•). We omit the definition of the weight filtrations
W ’s on QD• and s(Ω•

D•) since we do not need their explicit descriptions.
See [E1, I.1.] or [E2, 3.5.6]. Then (ZD, (QD•, W ), (s(Ω•

D•), W, F )) is a
cohomological mixed Hodge complex (CMHC, for short). This CMHC
induces a natural mixed Hodge structure on H•(D, Z).

For the precise definitions of CHC and CMHC (CHMC, in French),
see [D2, Section 8] or [E2, Chapitre 3]. The third example is not so
standard but is indispensable for our injectivity theorems.
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4.3. (Mixed Hodge structure on the cohomolgy with compact support).
Let X be a proper smooth algebraic variety over C and D a simple
normal crossing divisor on X. We consider the mixed cone of QX →
QD• with suitable shifts of complexes and weight filtrations (for the
details, see [E1, I.3.] or [E2, 3.7.14]). We obtain a complex QX−D•,
which is quasi-isomorphic to j!QX−D, where j : X − D → X is the
natural open immersion, and a weight filtration W on QX−D• . We
define in the same way, that is, by taking a cone of a morphism of
complexes Ω•

X → Ω•

D•, a complex Ω•

X−D• with filtrations W and F .
Then we obtain that the triple (j!ZX−D, (QX−D•, W ), (Ω•

X−D•, W, F )) is
a CMHC. It defines a natural mixed Hodge structure on H•

c (X−D, Z).
Since we can check that the complex

0 → Ω•

X(log D)(−D) → Ω•

X → ε0∗Ω
•

D0

→ ε1∗Ω
•

D1 → · · · → εk∗Ω
•

Dk → · · ·

is exact by direct local calculations, we see that (Ω•

X−D• , F ) is quasi-
isomorphic to (Ω•

X(log D)(−D), F ) in D+F (X, C), where

F pΩ•

X(log D)(−D)

= (0 → · · · → 0 → Ωp
X(log D)(−D) → Ωp+1

X (log D)(−D) → · · · ).

Therefore, the spectral sequence

Epq
1 = Hq(X, Ωp

X(log D)(−D)) =⇒ Hp+q(X, Ω•

X(log D)(−D))

degenerates in E1 and the right hand side is isomorphic to Hp+q
c (X −

D, C).

From here, we treat mixed Hodge structures on much more compli-
cated algebraic varieties.

4.4. (Mixed Hodge structures for proper simple normal crossing pairs).
Let (X, D) be a proper simple normal crossing pair over C such that
D is reduced. Let ε : X• → X be the Mayer–Vietoris simplicial
resolution of X. As we saw in the previous step, we have a CHMC
(jn!ZXn−Dn, (QXn−(Dn)•, W ), (Ω•

Xn−(Dn)•, W, F )) on Xn, where jn : Xn−

Dn → Xn is the natural open immersion, and that (Ω•

Xn−(Dn)• , F ) is

quasi-isomorphic to (Ω•

Xn(log Dn)(−Dn), F ) in D+F (Xn, C) for any
n ≥ 0. Therefore, by using the Mayer–Vietoris simplicial resolution ε :
X• → X, we can construct a CMHC (j!ZX−D, (KQ, W ), (KC, W, F )) on
X that induces a natural mixed Hodge structure on H•

c (X−D, Z). We
can see that (KC, F ) is quasi-isomorphic to (s(Ω•

X•(log D•)(−D•)), F )
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in D+F (X, C), where

F p = s(0 → · · · → 0 → ε∗Ω
p
X•(log D•)(−D•)

→ ε∗Ω
p+1
X• (log D•)(−D•) → · · · ).

We note that Ω•

X•(log D•)(−D•) is the double complex

0 → ε0∗Ω
•

X0(log D0)(−D0) → ε1∗Ω
•

X1(log D1)(−D1) → · · ·

→ εk∗Ω
•

Xk(log Dk)(−Dk) → · · · .

Therefore, the spectral sequence

Epq
1 = Hq(X•, Ωp

X•(log D•)(−D•)) =⇒ Hp+q(X•, Ω•

X•(log D•)(−D•))

degenerates in E1 and the right hand side is isomorphic to Hp+q
c (X −

D, C).

Let us go to the proof of the E1-degeneration that we already used
in the proof of Proposition 3.1.

4.5 (E1-degeneration for Proposition 3.1). In this section, we use the
notation in the proof of Proposition 3.1. In this case, Y has only quo-
tient singularities. Then (ZY , (Ω̃•

Y , F ), α) is a CHC, where F is the

filtration bête and α : CY → Ω̃•

Y is the inclusion. For the details, see
[S, (1.6)]. It is easy to see that T is a divisor with V -normal crossings
on Y (see 2.12 or [S, (1.16) Definition]). We can easily check that Y
is singular only over the singular locus of SuppB. Let ε : T • → T
be the Mayer–Vietoris simplicial resolution. Though T has singular-
ities, Definition 2.2 makes sense without any modifications. We note
that T n has only quotient singularities for any n ≥ 0 by the con-
struction of π : Y → X. We can also check that the same construc-
tion in 4.2 works with minor modifications and we have a CMHC
(ZT , (QT •, W ), (s(Ω̃•

T •), W, F )) that induces a natural mixed Hodge
structure on H•(T, Z). By the same arguments as in 4.3, we can con-
struct a triple (j!ZY −T , (QY −T •, W ), (KC, W, F )), where j : Y −T → Y
is the natural open immersion. It is a CHMC that induces a nat-
ural mixed Hodge structure on H•

c (Y − T, Z) and (KC, F ) is quasi-

isomorphic to (Ω̃•

Y (log T )(−T ), F ) in D+F (Y, C), where

F pΩ̃•

Y (log T )(−T )

= (0 → · · · → 0 → Ω̃p
Y (log T )(−T ) → Ω̃p+1

Y (log T )(−T ) → · · · ).

