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Abstract. We prove some semipositivity theorems for singular
varieties coming from graded polarizable admissible variations of
mixed Hodge structure. As an application, we obtain that the
moduli functor of stable varieties is semipositive in the sense of
Kollár. This completes Kollár’s projectivity criterion for the mod-
uli spaces of higher-dimensional stable varieties.
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1. Introduction

One of the main purposes of this paper is to give a proof of the
following “folklore statement” (see, for example, [A2], [Kr], [Kv], [AH],
[K5], [F3]) based on [FF] and [F4]. In general, the (quasi-) projectivity
of some moduli space is a subtle problem and is harder than it looks
(see, for example, [ST], [K2], [V3], and so on).

Theorem 1.1 (Projectivity of moduli spaces of stable varieties). Ev-
ery complete subspace of a coarse moduli space of stable varieties is
projective.

To the best knowledge of the author, Theorem 1.1 is new for sta-
ble n-folds with n ≥ 3 (see the comments in 1.9 below). Note that a
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stable n-fold is an n-dimensional projective semi log canonical variety
with ample canonical divisor and is called an n-dimensional semi log
canonical model in [K5]. For the details of semi log canonical varieties,
see, for example, [F4] and [K7]. We also note that the coarse moduli
space of stable varieties is first constructed in the category of algebraic
spaces (cf. [KM]). As a corollary of Theorem 1.1, by using the bound-
edness result obtained through works of Tsuji, Hacon–McKernan and
Takayama (cf. [HM], [T]), we have:

Corollary 1.2 (cf. [K1, 5.6. Corollary], [Kr, Corollary 1.2], and [AH,
Proposition 6.1.2]). The moduli functor Msm

H of smoothable stable va-
rieties with Hilbert function H is coarsely represented by a projective
algebraic scheme.

For the precise statement of the boundedness, see, for example, [HK,
Theorem 13.6]. See also the definition of smoothable stable varieties in
Definition 5.1 below, which is more general than [Kr, Definition 2.8].
Therefore, we obtain:

Corollary 1.3 (cf. [V2, Theorem 1.11]). The moduli functor MH of
canonically polarized smooth projective varieties with Hilbert function
H is coarsely represented by a quasi-projective algebraic scheme.

More generally, we have:

Corollary 1.4. The moduli functor Mcan
H of canonically polarized nor-

mal projective varieties having only canonical singularities with Hilbert
function H is coarsely represented by a quasi-projective algebraic scheme.

Theorem 1.1 is a direct consequence of Theorem 1.5 below by Kollár’s
projectivity criterion (cf. [K1, Sections 2 and 3]).

Theorem 1.5 (Semipositivity of Mstable). Let Mstable be the moduli
functor of stable varieties. Then Mstable is semipositive in the sense of
Kollár.

For the reader’s convenience, let us recall the definition of the semi-
positivity of Mstable, which is a special case of [K1, 2.4. Definition].

Definition 1.6 (cf. [K1, 2.4. Definition]). The moduli functor Mstable

of stable varieties is said to be semipositive (in the sense of Kollár) if
the following condition holds:

There is a fixed m0 such that if C is a smooth projective curve and

(f : X → C) ∈ Mstable(C), then f∗ω
[m]
X/C is a semipositive locally free

sheaf on C for every m ≥ m0.

As the culmination of the works of several authors, we have:



SEMIPOSITIVITY THEOREMS FOR MODULI PROBLEMS 3

Corollary 1.7. If the moduli functor Mstable
H of stable varieties with

Hilbert function H is bounded, then Mstable
H is coarsely represented by

a projective algebraic scheme.

We think that the boundedness of the moduli functor Mstable
H will

be established in [HMX]. Note that the boundedness of the moduli
functor Mstable

H for stable surfaces holds true (see [A1] and [AM]).
Theorem 1.5 follows almost directly from the definition of the semi-

positivity of Mstable in Definition 1.6 (cf. [K1, 2.4. Definition]) and the
main semipositivity theorem of this paper:

Theorem 1.8 (Main Theorem). Let X be an equi-dimensional variety
which satisfies Serre’s S2 condition and is Gorenstein in codimension
one. Let f : X → C be a projective surjective morphism onto a smooth
projective curve C such that every irreducible component of X is domi-
nant onto C. Assume that there exists a non-empty Zariski open set U
of C such that f−1(U) has only semi log canonical singularities. Then
f∗ωX/C is semipositive.

Assume further that ω
[k]
X/C is locally free and f -generated for some

positive integer k. Then f∗ω
[m]
X/C is semipositive for every m ≥ 1.

1.9 (Comments). Theorem 1.8 is a reformulation of [K1, 4.12. Theo-
rem]. Kollár has pointed out that the assumption that the fibers are
surfaces was inadvertently omitted from its statement. He is really
claiming [K1, 4.12. Theorem] for f : Z → C with dim Z = 3 (see [K1,
1. Introduction]). Therefore, Theorem 1.8 is new when dim X ≥ 4.
Likewise, Theorem 1.5 and Theorem 1.1 are new when the dimension
of the stable varieties are greater than or equal to three.

We feel that the arguments in [K1, 4.14] only work when the fibers
are surfaces. In other words, we needed some new ideas and techniques
to prove Theorem 1.8. Our arguments heavily depend on the recent
advances on the semipositivity theorems of Hodge bundles ([FF]) and
the construction of quasi-log resolutions for quasi-projective semi log
canonical pairs (cf. [F4]).

Remark 1.10. In general, we have to prove Theorem 1.8 for non-
normal (reducible) varieties X in order to see that some moduli functor
is semipositive in the sense of Kollár even if we are only interested in
the moduli spaces of smoothable stable varieties. Roughly speaking, if
the curve C is contained in M sm

H \ M can
H , where M sm

H (resp. M can
H ) is

the coarse moduli space of Msm
H (resp. Mcan

H ), then a general fiber of
f : X → C may be non-normal and reducible.
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For the general theory of Kollár’s projectivity criterion, see [K1, Sec-
tions 2 and 3] and [V2, Theorem 4.34]. We do not discuss the technical
details of the construction of moduli spaces of stable varieties in this
paper. We mainly treat various semipositivity theorems. Note that
the projectivity criterion discussed here is independent of the existence
problem of moduli spaces. We recommend the reader to see [K1, Sec-
tion 2] and [K5, Section 5] for Kollár’s program for constructing moduli
spaces of stable varieties. Our paper is related to the topic in [K5, 41
(Projectivity)].

In this paper, we prove Theorem 1.8 in the framework of [F4] and
[FF]. Note that [F4] and [FF] heavily depend on the theory of mixed
Hodge structures on cohomology groups with compact support. A
key ingredient of this paper is the following semipositivity theorem,
which is essentially contained in [FF]. It is a generalization of Fujita’s
semipositivity theorem (see [Ft, (0.6) Main Theorem]). We note that a
Hodge theoretic approach to the original Fujita semipositivity theorem
was introduced by Zucker (see [Z]).

Theorem 1.11 (cf. [FF, Section 5]). Let (X, D) be a simple normal
crossing pair such that D is reduced. Let f : X → C be a projective sur-
jective morphism onto a smooth projective curve C. Assume that every
stratum of X is dominant onto C. Then f∗ωX/C(D) is semipositive.

Although we do not know what is the best formulation of the semi-
positivity theorem for moduli problems, we think Theorem 1.11 will
be one of the most fundamental results for application to Kollár’s pro-
jectivity criterion for moduli spaces. We prove Theorem 1.8 by using
Theorem 1.11. By the same proof as that of Theorem 1.8, we obtain a
generalization of Theorem 1.8, which contains both Theorem 1.8 and
Theorem 1.11.

Theorem 1.12. Let X be an equi-dimensional variety which satis-
fies Serre’s S2 condition and is Gorenstein in codimension one. Let
f : X → C be a projective surjective morphism onto a smooth projective
curve C such that every irreducible component of X is dominant onto
C. Let D be a reduced Weil divisor on X such that no irreducible com-
ponent of D is contained in the singular locus of X. Assume that there
exists a non-empty Zariski open set U of C such that (f−1(U), D|f−1(U))
is a semi log canonical pair. Then f∗ωX/C(D) is semipositive.

We further assume that OX(k(KX+D)) is locally free and f -generated
for some positive integer k. Then f∗OX(m(KX/C +D)) is semipositive
for every m ≥ 1.



SEMIPOSITIVITY THEOREMS FOR MODULI PROBLEMS 5

By combining Theorem 1.12 with Viehweg’s covering trick, we ob-
tain the following theorem: Theorem 1.13, which is an answer to the
question in [A2, 5.6]. Although we do not discuss the moduli spaces of
stable pairs here, Theorem 1.12 and Theorem 1.13 play important roles
in the proof of the projectivity of the moduli spaces of stable pairs (see
[A2], [FP], and 4.4 below).

Theorem 1.13. Let X be an equi-dimensional variety which satis-
fies Serre’s S2 condition and is Gorenstein in codimension one. Let
f : X → C be a projective surjective morphism onto a smooth projec-
tive curve C with connected general fibers such that every irreducible
component of X is dominant onto C. Let ∆ be an effective Q-Weil
divisor on X such that no irreducible component of the support of ∆ is
contained in the singular locus of X. Assume that there exists a non-
empty Zariski open set U of C such that (f−1(U), ∆|f−1(U)) is a semi log
canonical pair. We further assume that OX(k(KX + ∆)) is locally free
and f -generated for some positive integer k. Then f∗OX(k(KX/C +∆))
is semipositive. Therefore, f∗OX(kl(KX/C +∆)) is semipositive for ev-
ery l ≥ 1.

Remark 1.14. In this paper, we do not use algebraic spaces for the
proof of the semipositivity theorems. We only treat projective varieties.
Note that Theorem 1.11 follows from the theory of variations of mixed
Hodge structure. The variations of mixed Hodge structure discussed
in [FF] are graded polarizable and admissible. Therefore, we can not
directly apply the results in [FF] to the variations of (mixed) Hodge
structure arising from families of algebraic spaces. We need some polar-
ization to obtain various semipositivity theorems in our framework. We
also note that the admissibility assures us the existence of (canonical)
extensions of Hodge bundles, which does not always hold for abstract
graded polarizable variations of mixed Hodge structure (see [FF, Ex-
ample 1.6]).

We do not use the Fujita–Kawamata semipositivity theorem coming
from the theory of polarized variations of Hodge structure. We think
we need some semipositivity theorems obtained by the theory of graded
polarizable admissible variations of mixed Hodge structure for Kollár’s
projectivity criterion of moduli spaces of stable varieties.

Remark 1.15. (1) As explained in [K1] and [K3], it is difficult to
directly check the quasi-projectivity of non-complete singular spaces.
This is because there is no good ampleness criterion for non-complete
spaces. In this paper, we adopt Kollár’s framework in [K1, Sections
2 and 3], where we use the Nakai–Moishezon criterion to check the
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projectivity of complete algebraic spaces. Note that Viehweg discusses
the quasi-projectivity of non-complete moduli spaces (cf. [V2], [V3]).
On the other hand, Kollár and we prove the projectivity of complete
moduli spaces (cf. [K1]).