Therefore, the spectral sequence

Epq
1 = Hq(Y, Ω̃p

Y (log T )(−T )) =⇒ Hp+q(Y, Ω•

Y (log T )(−T ))

degenerates in E1 and the right hand side is isomorphic to Hp+q
c (Y −

T, C).
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The final one is the E1-degeneration that we used in the proof of
Proposition 3.2. It may be one of the main contributions of this paper.

4.6 (E1-degeneration for Proposition 3.2). We use the notation in the
proof of Proposition 3.2. Let ε : Y • → Y be the Mayer–Vietoris
simplicial resolution. By the previous step, we can obtain a CHMC
(jn!ZY n−T n, (QY n−(T n)• , W ), (KC, W, F )) for each n ≥ 0. Of course,
jn : Y n − T n → Y n is the natural open immersion for any n ≥ 0.
Therefore, we can construct a CMHC (j!ZY −T , (KQ, W ), (KC, W, F ))
on Y . It induces a natural mixed Hodge structure on H•

c (Y − T, Z).

We note that (KC, F ) is quasi-isomorphic to (s(Ω̃•

Y •(log T •)(−T •)), F )
in D+F (Y, C), where

F p = s(0 → · · · → 0 → ε∗Ω̃
p
Y •(log T •)(−T •)

→ ε∗Ω̃
p+1
Y • (log T •)(−T •) → · · · ).

See 4.4 above. Thus, the desired spectral sequence

Epq
1 = Hq(Y •, Ω̃p

Y •(log T •)(−T •)) =⇒ Hp+q(Y •, Ω̃•

Y •(log T •)(−T •))

degenerates in E1. It is what we need in the proof of Proposition 3.2.

Note that Hp+q(Y •, Ω̃•

Y •(log T •)(−T •)) ' Hp+q
c (Y − T, C).

5. Vanishing and injectivity theorems

The main purpose of this section is to prove Ambro’s theorems
(cf. [A1, Theorems 3.1 and 3.2]) for embedded simple normal cross-
ing pairs. The next lemma (cf. [F1, Proposition 1.11]) is missing in the
proof of [A1, Theorem 3.1]. It justifies the first three lines in the proof
of [A1, Theorem 3.1].

Lemma 5.1 (Relative vanishing lemma). Let f : Y → X be a proper

morphism from a simple normal crossing pair (Y, T+D) such that T+D
is a boundary R-divisor, T is reduced, and xDy = 0. We assume that f
is an isomorphism at any generic points of strata of the pair (Y, T +D).
Let L be a Cartier divisor on Y such that L ∼R KY + T + D. Then

Rqf∗OY (L) = 0 for q > 0.

Proof. By Lemma 2.5, we can assume that D is a Q-divisor and L ∼Q

KY + T + D. We divide the proof into two steps.

Step 1. We assume that Y is irreducible. In this case, L−(KY +T +D)
is nef and log big over X with respect to the pair (Y, T +D). Therefore,
Rqf∗OY (L) = 0 for any q > 0 by the vanishing theorem.
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Step 2. Let Y1 be an irreducible component of Y and Y2 the union
of the other irreducible components of Y . Then we have a short exact
sequence 0 → i∗OY1

(−Y2|Y1
) → OY → OY2

→ 0, where i : Y1 → Y
is the natural closed immersion (cf. [A1, Remark 2.6]). We put L′ =
L|Y1

− Y2|Y1
. Then we have a short exact sequence 0 → i∗OY1

(L′) →
OY (L) → OY2

(L|Y2
) → 0 and L′ ∼Q KY1

+ T |Y1
+ D|Y1

. On the other
hand, we can check that L|Y2

∼Q KY2
+ Y1|Y2

+ T |Y2
+ D|Y2

. We have
already known that Rqf∗OY1

(L′) = 0 for any q > 0 by Step 1. By the
induction on the number of the irreducible components of Y , we have
Rqf∗OY2

(L|Y2
) = 0 for any q > 0. Therefore, Rqf∗OY (L) = 0 for any

q > 0 by the exact sequence: · · · → Rqf∗OY1
(L′) → Rqf∗OY (L) →

Rqf∗OY2
(L|Y2

) → · · · .

So, we finish the proof of Lemma 5.1. �

The following lemma is a variant of Szabó’s resolution lemma (cf. [F2,
3.5. Resolution lemma]).

Lemma 5.2. Let (X, B) be an embedded simple normal crossing pair

and D a permissible Cartier divisor on X. Let M be an ambient

space of X. Assume that there exists an R-divisor A on M such that

Supp(A+X) is simple normal crossing on M and that B = A|X . Then

there exists a projective birational morphism g : N → M from a smooth

variety N with the following properties. Let Y be the strict transform

of X on N and f = g|Y : Y → X. Then we have

(i) g−1(D) is a divisor on N . Exc(g)∪g−1
∗

(A+X) is simple normal

crossing on N , where Exc(g) is the exceptional locus of g. In

particular, Y is a simple normal crossing divisor on N .

(ii) g and f are isomorphisms outside D, in particular, f∗OY '
OX .

(iii) f ∗(D + B) has a simple normal crossing support on Y . More

precisely, there exists an R-divisor A′ on N such that Supp(A′+
Y ) is simple normal crossing on N , A′ and Y have no common

irreducible components, and that A′|Y = f ∗(D + B).