(2) Although we repeatedly use Viehweg’s covering arguments, we do
not use the notion of weak positivity, which was introduced by Viehweg
and plays crucial roles in his works (cf. [V1], [V2], [V3]). We just treat
the semipositivity on smooth projective curves (cf. [K1]).

(3) From the Hodge theoretic viewpoint, our approach is based on
the theory of mixed Hodge structures (cf. [FF]). The arguments in [V2],
[K1], and [V3] use only pure Hodge structures. It is one of the main
differences between our approach and the others.

We summarize the contents of this paper. In Section 2, we collect
some basic definitions. In Section 3, we quickly review the moduli
functor Mstable of stable varieties and its coarse moduli space. Section
4 is the main part of this paper, where we prove the theorems in Section
1. Our proofs depend on [FF], [F4], and Viehweg’s covering arguments.
In Section 5, we prove the corollaries in Section 1.

Acknowledgments. The author was partially supported by the Grant-
in-Aid for Young Scientists (A) ]24684002 from JSPS. He thanks Pro-
fessor János Kollár for answering his questions and giving him many
useful comments and Professor Steven Zucker for giving him useful
comments and advice. He also thanks Professors Varely Alexeev, Taro
Fujisawa and Sándor Kovács for comments. Finally, he thanks Profes-
sor Shigefumi Mori for warm encouragement.

We will work over C, the complex number field, throughout this
paper. Note that, by the Lefschetz principle, all the results in this paper
hold over any algebraically closed field k of characteristic zero. We
will freely use the notation and terminology in [FF] and [F4]. For the
standard notations and conventions of the log minimal model program,
see [F2].

2. Preliminaries

Let us recall the definition of semismooth varieties.

Definition 2.1 ([K1, 4.1. Definition]). An algebraic variety X is called
semismooth if all of its closed points are analytically (or formally) iso-
morphic to one of the following:

• a smooth point;
• a double normal crossing point: x1x2 = 0 ∈ Cn+1; or
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• a pinch point: x2
1 − x2

2x3 = 0 ∈ Cn+1.

Let us recall the definition of semipositive locally free sheaves. For
the details, see, for example, [V2, Section 2].

Definition 2.2 (Semipositive locally free sheaves). A locally free sheaf
of finite rank E on a complete variety X is semipositive (or nef) if the
following equivalent conditions are satisfied:

(i) OPX(E)(1) is nef on PX(E).
(ii) For every map from a smooth projective curve f : C → X,

every quotient line bundle of f∗E has non-negative degree.

In this paper, we only discuss various semipositivity theorems for
locally free sheaves on a smooth projective curve.

The following well-known lemma is very useful. We omit the proof
of Lemma 2.3 because it is an easy exercise.

Lemma 2.3. Let C be a smooth projective curve and let Ei be a locally
free sheaf on C for i = 1, 2. Assume that E1 ⊂ E2, E1 is semipositive,
and that E1 coincides with E2 over some non-empty Zariski open set of
C. Then E2 is semipositive.

We need the notion of simple normal crossing pairs for Theorem
1.11. Note that a simple normal crossing pair is sometimes called a
semi-snc pair in the literature (cf. [BP, Definition 1.1]).

Definition 2.4 (Simple normal crossing pairs). We say that the pair
(X, D) is simple normal crossing at a point a ∈ X if X has a Zariski
open neighborhood U of a that can be embedded in a smooth variety Y ,
where Y has regular local coordinates (x1, · · · , xp, y1, · · · , yr) at a = 0
in which U is defined by a monomial equation

x1 · · ·xp = 0

and

D =
r∑

i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,D) is a simple normal crossing pair if it is simple
normal crossing at every point of X.

For the reader’s convenience, we recall the notion of semi log canon-
ical pairs.

Definition 2.5 (Semi log canonical pairs). Let X be an equi-dimensional
algebraic variety which satisfies Serre’s S2 condition and is normal
crossing in codimension one. Let ∆ be an effective R-divisor on X
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such that no irreducible component of Supp ∆ is contained in the sin-
gular locus of X. The pair (X, ∆) is called a semi log canonical pair
(an slc pair, for short) if

(1) KX + ∆ is R-Cartier, and
(2) (Xν , Θ) is log canonical, where ν : Xν → X is the normalization

and KXν + Θ = ν∗(KX + ∆).

If (X, 0) is a semi log canonical pair, then we simply say that X is a semi
log canonical variety or X has only semi log canonical singularities.

For the details of semi log canonical pairs and the basic notations,
see [F4] and [K7].

2.6 (Q-divisors). Let D be a Q-divisor on an equi-dimensional variety
X, that is, D is a finite formal Q-linear combination

D =
∑

i

diDi

of irreducible reduced subschemes Di of codimension one. We define
the round-up dDe =

∑
iddieDi (resp. round-down bDc =

∑
ibdicDi),

where every real number x, dxe (resp. bxc) is the integer defined by
x ≤ dxe < x + 1 (resp. x − 1 < bxc ≤ x). We set

D<0 =
∑
di<0

diDi, D>0 =
∑
di>0

diDi, and D=1 =
∑
di=1

Di.

We close this section with the definition of ω
[m]
X/C .

Definition 2.7. In Theorem 1.8, ω
[m]
X/C is the m-th reflexive power of

ωX/C . It is the double dual of the m-th tensor power of ωX/C :

ω
[m]
X/C := (ω⊗m

X/C)∗∗.

3. A quick review of Mstable

In this section, we quickly review the moduli space of stable varieties
(see [K5]). First, let us recall the definition of stable varieties.

Definition 3.1 (Stable varieties). Let X be a connected projective
semi log canonical variety with ample canonical divisor. Then X is
called a stable variety or a semi log canonical model.

In order to obtain the boundedness of the moduli functor of stable
varieties, we have to fix some numerical invariants. So we introduce
the notion of the Hilbert function for stable varieties.
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Definition 3.2 (Hilbert function of stable varieties). Let X be a stable
variety. The Hilbert function of X is

HX(m) := χ(X,ω
[m]
X )

where ω
[m]
X := (ω⊗m

X )∗∗ ' OX(mKX). By [F4, Corollary 1.9], we see
that

HX(m) = dimC H0(X,OX(mKX)) ≥ 0

for every m ≥ 2.

The following definition of the moduli functor of stable varieties is
mainly due to Kollár. Note that a stable variety X is not necessarily
Cohen–Macaulay when dim X ≥ 3. We think that it is one of the main
difficulties when we treat families of stable varieties.

Definition 3.3 (Moduli functor of stable varieties). Let H(m) be a
Z-valued function. The moduli functor of stable varieties with Hilbert
function H is

Mstable
H (S) :=


Flat, proper families X → S, fibers are stable

varieties with ample canonical divisor

and Hilbert function H(m), ω
[m]
X/S is flat over S

and commutes with base change for every m,
modulo isomorphisms over S.

 .

Remark 3.4. We consider (f : X → S) ∈ Mstable
H (S). By the base

change theorem and [F4, Corollary 1.9], we obtain that f∗ω
[m]
X/S is a

locally free sheaf on S with rankf∗ω
[m]
X/S = H(m) for every m ≥ 2.

Let us quickly review the construction of the coarse moduli space of
stable varieties following [K5].

3.5 (Coarse moduli space of Mstable). Let us consider the moduli func-
tor

Mstable(S) :=


Flat, proper families X → S, fibers are stable

varieties with ample canonical divisor,

ω
[m]
X/S is flat over S

and commutes with base change for every m,
modulo isomorphisms over S.


of stable varieties. It is obvious that Mstable

H is an open and closed
subfunctor of Mstable. It is known that the moduli functor Mstable is
well-behaved, that is, Mstable is locally closed. For the details, see [K4,
Corollary 25]. We have already known that the moduli functor Mstable
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satisfies the valuative criterion of separatedness and the valuative cri-
terion of properness by Kollár’s gluing theory and the existence of log
canonical closures (see [K6, Theorem 26] and [HX, Section 7]). More-
over, it is well known that the automorphism group Aut(X) of a stable
variety X is a finite group (for a more general result, see [F4, Corol-
lary 6.16]). Then, by using [KM, 1.2 Corollary], we obtain a coarse
moduli space M stable of Mstable in the category of algebraic spaces (see,
for example, [K5, 39 (Existence of coarse moduli spaces)]). Note that
M stable is a separated algebraic space which is locally of finite type.
Since Mstable satisfies the valuative criterion of properness, M stable

H is
proper if and only if it is of finite type.

4. Proof of theorems

Let us start the proof of Theorem 1.11. Theorem 1.11 is essentially
contained in [FF, Section 5]. We need no extra assumptions on D and
local monodromies since C is a curve.

Proof of Theorem 1.11. There is a closed subset Σ of C such that every
stratum of (X, D) is smooth over C0 = C \ Σ. Apply [BP, Theorem
1.2] to (X, Supp(D + f ∗Σ)). Then we obtain a birational morphism
g : X ′ → X from a projective simple normal crossing variety X ′ such
that g is an isomorphism outside Supp f ∗Σ and that g−1

∗ D+g∗f∗Σ has
a simple normal crossing support on X ′. Let D′ be the horizontal part
of g−1

∗ D. We may assume that D′ is Cartier (cf. [BP, Section 8]). Then
(X ′, D′) is a simple normal crossing pair and we obtain an inclusion

f∗g∗ωX′/C(D′) → f∗ωX/C(D),

which is an isomorphism over C0. Therefore, it is sufficient to prove
that f∗g∗ωX′/C(D′) is semipositive by Lemma 2.3. By replacing (X, D)
with (X ′, D′), we may assume that every stratum of (X,D) is dominant
onto C. We note that every local monodromy on Rdf0∗ι!QX0\D0 around
Σ is quasi-unipotent, where d = dim X − 1, X0 = f−1(C0), f0 = f |X0 ,
D0 = D|X0 , and ι : X0 \ D0 ↪→ X0. We take a unipotent reduction
π : C ′ → C of Rdf0∗ι!QX0\D0 . We may assume that π is a Kummer
cover. By shrinking C0, we may further assume that π : C ′ → C is
étale over C0. Let G be the canonical extension of

Gr0
F (π∗

0R
df0∗ι!QX0\D0 ⊗OC′

0
)

where π0 = π|C′
0

: C ′
0 := π−1(C0) → C0. Note that π∗

0R
df0∗ι!QX0\D0

underlies an admissible graded polarizable variation of Q-mixed Hodge
structure. Then G is locally free and G∗ is a semipositive locally free
sheaf on C ′ (cf. [FF, Theorem 5.1]). Since Rdf∗OX(−D) ' (π∗G)G,
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where G is the Galois group of π : C ′ → C, we obtain a nontrivial
map π∗Rdf∗OX(−D) → G, which is an isomorphism on C ′

0. Note that
Rdf∗OX(−D) is the lower canonical extension of

Gr0
F (Rdf0∗ι!QX0\D0 ⊗OC0).

See Step 4 in the proof of Theorem 5.1 and Theorem 5.3 in [FF].
Therefore, by taking the dual, we obtain an inclusion 0 → G∗ →
π∗f∗ωX/C(D), which is an isomorphism on C ′

0. Thus, π∗f∗ωX/C(D)
is semipositive by Lemma 2.3. So we obtain that f∗ωX/C(D) is semi-
positive because π is surjective. �
Remark 4.1. When X is smooth in Theorem 1.11, the semipositivity
theorem obtained in [F1, Theorem 3.9] is sufficient for the proof of
Theorem 1.11. Note that [F1, Theorem 3.9] also follows from the theory
of graded polarizable admissible variations of mixed Hodge structure.