Proof. First, we take a blow-up M1 → M along D. Apply Hiron-
aka’s desingularization theorem to M1 and obtain a projective bira-
tional morphism M2 → M1 from a smooth variety M2. Let F be the
reduced divisor that coincides with the support of the inverse image of
D on M2. Apply Szabó’s resolution lemma to Suppσ∗(A+X)∪F on M2

(see, for example, [F2, 3.5. Resolution lemma]), where σ : M2 → M .
Then, we obtain desired projective birational morphisms g : N → M
from a smooth variety N , and f = g|Y : Y → X, where Y is the strict
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transform of X on N , such that Y is a simple normal crossing divi-
sor on N , g and f are isomorphisms outside D, and f ∗(D + B) has a
simple normal crossing support on Y . Since f is an isomorphism out-
side D and D is permissible on X, f is an isomorphism at any generic
points of strata of Y . Therefore, every fiber of f is connected and then
f∗OY ' OX . �

Remark 5.3. In Lemma 5.2, we can directly check that f∗OY (KY ) '
OX(KX). By Lemma 5.1, Rqf∗OY (KY ) = 0 for q > 0. Therefore, we
obtain f∗OY ' OX and Rqf∗OY = 0 for any q > 0 by the Grothendieck
duality.

Here, we treat the compactification problem. It is because we can
use the same technique as in the proof of Lemma 5.2. This lemma
plays important roles in this section.

Lemma 5.4. Let f : Z → X be a proper morphism from an embedded

simple normal crossing pair (Z, B). Let M be the ambient space of Z.

Assume that there is an R-divisor A on M such that Supp(A + Z) is

simple normal crossing on M and that B = A|Z. Let X be a projective

variety such that X contains X as a Zariski open set. Then there

exist a proper embedded simple normal crossing pair (Z, B) that is a

compactification of (Z, B) and a proper morphism f : Z → X that

compactifies f : Z → X. Moreover, SuppB ∪ Supp(Z \ Z) is a simple

normal crossing divisor on Z, and Z \ Z has no common irreducible

components with B. We note that B is R-Cartier. Let M , which is a

compactification of M , be the ambient space of (Z, B). Then, by the

construction, we can find an R-divisor A on M such that Supp(A+Z)
is simple normal crossing on M and that B = A|Z.

Proof. Let Z, A ⊂ M be any compactification. By blowing up M
inside Z \ Z, we can assume that f : Z → X extends to f : Z →
X. By Hironaka’s desingularization and the resolution lemma, we can
assume that M is smooth and Supp(Z +A)∪Supp(M \M) is a simple
normal crossing divisor on M . It is not difficult to see that the above
compactification has the desired properties. �

Remark 5.5. There exists a big trouble to compactify normal crossing
varieties. When we treat normal crossing varieties, we can not directly
compactify them. For the details, see [F2, 3.6. Whitney umbrella],
especially, Corollary 3.6.10 and Remark 3.6.11 in [F2]. Therefore, the
first two lines in the proof of [A1, Theorem 3.2] is nonsense.

It is the time to state the main injectivity theorem (cf. [A1, Theorem
3.1]) for embedded simple normal crossing pairs. For applications, this
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formulation seems to be sufficient. We note that we will recover [A1,
Theorem 3.1] in full generality in Section 6 (see Theorem 6.1).

Theorem 5.6 (cf. [A1, Theorem 3.1]). Let (X, S +B) be an embedded

simple normal crossing pair such that X is proper, S +B is a boundary

R-divisor, S is reduced, and xBy = 0. Let L be a Cartier divisor on

X and D an effective Cartier divisor that is permissible with respect to

(X, S + B). Assume the following conditions.

(i) L ∼R KX + S + B + H,

(ii) H is a semi-ample R-Cartier R-divisor, and

(iii) tH ∼R D + D′ for some positive real number t, where D′ is an

effective R-Cartier R-divisor that is permissible with respect to

(X, S + B).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L + D)),

which are induced by the inclusion OX → OX(D), are injective for all

q.

Proof. First, we use Lemma 2.10. Thus, we can assume that there
exists a divisor A on M , where M is the ambient space of X, such that
Supp(A+X) is simple normal crossing on M and that A|X = S. Apply
Lemma 5.2 to an embedded simple normal crossing pair (X, S) and a
divisor Supp(D+D′+B) on X. Then we obtain a projective birational
morphism f : Y → X from an embedded simple normal crossing variety
Y such that f is an isomorphism outside Supp(D + D′ + B), and that
the union of the support of f ∗(S+B+D+D′) and the exceptional locus
of f has a simple normal crossing support on Y . Let B ′ be the strict
transform of B on Y . We can assume that SuppB ′ is disjoint from any
strata of Y that are not irreducible components of Y by taking blow-
ups. We write KY + S ′ + B′ = f ∗(KY + S + B) + E, where S ′ is the
strict transform of S, and E is f -exceptional. By the construction of
f : Y → X, S ′ is Cartier and B′ is R-Cartier. Therefore, E is also R-
Cartier. It is easy to see that E+ = pEq ≥ 0. We put L′ = f ∗L + E+

and E− = E+ − E ≥ 0. We note that E+ is Cartier and E− is R-
Cartier because SuppE is simple normal crossing on Y . Since f ∗H
is an R>0-linear combination of semi-ample Cartier divisors, we can
write f ∗H ∼R

∑
i aiHi, where 0 < ai < 1 and Hi is a general Cartier

divisor on Y for any i. We put B ′′ = B′ + E− + ε
t
f ∗(D + D′) + (1 −

ε)
∑

i aiHi for some 0 < ε � 1. Then L′ ∼R KY + S ′ + B′′. By
the construction, xB ′′

y = 0, the support of S ′ + B′′ is simple normal
crossing on Y , and SuppB′′ ⊃ Suppf ∗D. So, Proposition 3.2 implies
that the homomorphisms Hq(Y,OY (L′)) → Hq(Y,OY (L′ + f ∗D)) are
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injective for all q. By Lemma 5.1, Rqf∗OY (L′) = 0 for any q > 0 and it
is easy to see that f∗OY (L′) ' OX(L). By the Leray spectral sequence,
the homomorphisms Hq(X,OX(L)) → Hq(X,OX(L+D)) are injective
for all q. �

The following theorem is another main theorem of this section. It
is essentially the same as [A1, Theorem 3.2]. We note that we assume
that (Y, S + B) is a simple normal crossing pair. It is a small but
technically important difference. For the full statement, see Theorem
6.2 below.