Before we prove Theorem 1.8, we treat the following easier semi-
positivity theorem: Theorem 4.2. It is essentially the same as [K1,
4.13. Lemma]. Note that if X is semismooth then X has only semi
log canonical singularities. Therefore, Theorem 4.2 is a special case of
Theorem 1.8.

Theorem 4.2 (Semipositivity for semismooth varieties). Let X be a
semismooth variety and let f : X → C be a projective surjective mor-
phism onto a smooth projective curve. Assume that every irreducible
component of X is dominant onto C. Then f∗ωX/C is semipositive.

By using the arguments in [F4, Section 4], we reduce Theorem 4.2 to
Theorem 1.11. Hence we recommend the reader to see [F4, Section 4]
before reading the rest of this section. Although Theorem 4.2 is a spe-
cial case of Theorem 1.8, we give a proof for the reader’s convenience.
It will help the reader to understand more sophisticated arguments in
the proof of Theorem 1.8.

Proof of Theorem 4.2. By Step 2, Step 3, and Step 4 in the proof of
[F4, Theorem 1.2], we can find a smooth projective variety M with
dim M = dim X + 1, a semismooth variety X ′, which is a divisor on
M , such that α : X ′ → X is birational and Sing X ′ maps birationally
onto Sing X. Since α∗ωX′ ' ωX , we can replace X with X ′. Therefore,
we may assume that X is a divisor on a smooth projective variety M .
Let Xsnc denote the simple normal crossing locus of X. Take a blow-
up along an irreducible component of X \Xsnc and replace X with its
total transform with the reduced structure. After finitely many steps,
we may further assume that X is a simple normal crossing divisor on
a smooth projective variety (see Step 6 in the proof of [F4, Theorem
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1.2]). If there is a stratum S of X which is not dominant onto C, then
we take a blow-up along that stratum. We can replace X with its strict
transform by Lemma 2.3. Note that if S is an irreducible component
of X then we replace X with X \ S in the above process. After finitely
many steps, we may assume that every stratum of X is dominant onto
C. By Theorem 1.11, we obtain that f∗ωX/C is semipositive. �

From now on, we prove Theorem 1.8. The proof of Theorem 1.8 is
essentially the same as that of Theorem 4.2 when m = 1. The case
m ≥ 2 can be reduced to the case when m = 1 by using Viehweg’s
covering arguments.

Proof of Theorem 1.8. In Step 1, we prove the semipositivity of f∗ωX/C .

Step 1. We apply the proof of Theorem 1.2 in [F4, Section 4] to X.
Before we apply Step 6 in [F4, Section 4], we add the following step.

Step 5.5. If there is an irreducible component S of
Sing X3 in (f ◦ f1 ◦ f2 ◦ f3)

−1(Σ), where Σ = C \U , then
we take a blow-up of X3 along S and replace X3 with
its strict transform. By repeating this process finitely
many times, we may assume that (f ◦ f1 ◦ f2 ◦ f3)

−1(Σ)
contains no irreducible components of Sing X3.

Then we obtain a smooth projective variety M and a simple normal
crossing divisor Z on M , a Q-Cartier Q-divisor B on M , and a projec-
tive surjective morphism h : Z → X with the following properties.

(1) B is a subboundary Q-divisor, that is, B
≤1

= B.
(2) B and Z have no common irreducible components.
(3) Supp(Z + B) is a simple normal crossing divisor on M .

We set Z := (h)−1f−1(U) and h := h|Z : Z → f−1(U). Then h :
Z → f−1(U) is a quasi-log resolution as in [F4, Theorem 1.2]. More
precisely, we have the following properties.

(4) KZ + ∆Z ∼Q h∗Kf−1(U) such that ∆Z = B|Z .
(5) h∗OZ(d−∆<1

Z e) ' Of−1(U).
(6) The set of slc strata of f−1(U) gives the set of qlc centers of

[f−1(U), Kf−1(U)].

By taking more blow-ups, if necessary, we may assume that there are no
strata of (Z, Supp ∆Z) in Z \Z, where ∆Z = B|Z . By the construction
of (Z, ∆Z), we can check that

h∗ωZ(∆=1
Z ) ' ωf−1(U) and h∗ωZ(∆=1

Z
) ⊂ ωX .

Therefore, it is sufficient to prove that (f ◦ h)∗ωZ(∆=1
Z

) is semipositive
by Lemma 2.3. It is nothing but Theorem 1.11.
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Step 2 (cf. Proof of [V2, Corollary 2.45]). By Viehweg’s covering trick,

we can prove that f∗ω
[m]
X/C is semipositive for every m ≥ 2 by using the

case when m = 1. It is essentially [V2, Corollary 2.45]. Here, we closely
follow the proof of [V2, Corollary 2.45].

Let H be an ample line bundle on C. We set

r = min{µ ∈ Z>0 | (f∗ω[k]
X/C) ⊗Hµk−1 is semipositive}.

By the assumption, we have that the natural map f∗f∗ω
[k]
X/C → ω

[k]
X/C

is surjective. Since (f∗ω
[k]
X/C) ⊗ Hrk−1 is semipositive, (f∗ω

[k]
X/C) ⊗ Hrk

is ample. Therefore, SN((f∗ω
[k]
X/C) ⊗ Hrk) is generated by its global

sections for some positive integer N . Hence we see that ωX/C ⊗ f ∗Hr

is semi-ample. More precisely, ω
[k]
X/C ⊗ f∗Hrk is locally free and semi-

ample. By the usual covering argument (see Remark 4.3), (f∗ω
[k]
X/C) ⊗

Hr(k−1) is semipositive (cf. [V2, Proposition 2.43]). This is only possible
if (r − 1)k − 1 < r(k − 1). It is equivalent to r ≤ k. Therefore,

(f∗ω
[k]
X/C) ⊗Hk2−1 is semipositive. The same holds true if we take any

base change by π : C ′ → C such that π is a finite morphism from a
smooth projective curve and ramifies only over general points of C.

Therefore, f∗ω
[k]
X/C is semipositive (cf. [V2, Lemma 2.15]). By the same

argument as above, we see that ωX/C ⊗f ∗H is semi-ample since f∗ω
[k]
X/C

is semipositive. More precisely, ω
[k]
X/C ⊗ f ∗Hk is locally free and semi-

ample in the usual sense. By the covering argument (see Remark 4.3),

(f∗ω
[m]
X/C) ⊗Hm−1 is semipositive for every m > 0 (cf. [V2, Proposition

2.43]). The same holds true if we take any base change by π : C ′ → C

as in the above case. Therefore, f∗ω
[m]
X/C is semipositive for every m > 0

(cf. [V2, Lemma 2.15]). For more details, see [V2, Section 2].

We have finished the proof of Theorem 1.8. �

Remark 4.3 (cf. [K1, 4.15. Lemma and 4.16]). Let ϕ : X ′ → X be

a cyclic cover associated to a general member A ∈ |ω[kl]
X/C ⊗ f∗Hrkl|

(resp. |ω[kl]
X/C ⊗ f ∗Hkl|) for some positive integer l. Then f ′ := f ◦ ϕ :

X ′ → C satisfies all the assumptions for f : X → C. Therefore, we

have that f ′
∗ωX′/C is semipositive. It is easy to see that ω

[k]
X/C⊗f ∗Hr(k−1)

(resp. ω
[m]
X/C ⊗ f∗Hm−1) is a direct summand of ϕ∗ωX′/C .

Theorem 1.5 is almost obvious by Theorem 1.8.
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Proof of Theorem 1.5. We consider (f : X → C) ∈ Mstable(C) where
C is a smooth projective curve. By Kawakita’s inversion of adjunction
(see [Kwk, Theorem]), we can easily check that X itself is a semi log
canonical variety. By the definition of Mstable, we can find a positive

integer k such that ω
[k]
X/C is locally free and f -ample. Hence f∗ω

[m]
X/C is

semipositive for every m ≥ 1 by Theorem 1.8. It implies that Mstable

is semipositive in the sense of Kollár. �
By Kollár’s results (see [K5, Sections 2 and 3]), Theorem 1.1 follows

from Theorem 1.5. For some technical details, see also [V2, Theorem
4.34 and Theorem 9.25].

Proof of Theorem 1.1. It is sufficient to prove this theorem for con-
nected subspaces. Let Z be a connected complete subspace of M stable.
It is obvious that M stable has an open subspace of finite type which
contains Z. By replacing Mstable with the subfunctor given by this
subspace, we get a new functor N which is bounded. By recalling the
construction of the coarse moduli space, we know that there is a locally
closed subscheme S of Hilb(PN) for some N such that Z is obtained as
the geometric quotient S/ Aut(PN). Let f : X → S be the universal

family. By the proof of [K1, 2.6. Theorem], we see that det(f∗ω
[k]
X/S)p

descends to an ample line bundle on Z for a sufficiently large and di-
visible integer k and a sufficiently divisible positive integer p (see [V2,
Lemma 9.26]). Note that [K1, 2.6. Theorem] needs the semipositivity
of Mstable. For the details, see [K1, Sections 2 and 3] and [V2]. �

The proof of Theorem 1.8 works for Theorem 1.12 with some minor
modifications.

Proof of Theorem 1.12. Roughly speaking, all we have to do is to re-
place KX (resp. ωX) with KX + D (resp. ωX(D)) in the proof of The-
orem 1.8. We leave the details as an exercise for the reader. �

Theorem 1.12 is useful for the projectivity of the moduli space of
stable maps (cf. [FP]). For some related topics, see also [A2].

4.4 (Projectivity of the space of stable maps (cf. [FP])). We freely use
the notation in [FP]. Let F = (π, C → S, {pi}, µ) be a stable family of
maps over S to Pr. For the definition, see [FP, 1.1. Definitions]. We
set

Ek(π) = π∗(ω
k
π(

n∑
i=1

kpi) ⊗ µ∗(O(3k))).

In [FP, Lemma 3], it is proved that Ek(π) is a semipositive locally free
sheaf on S for k ≥ 2 by using the results in [K1, Section 4]. This
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semipositivity is used for the projectivity of the moduli space of stable
maps in [FP, 4.3. Projectivity]. The semipositivity of Ek(π) can be
checked as follows:

Since k ≥ 2, by the base change theorem, we may assume that
S is a smooth projective curve. We take a general member H of
|µ∗O(3)|. Then (C,

∑n
i=1 pi + H) is a semi log canonical surface and

KC/S +
∑n

i=1 pi + H is π-ample. Therefore

π∗OC(k(KC/S +
n∑

i=1

pi + H)) ' Ek(π)

is semipositive for every k ≥ 2 by Theorem 1.12.

Let us start the proof of Theorem 1.13.

Proof of Theorem 1.13. We use Viehweg’s covering arguments (cf. [V1])
and Theorem 1.12.

Step 1. As in the proof of Theorem 1.8, we obtain a smooth projective
variety M and a simple normal crossing divisor Z on M , a Q-Cartier
Q-divisor B on M , and a projective surjective morphism h : Z → X
with the following properties.