Theorem 5.7 (cf. [A1, Theorem 3.2]). Let (Y, S + B) be an embedded

simple normal crossing pair such that S + B is a boundary R-divisor,

S is reduced, and xBy = 0. Let f : Y → X be a proper morphism

and L a Cartier divisor on Y such that H ∼R L − (KY + S + B) is

f -semi-ample.

(i) every non-zero local section of Rqf∗OY (L) contains in its sup-

port the f -image of some strata of (Y, S + B).
(ii) let π : X → V be a projective morphism and assume that H ∼R

f ∗H ′ for some π-ample R-Cartier R-divisor H ′ on X. Then

Rqf∗OY (L) is π∗-acyclic, that is, Rpπ∗R
qf∗OY (L) = 0 for any

p > 0.

Proof. Let M be the ambient space of Y . Then, by Lemma 2.10, we can
assume that there exists an R-divisor D on M such that Supp(D + Y )
is simple normal crossing on M and that D|Y = S + B. Therefore, we
can use Lemma 5.4 in Step 3 of (i) and (ii) below.

(i) We have already proved a very spacial case in Lemma 5.1. The
argument in Step 1 is not new and it is well known.

Step 1. First, we assume that X is projective. We can assume that H
is semi-ample by replacing L (resp. H) with L+f ∗A′ (resp. H +f ∗A′),
where A′ is a very ample Cartier divisor. Assume that Rqf∗OY (L)
has a local section whose support does not contain any image of the
(Y, S + B)-strata. Then we can find a very ample Cartier divisor A
with the following properties.

(a) f ∗A is permissible with respect to (Y, S + B), and
(b) Rqf∗OY (L) → Rqf∗OY (L) ⊗OX(A) is not injective.

We can assume that H − f ∗A is semi-ample by replacing L (resp. H)
with L+f ∗A (resp. H+f ∗A). If necessary, we replace L (resp. H) with
L + f ∗A′′ (resp. H + f ∗A′′), where A′′ is a very ample Cartier divisor.
Then, we have H0(X, Rqf∗OY (L)) ' Hq(Y,OY (L)) and H0(X, Rqf∗OY (L)⊗
OX(A)) ' Hq(Y,OY (L+f ∗A)). We obtain that H0(X, Rqf∗OY (L)) →
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H0(X, Rqf∗OY (L)⊗OX(A)) is not injective by (b) if A′′ is sufficiently
ample. So, Hq(Y,OY (L)) → Hq(Y,OY (L + f ∗A)) is not injective. It
contradicts Theorem 5.1. We finish the proof when X is projective.

Step 2. Next, we assume that X is not projective. Note that the
problem is local. So, we can shrink X and assume that X is affine. By
the argument similar to the one in Step 1 in the proof of (ii) below, we
can assume that H is a semi-ample Q-Cartier Q-divisor. We compactify
X and apply Lemma 5.4. Then we obtain a compactification f : Y →
X of f : Y → X. Let H be the closure of H on Y . If H is not a
semi-ample Q-Cartier Q-divisor, then we take blowing-ups of Y inside
Y \ Y and obtain a semi-ample Q-Cartier Q-divisor H on Y such that
H|Y = H. Let L (resp. B, S) be the closure of L (resp. B, S) on Y . We
note that H ∼R L − (KY + S + B) does not necessarily hold. We can
write H +

∑
i ai(fi) = L− (KY +S +B), where ai is a real number and

fi ∈ Γ(Y,K∗

Y ) for any i. We put E = H+
∑

i ai(fi)−(L−(KY +S+B)).

We replace L (resp. B) with L+pEq (resp. B+{−E}). Then we obtain
the desired property of Rqf

∗
OY (L) since X is projective. We note that

SuppE is in Y \ Y . So, we finish the whole proof.

(ii) We divide the proof into three steps.

Step 1. We assume that dim V = 0. The following arguments are well
known and standard. We describe them for the reader’s convenience.
In this case, we can write H ′ ∼R H ′

1 + H ′

2, where H ′

1 (resp. H ′

2) is a π-
ample Q-Cartier Q-divisor (resp. π-ample R-Cartier R-divisor) on X.
So, we can write H ′

2 ∼R

∑
i aiHi, where 0 < ai < 1 and Hi is a general

very ample Cartier divisor on X for any i. Replacing B (resp. H ′)
with B +

∑
i aif

∗Hi (resp. H ′

1), we can assume that H ′ is a π-ample
Q-Cartier Q-divisor. We take a general member A ∈ |mH ′|, where m
is a sufficiently large and divisible integer, such that A′ = f ∗A and
Rqf∗OY (L + A′) is π∗-acyclic for all q. By (i), we have the following
short exact sequences,

0 → Rqf∗OY (L) → Rqf∗OY (L + A′) → Rqf∗OA′(L + A′) → 0.

for any q. Note that Rqf∗OA′(L + A′) is π∗-acyclic by induction on
dim X and Rqf∗OY (L+A′) is also π∗-acyclic by the above assumption.
Thus, Epq

2 = 0 for p ≥ 2 in the following commutative diagram of
spectral sequences.

Epq
2 = Rpπ∗R

qf∗OY (L)

ϕpq

��

+3 Rp+q(π ◦ f)∗OY (L)

ϕp+q

��

E
pq

2 = Rpπ∗R
qf∗OY (L + A′) +3 Rp+q(π ◦ f)∗OY (L + A′)
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Since ϕ1+q is injective by Theorem 5.6, E1q
2 → R1+q(π ◦ f)∗OY (L) is

injective, and E
1q

2 = 0 by the above assumption, we have E1q
2 = 0. This

implies that Rpπ∗R
qf∗OY (L) = 0 for any p > 0.

Step 2. We assume that V is projective. By replacing H ′ (resp. L)
with H ′ + π∗G (resp. L + (π ◦ f)∗G), where G is a very ample Cartier
divisor on V , we can assume that H ′ is an ample R-Cartier R-divisor.
By the same argument as in Step 1, we can assume that H ′ is am-
ple Q-Cartier Q-divisor and H ∼Q f ∗H ′. If G is a sufficiently am-
ple Cartier divisor on V , Hk(V, Rpπ∗R

qf∗OY (L) ⊗ G) = 0 for any
k ≥ 1, H0(V, Rpπ∗R

qf∗OY (L) ⊗ G) ' Hp(X, Rqf∗OY (L) ⊗ π∗G), and
Rpπ∗R

qf∗OY (L) ⊗ G is generated by its global sections. Since H +
f ∗π∗G ∼R L+f ∗π∗G−(KY +S+B), H+f ∗π∗G ∼Q f ∗(H ′+π∗G), and
H ′+π∗G is ample, we can apply Step 1 and obtain Hp(X, Rqf∗OY (L+
f ∗π∗G)) = 0 for any p > 0. Thus, Rpπ∗R

qf∗OY (L) = 0 for any p > 0
by the above arguments.

Step 3. When V is not projective, we shrink V and assume that V is
affine. By the same argument as in Step 1 above, we can assume that
H ′ is Q-Cartier. We compactify V and X, and can assume that V and
X are projective. By Lemma 5.4, we can reduce it to the case when V
is projective. This step is essentially the same as Step 2 in the proof
of (i). So, we omit the details here.

We finish the whole proof of (ii). �

Remark 5.8. In Theorem 5.6, if X is smooth, then Proposition 3.1 is
enough for the proof of Theorem 5.6. In the proof of Theorem 5.7, if Y
is smooth, then Theorem 5.6 for a smooth X is sufficient. Lemmas 5.1,
5.2, and 5.4 are easy and well known for smooth varieties. Therefore,
the reader can find that our proof of Theorem 5.7 becomes much easier
if we assume that Y is smooth. Ambro’s original proof of [A1, Theorem
3.2 (ii)] used embedded simple normal crossing pairs even when Y is
smooth (see (b) in the proof of [A1, Theorem 3.2 (ii)]). It may be a
technically important difference. I could not follow Ambro’s original
argument in (a) in the proof of [A1, Theorem 3.2 (ii)].

Remark 5.9. It is easy to see that Theorem 5.6 is a generalization of
Kollár’s injectivity theorem. Theorem 5.7 (i) (resp. (ii)) is a general-
ization of Kollár’s torsion-free (resp. vanishing) theorem.

We treat an easy vanishing theorem for lc pairs as an application of
Theorem 5.7 (ii). It seems to be buried in [A1]. We note that we do
not need the notion of embedded simple normal crossing pairs to prove
Theorem 5.10. See Remark 5.8.
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Theorem 5.10 (Kodaira vanishing theorem for lc pairs). Let (X, B)
be an lc pair such that B is a boundary R-divisor. Let L be a Q-Cartier

Weil divisor on X such that L−(KX +B) is π-ample, where π : X → V
is a projective morphism. Then Rqπ∗OX(L) = 0 for any q > 0.

Proof. Let f : Y → X be a log resolution of (X, B) such that KY =
f ∗(KX + B) +

∑
i aiEi with ai ≥ −1 for any i. We can assume that∑

i Ei ∪ Suppf ∗L is a simple normal crossing divisor on Y . We put
E =

∑
i aiEi and F =

∑
aj=−1(1 − bj)Ej, where bj = multEj

{f ∗L}.

We note that A = L− (KX +B) is π-ample by the assumption. So, we
have f ∗A = f ∗L−f ∗(KX +B) = pf ∗L+E+Fq−(KY +F +{−(f ∗L+
E + F )}). We can easily check that f∗OY (pf ∗L + E + Fq) ' OX(L)
and that F + {−(f ∗L + E + F )} has a simple normal crossing support
and is a boundary R-divisor on Y . By Theorem 5.7 (ii), we obtain that
OX(L) is π∗-acyclic. Thus, we have Rqπ∗OX(L) = 0 for any q > 0. �

We note that Theorem 5.10 contains a complete form of [Kv, Theo-
rem 0.3] as a corollary.

Corollary 5.11 (Kodaira vanishing theorem for lc varieties). Let X
be a projective lc variety and L an ample Cartier divisor on X. Then

Hq(X,OX(KX+L)) = 0 for any q > 0. Furthermore, if we assume that

X is Cohen-Macaulay, then Hq(X,OX(−L)) = 0 for any q < dim X.

Remark 5.12. We can see that Corollary 5.11 is contained in [F1,
Theorem 2.6], which is a very special case of Theorem 5.7 (ii). I forgot
to state Corollary 5.11 explicitly in [F1]. There, we do not need embed-
ded simple normal crossing pairs. We note that there are typos in the
proof of [F1, Theorem 2.6]. In the commutative diagram, Rif∗ωX(D)’s
should be replaced by Rjf∗ωX(D)’s.