(1) B is a subboundary Q-divisor, that is, B
≤1

= B.
(2) B and Z have no common irreducible components.
(3) Supp(Z + B) is a simple normal crossing divisor on M .

We set Z := (h)−1f−1(U) and h := h|Z : Z → f−1(U). Then h :
Z → f−1(U) is a quasi-log resolution as in [F4, Theorem 1.2]. More
precisely, we have the following properties.

(4) KZ + ∆Z ∼Q h∗(Kf−1(U) + ∆f−1(U)) such that ∆Z = B|Z and
∆f−1(U) = ∆|f−1(U).

(5) h∗OZ(d−∆<1
Z e) ' Of−1(U).

(6) The set of slc strata of (f−1(U), ∆f−1(U)) gives the set of qlc
centers of [f−1(U), Kf−1(U) + ∆f−1(U)].

By taking more blow-ups, if necessary, we may assume that Z \ Z is
a simple normal crossing divisor on Z, (Z \ Z) ∪ Supp ∆Z is a sim-
ple normal crossing divisor on Z, and therefore there are no strata of
(Z, Supp ∆Z) in Z \Z, where ∆Z = B|Z . In this case, by the construc-
tion of (Z, ∆Z), we can check that

h∗OZ(k(KZ + ∆>0
Z )) ' Of−1(U)(k(KX + ∆))

and

h∗OZ(k(KZ + ∆>0
Z

)) ⊂ OX(k(KX + ∆)).
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Hence it is sufficient to prove that (f ◦h)∗OZ(k(KZ/C + ∆>0
Z

)) is semi-
positive by Lemma 2.3. By shrinking U , we may further assume that
every stratum of (Z, Supp ∆Z) is smooth over U .

Step 2. By the above construction, we have

KZ + ∆>0
Z = h∗(Kf−1(U) + ∆f−1(U)) + (−∆<0

Z ).

We apply the covering argument discussed in [C, Section 4.4], which is
a modification of Viehweg’s covering argument in [V1, Lemma 5.1 and
Corollary 5.2]. We set g = f ◦ h. By taking more blow-ups over Z \ Z
if necessary, we may assume that

F := Image(g∗g∗OZ(k(KZ/C + ∆>0
Z

)) → OZ(k(KZ/C + ∆>0
Z

)))

is a line bundle which is g-generated and that

OZ(k(KZ/C + ∆>0
Z

)) ' F ⊗OZ(E)

such that E is an effective Cartier divisor on Z and that Supp E is
a simple normal crossing divisor on Z. We may further assume that
Supp E ∪ Supp ∆>0

Z
is a simple normal crossing divisor on Z. By the

construction, we see that E = −k∆<0
Z over U . Let H be an ample line

bundle on C. We set

r = min{µ ∈ Z>0 | g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Hµk−1 is semipositive}.

The following lemma is essentially contained in [V1, Lemma 5.1 and
Corollary 5.2].

Lemma 4.5 (see [C, Lemma 4.19]). Let g : Z → C be as above. Let
A be an ample line bundle on C. Assume that

SN(g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Ak)

is generated by its global sections for some positive integer N . Then

g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Ak−1

is semipositive on C.

Proof of Lemma 4.5. Once we adopt Theorem 1.12, the arguments in
the proof of [C, Lemma 4.9] works for our situation.

Since every stratum of Z is dominant onto C, Z is a simple normal
crossing variety, and g has connected general fibers, we have g∗OZ '
OC (see, for example, [F4, Lemma 3.6]). By the definition of F , we
have

g∗OZ(k(KZ/C + ∆>0
Z

)) ' g∗F .
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Therefore, SN(g∗F ⊗ Ak) is generated by its global sections by the
assumption. Hence |(F ⊗ g∗Ak)N | is a free linear system on Z. Note
that F is g-generated. We set

L = OZ(KZ/C + k∆>0
Z

) ⊗ g∗A.

Then we have

Lk = OZ(E + (k − 1)(k∆>0
Z

)) ⊗F ⊗ g∗Ak.

Let H be a general member of the free linear system |(F ⊗ g∗Ak)N |.
Then we obtain

LkN = OZ(H + NE + N(k − 1)(k∆>0
Z

)).

We take a (kN)-fold cyclic cover p : Z̃ → Z associated to

LkN = OZ(H + NE + N(k − 1)(k∆>0
Z

)).

Note that (Z̃, p∗∆=1
Z

) is a semi log canonical pair (cf. [K6, Theorem

26]). More explicitly, Z̃ can be written as follows:

Z̃ = SpecZ

kN−1⊕
i=0

(L(i))−1,

where

(L(i))−1 = L−i ⊗OZ(b i

k
(E + (k − 1)(k∆>0

Z
))c).

We can easily see that ωZ ⊗L(k−1) is a direct summand of p∗ω eZ by the
construction, where

L(k−1) = Lk−1 ⊗OZ(−bk − 1

k
(E + (k − 1)(k∆>0

Z
))c).

By the calculation in the proof of [C, Lemma 4.9], we have a natural
inclusion

g∗(OZ(KZ/C + ∆=1
Z

) ⊗ L(k−1)) ⊂ g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Ak−1,

which is an isomorphism on U . We note that OZ(KZ +∆=1
Z

)⊗L(k−1) is

a direct summand of p∗O eZ(K
eZ + p∗∆=1

Z
). By taking a suitable partial

resolution of (Z̃, p∗∆=1
Z

) (see [BP, Theorem 1.2]), we can construct a
simple normal crossing pair (V, D) such that D is reduced and that

q∗ωV (D) ' ω
eZ(p∗∆=1

Z
) where q : V → Z̃. Hence we have the following

properties.