Example 5.13. Let X be a projective lc threefold which has the fol-
lowing properties: (i) there exists a projective birational morphism
f : Y → X from a smooth projective threefold, and (ii) the excep-
tional locus E of f is an Abelian surface with KY = f ∗KX − E. For
example, X is a cone over an Abelian surface and f : Y → X is the
blow-up at the vertex of X. Let L be an ample Cartier divisor on X.
By the Leray spectral sequence, we have 0 → H1(X, f∗f

∗OX(−L)) →
H1(Y, f ∗OX(−L)) → H0(X, R1f∗f

∗OX(−L)) → H2(X, f∗f
∗OX(−L)) →

H2(Y, f ∗OX(−L)) → · · · . Therefore, H2(X,OX(−L)) ' H0(X,OX(−L)⊗
R1f∗OY ). On the other hand, we have Rqf∗OY ' Hq(E,OE) for any
q > 0 since Rqf∗OY (−E) = 0 for every q > 0. Thus, H2(X,OX(−L)) '
C2. In particular, H2(X,OX(−L)) 6= 0. We note that X is not Cohen-
Macaulay. In the above example, if we assume that E is a K3-surface,
then Hq(X,OX(−L)) = 0 for q < 3 and X is Cohen-Macaulay.
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5.14 (Some further generalizations). Here, we treat some generaliza-
tions of Theorem 5.7. First, we introduce the notion of nef and log big
(resp. nef and log abundant) divisors.

Definition 5.15. Let f : (Y, B) → X be a proper morphism from
an embedded simple normal crossing pair (Y, B) such that B is a sub-
boundary. Let π : X → V be a proper morphism and H an R-Cartier
R-divisor on X. We say that H is nef and log big (resp. nef and log

abundant) over V if and only if H|C is nef and big (resp. nef and
abundant) over V for any qlc center C. We note that a qlc center
C is the image of a stratum of (Y, B). When (X, BX) is an lc pair,
we choose a log resolution of (X, BX) to be f : (Y, B) → X, where
KY + B = f ∗(KX + BX).

We can generalize Theorem 5.7 as follows. It is [A1, Theorem 7.4]
for embedded simple normal crossing pairs.

Theorem 5.16 (cf. [A1, Theorem 7.4]). Let f : (Y, S + B) → X be a

proper morphism from an embedded simple normal crossing pair such

that S + B is a boundary R-divisor, S is reduced, and xBy = 0. Let L
be a Cartier divisor on Y and π : X → V a proper morphism. Assume

that f ∗H ∼R L − (KY + S + B), where H is nef and log big over V .

Then

(i) every non-zero local section of Rqf∗OY (L) contains in its sup-

port the f -image of some strata of (Y, S + B), and

(ii) Rqf∗OY (L) is π∗-acyclic.

For the proof, see the proof of [A1, Theorem 7.4]. Ambro cleverly
reduced Theorem 5.16 to Theorem 5.7. In the second step (2) in the
proof of [A1, Theorem 7.4], Ambro used “embedded log transforma-
tion”(cf. Lemmas 6.4 and 6.6 below) and the dévissage (see [A1, Re-
mark 2.6]). So, we need the notion of embedded simple normal crossing
pairs to prove Theorem 5.16 even when Y is smooth. It is a key point.
As a corollary of Theorem 5.16, we can prove the following vanishing
theorem, which is stated implicitly in the introduction of [A1]. It is
the culmination of the works of several authors: Kawamata, Viehweg,
Nadel, Reid, Fukuda, Ambro, and many others (cf. [KMM, Theorem
1-2-5]).

Theorem 5.17. Let (X, B) be an lc pair such that B is a boundary

R-divisor and let L be a Q-Cartier Weil divisor on X. Assume that

L − (KX + B) is nef and log big over V , where π : X → V is a proper

morphism. Then Rqπ∗OX(L) = 0 for any q > 0.

The proof of Theorem 5.10 works for Theorem 5.17 without any
changes if we adopt Theorem 5.16. We add one example.
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Example 5.18. Let Y be a projective surface which has the following
properties: (i) there exists a projective birational morphism f : X → Y
from a smooth projective surface X, and (ii) the exceptional locus
E of f is an elliptic curve with KX + E = f ∗KY . For example, Y
is a cone over a smooth plane cubic curve and f : X → Y is the
blow-up at the vertex of Y . We note that (X, E) is a plt pair. Let
H be an ample Cartier divisor on Y . We consider a Cartier divisor
L = f ∗H + KX + E on X. Then L − (KX + E) is nef and big, but
not log big. By the short exact sequence 0 → OX(f ∗H + KX) →
OX(f ∗H + KX + E) → OE(KE) → 0, we obtain R1f∗OX(f ∗H +
KX + E) ' H1(E,OE(KE)) ' C(P ), where P = f(E). By the Leray
spectral sequence, we have 0 → H1(Y, f∗OX(KX + E) ⊗ OY (H)) →
H1(X,OX(L)) → H0(Y, C(P )) → H2(Y, f∗OX(KX + E) ⊗OY (H)) →
· · · . If H is sufficiently ample, then H1(X,OX(L)) ' H0(Y, C(P )) '
C(P ). In particular, H1(X,OX(L)) 6= 0.

Remark 5.19. In Example 5.18, there exists an effective Q-divisor B
on X such that L − 1

k
B is ample for any k > 0 by Kodaira’s lemma.

Since L · E = 0, we have B · E < 0. In particular, (X, E + 1
k
B) is not

lc for any k > 0. This is the main reason why H1(X,OX(L)) 6= 0. If
(X, E + 1

k
B) were lc, then the ampleness of L− (KX + E + 1

k
B) would

imply H1(X,OX(L)) = 0.

We modify the proof of [A1, Theorem 7.4]. Then we can easily obtain
the following generalization of Theorem 5.7 (i). We leave the details
for the reader’s exercise.

Theorem 5.20. Let f : (Y, S+B) → X be a proper morphism from an

embedded simple normal crossing pair such that S + B is a boundary,

S is reduced, and xBy = 0. Let L be a Cartier divisor on Y and

π : X → V a proper morphism. Assume that f ∗H ∼R L−(KY +S+B),
where H is nef and log abundant over V . Then, every non-zero local

section of Rqf∗OY (L) contains in its support the f -image of some strata

of (Y, S + B).

6. From SNC pairs to NC pairs

In this final section, we recover Ambro’s theorems from Theorems 5.6
and 5.7. We repeat Ambro’s statements for the reader’s convenience.

Theorem 6.1 (cf. [A1, Theorem 3.1]). Let (X, S +B) be an embedded

normal crossing pair such that X is proper, S + B is a boundary R-

divisor, S is reduced, and xBy = 0. Let L be a Cartier divisor on X
and D an effective Cartier divisor that is permissible with respect to

(X, S + B). Assume the following conditions.
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(i) L ∼R KX + S + B + H,

(ii) H is a semi-ample R-Cartier R-divisor, and

(iii) tH ∼R D + D′ for some positive real number t, where D′ is an

effective R-Cartier R-divisor that is permissible with respect to

(X, S + B).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L + D)),

which are induced by the inclusion OX → OX(D), are injective for all

q.

Theorem 6.2 (cf. [A1, Theorem 3.2]). Let (Y, S + B) be an embedded

normal crossing pair such that S + B is a boundary R-divisor, S is

reduced, and xBy = 0. Let f : Y → X be a proper morphism and L a

Cartier divisor on Y such that H ∼R L−(KY +S+B) is f -semi-ample.

(i) every non-zero local section of Rqf∗OY (L) contains in its sup-

port the f -image of some strata of (Y, S + B).
(ii) let π : X → V be a projective morphism and assume that H ∼R

f ∗H ′ for some π-ample R-Cartier R-divisor H ′ on X. Then

Rqf∗OY (L) is π∗-acyclic, that is, Rpπ∗R
qf∗OY (L) = 0 for any

p > 0.

Before we go to the proof, let us recall the definition of normal cross-

ing pairs, which is a slight generalization of Definition 2.6. The follow-
ing definition is the same as [A1, Definition 2.3] though it may look
different.

Definition 6.3 (Normal crossing pair). Let X be a normal crossing
variety. We say that a reduced divisor D on X is normal crossing if,
in the notation of Definition 2.1, we have

ÔD,x '
C[[x0, · · · , xN ]]

(x0 · · ·xk, xi1 · · ·xil)

for some {i1, · · · , il} ⊂ {k + 1, · · · , N}. We say that the pair (X, B) is
a normal crossing pair if the following conditions are satisfied.

(1) X is a normal crossing variety, and
(2) B is an R-Cartier R-divisor whose support is normal crossing

on X.

We say that a normal crossing pair (X, B) is embedded if there exists
a closed embedding ι : X → M , where M is a smooth variety of
dimension dim X + 1. We put KX0 + Θ = η∗(KX + B), where η :
X0 → X is the normalization of X. From now on, we assume that
B is a subboundary R-divisor. A stratum of (X, B) is an irreducible
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component of X or the image of some lc center of (X0, Θ) on X. A
Cartier divisor D on a normal crossing pair (X, B) is called permissible

with respect to (X, B) if D contains no strata of the pair (X, B).

The following three lemmas are easy to check. So, we omit the proofs.

Lemma 6.4. Let X be a normal crossing divisor on a smooth variety

M . Then there exists a sequence of blow-ups Mk → Mk−1 → · · · →
M0 = M with the following properties.

(i) σi+1 : Mi+1 → Mi is the blow-up along a smooth stratum of Xi

for any i ≥ 0,
(ii) X0 = X and Xi+1 is the inverse image of Xi with the reduced

structure for any i ≥ 0, and

(iii) Xk is a simple normal crossing divisor on Mk.

For each step σi+1, we can directly check that σi+1∗OXi+1
' OXi

and

Rqσi+1∗OXi+1
= 0 for any i ≥ 0 and q ≥ 1. Let B be an R-Cartier

R-divisor on X such that SuppB is normal crossing. We put B0 = B
and KXi+1

+ Bi+1 = σ∗

i+1(KXi
+ Bi) for all i ≥ 0. Then it is obvious

that Bi is an R-Cartier R-divisor and SuppBi is normal crossing on

Xi for any i ≥ 0. We can also check that Bi is a boundary R-divisor

(resp. Q-divisor) for any i ≥ 0 if so is B. If B is a boundary, then the

σi+1-image of any stratum of (Xi+1, Bi+1) is a stratum of (Xi, Bi).

Remark 6.5. Each step in Lemma 6.4 is called embedded log transfor-

mation in [A1, Section 2].

Lemma 6.6. Let X be a simple normal crossing divisor on a smooth

variety M . Let S + B be a boundary R-Cartier R-divisor on X such

that Supp(S+B) is normal crossing, S is reduced, and xBy = 0. Then

there exists a sequence of blow-ups Mk → Mk−1 → · · · → M0 = M with

the following properties.

(i) σi+1 : Mi+1 → Mi is the blow-up along a smooth stratum of

(Xi, Si) that is contained in Si for any i ≥ 0,
(ii) we put X0 = X, S0 = S, and B0 = B, and Xi+1 is the strict

transform of Xi for any i ≥ 0,
(iii) we define KXi+1

+ Si+1 + Bi+1 = σ∗

i+1(KXi
+ Si + Bi) for any

i ≥ 0, where Bi+1 is the strict transform of Bi on Xi+1,

(iv) the σi+1-image of any stratum of (Xi+1, Si+1+Bi+1) is a stratum

of (Xi, Si + Bi), and

(v) Sk is a simple normal crossing divisor on Xk.

For each step σi+1, we can easily check that σi+1∗OXi+1
' OXi

and

Rqσi+1∗OXi+1
= 0 for any i ≥ 0 and q ≥ 1. We note that Xi is simple

normal crossing, Supp(Si + Bi) is normal crossing on Xi, and Si is

reduced for any i ≥ 0.
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Lemma 6.7. Let X be a simple normal crossing divisor on a smooth

variety M . Let S + B be a boundary R-Cartier R-divisor on X such

that Supp(S + B) is normal crossing, S is reduced and simple normal

crossing, and xBy = 0. Then there exists a sequence of blow-ups Mk →
Mk−1 → · · · → M0 = M with the following properties.