(1) π = p ◦ q : V → Z is a generically finite cover.
(2) there is a locally free sheaf E on C such that E is a direct

summand of (g ◦ π)∗ωV/C(D).
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(3) E ⊂ g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗ Ak−1, which is an isomorphism
over some non-empty Zariski open set of C.

By a special case of Theorem 1.12, we obtain that (g ◦ π)∗ωV/C(D) is
semipositive. Therefore, the direct summand E is also a semipositive
locally free sheaf on C. By Lemma 2.3, we obtain that

g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Ak−1

is semipositive. �

By the definition of r, g∗OZ(k(KZ/C +∆>0
Z

))⊗Hrk−1 is semipositive.
Therefore,

SN(g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Hrk)

is generated by its global sections for some positive integer N . Then,
by Lemma 4.5, we obtain that

g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Hr(k−1)

is semipositive. This is only possible if (r − 1)k − 1 < r(k − 1). It is
equivalent to r ≤ k. Therefore,

g∗OZ(k(KZ/C + ∆>0
Z

)) ⊗Hk2−1

is semipositive. The same holds true if we take any base change by
π : C ′ → C such that π is a finite morphism from a smooth projective
curve and ramifies only over general points of C. Therefore,

g∗OZ(k(KZ/C + ∆>0
Z

))

is semipositive.

Hence we obtain that f∗OX(k(KX/C + ∆)) is semipositive on C.
Since OX(kl(KX + ∆)) is f -generated, by replacing k with kl in the
above arguments, we obtain that f∗OX(kl(KX/C + ∆)) is semipositive
for every positive integer l. �

We close this section with comments on Kollár’s arguments in [K1,
Section 4] for the reader’s convenience.

4.6 (Comments on Kollár’s arguments in [K1, Section 4]). In [K1,
Section 4], Kollár essentially claims Theorem 1.8 when dimX = 3.
However, it is not so obvious to follow his arguments. In the last part
of [K1, 4.14], he says

As in the proof of 4.13 the kernel of δ is a direct sum-
mand and thus semipositive.
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In [K1, 4.14], E is not always smooth. Therefore, it is not clear what
kind of variations of Hodge structure should be considered. The map

(f ◦ g)∗ωE/C
δ−→ R1(f ◦ g)∗ωX/C

in [K1, 4.14] is different from the map

δ′ : (f ◦ g)∗ωD′/C → R1(f ◦ g)∗ωZ′/C

in the proof of [K1, 4.13. Lemma] from the Hodge theoretic viewpoint.
Note that D′ and Z ′ are smooth by the construction. In general, E
and X are singular in [K1, 4.14]. Kollár informed the author that
the semipositivity of (f ◦ g)∗ωX/C(E) can be checked with the aid of
the classification of semi log canonical surface singularities. Note that
his arguments only work for the case when the fibers are surfaces.
Anyway, we do not pursue them here because the semipositivity of
(f◦g)∗ωX/C(E) is a special case of Theorem 1.12 when f◦g is projective.

5. Proof of corollaries

In this section, we prove the corollaries in Section 1. Before we
start the proof, let us recall the definition of smoothable stable varieties
(cf. [K1, 5.4. Definition (ii)]). We use smoothable stable varieties in
order to compactify some moduli spaces.

Definition 5.1 (Smoothable stable varieties). A stable variety X0 is
smoothable if there is a flat projective morphism π : X → C to a

smooth curve C such that ω
[m]
X/C is flat over C and commutes with base

change for every m ≥ 1, the special fiber of π is X0, and the general
fiber Xt is a canonically polarized normal projective variety with only
canonical singularities.

We start the proof of the corollaries in Section 1.

Proof of Corollary 1.2. We check the boundedness of the moduli func-
tor Msm

H . The arguments in [Kr] work for our situation with some suit-
able modifications. In our situation, we can not apply Matsusaka’s big
theorem because the general fiber Xt in Definition 5.1 is not assumed
to be Gorenstein. Therefore we use the boundedness result obtained
through works of Tsuji, Hacon–McKernan, and Takayama (see [HK,
Theorem 13.6]). By the arguments in [Kr], we obtain the boundedness
of Msm

H . By the existence of relative canonical models, which is es-
tablished by Birkar–Cascini–Hacon–McKernan (see, for example, [HK,
Part II]), we see that Msm

H is a closed subfunctor of Mstable
H . There-

fore there is a coarse moduli space M sm
H of Msm

H which is a complete
algebraic space. Since the moduli functor Msm

H is semipositive in the
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sense of Kollár by Theorem 1.5 and Theorem 1.8, we see that M sm
H is

a projective algebraic scheme. �
Corollaries 1.3 and 1.4 are almost obvious by Corollary 1.2.

Proof of Corollary 1.3. The moduli functor MH is an open subfunc-
tor of Msm

H because the smoothness is an open condition. Therefore
Corollary 1.3 follows from Corollary 1.2. �
Proof of Corollary 1.4. Note that any small deformations of canonical
singularities are canonical (see [Kwm, Main Theorem]). Therefore the
moduli functor Mcan

H is an open subfunctor of Msm
H . Hence, Corollary

1.4 follows from Corollary 1.2. �
We close this paper with the proof of Corollary 1.7.

Proof of Corollary 1.7. If the moduli functor Mstable
H is bounded, then

we have a coarse moduli space M stable
H of Mstable

H which is a complete al-
gebraic space. Note that the moduli functor Mstable

H satisfies the valua-
tive criterion of separatedness and the valuative criterion of properness.
Since the moduli functor Mstable

H is semipositive in the sense of Kollár
by Theorem 1.5 and Theorem 1.8, we see that M stable

H is a projective
algebraic scheme. �

The boundedness of the moduli functor Mstable
H is the last open prob-

lem for the construction of projective coarse moduli spaces of stable
varieties, which will be fixed by [HMX].
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