(i) σi+1 : Mi+1 → Mi is the blow-up along a smooth stratum of

(Xi, SuppBi) that is contained in SuppBi for any i ≥ 0,
(ii) we put X0 = X, S0 = S, and B0 = B, and Xi+1 is the strict

transform of Xi for any i ≥ 0,
(iii) we define KXi+1

+ Si+1 + Bi+1 = σ∗

i+1(KXi
+ Si + Bi) for any

i ≥ 0, where Si+1 is the strict transform of Si on Xi+1, and

(iv) Supp(Sk + Bk) is a simple normal crossing divisor on Xk.

We note that Xi is simple normal crossing on Mi and Supp(Si + Bi)
is normal crossing on Xi for any i ≥ 0. We can easily check that

xBiy ≤ 0 for any i ≥ 0. The composition morphism Mk → M is

denoted by σ. Let L be any Cartier divisor on X. We put E = p−Bkq.

Then E is an effective σ-exceptional Cartier divisor on Xk and we

obtain σ∗OXk
(σ∗L + E) ' OX(L) and Rqσ∗OXk

(σ∗L + E) = 0 for

any q ≥ 1 by Theorem 5.7 (i). We note that σ∗L + E − (KXk
+ Sk +

{Bk}) = σ∗L − σ∗(KX + S + B) is R-linearly trivial over X and σ is

an isomorphism at any generic points of strata of (Xk, Sk + {Bk}).

Let us go to the proofs of Theorems 6.1 and 6.2.

Proof of Theorems 6.1 and 6.2. We take a sequence of blow-ups and
obtain a projective morphism σ : X ′ → X (resp. σ : Y ′ → Y ) from
an embedded simple normal crossing variety X ′ (resp. Y ′) in Theorem
6.1 (resp. Theorem 6.2) by Lemma 6.4. We can replace X (resp. Y )
and L with X ′ (resp. Y ′) and σ∗L by Leray’s spectral sequence. So,
we can assume that X (resp. Y ) is simple normal crossing. Similarly,
we can assume that S is simple normal crossing on X (resp. Y ) by
applying Lemma 6.6. Finally, we use Lemma 6.7 and obtain a bira-
tional morphism σ : (X ′, S ′ + B′) → (X, S + B) (resp. (Y ′, S ′ + B′) →
(Y, S+B)) from an embedded simple normal crossing pair (X ′, S ′+B′)
(resp. (Y ′, S ′ + B′)) such that KX′ + S ′ + B′ = σ∗(KX + S + B)
(resp. KY ′+S ′+B′ = σ∗(KY +S+B)) as in Lemma 6.7. By Lemma 6.7,
we can replace (X, S +B) (resp. (Y, S +B)) and L with (X ′, S ′+{B′})
(resp. (Y ′, S ′ + {B′})) and σ∗L + p−B′

q by Leray’s spectral sequence.
Then we apply Theorem 5.6 (resp. Theorem 5.7). Thus, we obtain
Theorems 6.1 and 6.2. �

We close this paper with the review of our proofs of Theorems 6.1
and 6.2. It may help the reader to compare this paper with [A1, Section
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3]. We think that our proofs are not so long. Ambro’s proofs seem to
be too short.

6.8 (Review). We review our proofs of the injectivity and vanishing
theorems.

Step 1. (E1-degeneration of a certain Hodge to de Rham type spectral
sequence). We discuss this E1-degeneration in 4.6. As we pointed out
in the introduction, the appropriate spectral sequence was not chosen
in [A1]. It is one of the crucial technical problems in [A1, Section 3].
This step is purely Hodge theoretic. We describe it in Section 4.

Step 2. (Fundamental injectivity theorem: Proposition 3.2). This is
a very special case of [A1, Theorem 3.1] and follows from the E1-
degeneration in Step 1 by using covering arguments. This step is in
Section 3.

Step 3. (Relative vanishing lemma: Lemma 5.1). This step is missing
in [A1]. It is a very special case of [A1, Theorem 3.2 (ii)]. However,
we can not use [A1, Theorem 3.2 (ii)] in this stage. Our proof of this
lemma does not work directly for normal crossing pairs. So, we need
to assume that the varieties are simple normal crossing pairs.

Step 4. (Injectivity theorem for embedded simple normal crossing
pairs: Theorem 5.6). It is [A1, Theorem 3.1] for embedded simple

normal crossing pairs. It follows easily from Step 2 since we already
have the relative vanishing lemma in Step 3. A key point in this step
is Lemma 5.2, which is missing in [A1] and works only for embedded
simple normal crossing pairs.

Step 5. (Torsion-free and vanishing theorems for embedded simple
normal crossing pairs: Theorem 5.7). It is [A1, Theorem 3.2] for em-
bedded simple normal crossing pairs. The proof uses the lemmas on
desingularization and compactification (see Lemmas 5.2 and 5.4), which
hold only for embedded simple normal crossing pairs, and the injectiv-
ity theorem proved for embedded simple normal crossing pairs in Step
4. Therefore, this step also works only for embedded simple normal
crossing pairs. Our proof of the vanishing theorem is slightly different
from Ambro’s one. Compare Steps 2 and 3 in the proof of Theorem
5.7 with (a) and (b) in the proof of [A1, Theorem 3.2 (ii)]. See Remark
5.8.

Step 6. (Ambro’s theorems: Theorems 6.1 and 6.2). In this final step,
we recover Ambro’s theorems, that is, [A1, Theorems 3.1 and 3.2], in
full generality. Since we have already proved [A1, Theorem 3.2 (i)] for
embedded simple normal crossing pairs in Step 5, we can reduce the



VANISHING AND INJECTIVITY THEOREMS FOR LMMP 31

problems to the case when the varieties are embedded simple normal
crossing pairs by blow-ups and Leray’s spectral sequences. This step is
described in Section 6.
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